
Counting paths in planar width 2 branching programs

Meena Mahajan, Nitin Saurabh, Karteek Sreenivasaiah

Institute of Mathematical Sciences, Chennai 600113, India.
Email: {meena,nitin,karteek}@imsc.res.in

Abstract

We revisit the problem of counting paths in width-2
planar branching programs. We show that this is hard
for Boolean NC1 under ACC0[5] reductions, complet-
ing a proof strategy outlined in [3]. On the other
hand, for several restricted instances of width-2 pla-
nar branching programs, we show that the counting
problem is TC0-complete. We also show that non-
planar width-2 programs can be planarized in AC0[2].
Using the equivalence of planar width-2 programs
with the reduced-form representation of positive ra-
tionals, we show that the evaluation problem for this
representation in the Stern-Brocot tree is also NC1

hard. In contrast, the evaluation problem in the con-
tinued fraction representation is in TC0.

1 Introduction

Barrington’s celebrated theorem [5] shows that
branching programs (BPs) of bounded width and
polynomial size characterize the class NC1 of lan-
guages accepted by Boolean polynomial-size formu-
las. A natural question to ask is whether this re-
sult arithmetizes. That is, does counting paths in
bounded width polynomial size branching programs
characterize counting proof trees in NC1 circuits?
More generally, do bounded width polynomial size
algebraic branching programs characterise arithmetic
NC1? The result of [7] shows that this is indeed the
case over rings, and even width 3 suffices; see also
[8]. And this result is tight: a very recent result
in [4] shows that over arbitrary fields, width 2 alge-
braic branching programs (ABPs) are not universal;
there are efficiently computable polynomials that are
provably not computable by width 2 ABPs of any
size. For the path-counting version, we are inter-
ested in natural numbers, and the operations +,×,
so we do not have a field or even a ring structure.
We may even assume that the inputs are Boolean
(zero-one-valued). Even in this setting, while paths in
bounded width polynomial size branching programs
can be counted in arithmetic NC1 (usually stated as:
#BWBP⊆#NC1), the converse is not known.

Some special cases of this question have been ad-
dressed in the literature. In [3], it is shown that in
a restricted type of planar BWBP, where the edge
connections between adjacent layers must come from
a specified set of patterns (call such restricted pla-
nar programs rGPs: restricted grid programs), path

Copyright c©2012, Australian Computer Society, Inc. This
paper appeared at the 18th Computing: Australasian The-
ory Symposium (CATS 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 128, Julian Mestre, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

counting is in fact possible with arithmetic circuits
of polynomial size and constant depth #AC0, and
hence even the bit representation of the number of
paths can be computed in TC0, a subclass of Boolean
NC1. It is also shown that without this grid re-
striction, path-counting even in width-2 planar BPs
is hard for Boolean NC1 under ACC0 (mod 5) re-
ductions. In [16, 13], the rGP restriction is ex-
plored further. It is shown that Boolean/arithmetic
NC1 is characterized by Boolean/algebraic polyno-
mial size rGPs of any width (this construction works
over fields/rings/naturals), and the equivalence holds
even if the width is restricted to be logarithmic.

Such fine distinctions between what is possible in
AC0, in TC0 and in NC1 are important because the
currently known machinery for proving circuit lower
bounds stops precisely in this region. We have lower
bounds against AC0, against uniform TC0 ([2]), but
none against NC1.

In this note, we return to the width 2 case. Count-
ing paths in width k BPs is equivalent (under the
weakest possible uniform reductions, projections) to
multiplying sequences of k × k matrices over 0,1.
(Each matrix is the adjacency matrix of connections
between vertices at consecutive layers of the BP.)
At width-2, planar BPs correspond to 2 × 2 matri-
ces where at least one of the off-diagonal elements is
zero. We refer to such matrices as planar matrices.
Two planar matrices are of special importance: L =(

1 0
1 1

)
and U =

(
1 1
0 1

)
. Products over these ma-

trices are equivalent to planar
width-2 BPs where the inter-
connections between layers is
one of the forms shown along-

◦ // ◦ ◦

��@
@@

@@
// ◦

◦ //

??~~~~~
◦ ◦ // ◦

side.
Products over L and U have nice connections to

many special numbers. For instance, for n ≥ 1,

(UL)n =

(
F2n+1 F2n
F2n F2n−1

)
, where Fn is the nth Fi-

bonacci number. (Hence, by the result of [17] that in-
teger matrix powering for constant-order matrices is
in TC0, and the fact that Bit-Count is in TC0, there
is a family of multi-output TC0 circuits such that Cn,
on input x, outputs the binary representation of Fj ,
where j is the number of 1s in x.) Products over L
and U are also intimately connected with the question
of representing positive rationals without repetition.
The positive rationals are in bijection with and hence
can be represented in the following two forms:

1. Reduced form: 〈m,n〉, where m,n are relatively
prime positive integers (or using notation from
[11], m ⊥ n), uniquely represents the rational
m
n .

2. Continued fractions form: 〈a0, a1, . . . , ak−1〉,

where each ai is a non-negative integer, a0 ≥ 0,
ai ≥ 1 for i ≥ 1, ak−1 ≥ 2 unless k = 0 in which
case a0 ≥ 1, uniquely represents the rational

a0 +
1

a2 + 1

. . .+ 1
ak−1

.

We can consider the computational complexity of con-
version between the two representations. This is best
handled via the Stern-Brocot tree, a well-studied bi-
nary search tree in which the vertices are in bijec-
tion with the positive rational numbers, and also with
products of sequences over the matrices L, U . (See
Sections 4.5 and 6.7 in [11]; see also [9].)

Our contributions in this note are as follows:

• We identify and fix a small but subtle flaw
in Theorem 16 of [3], which shows that path-
counting even in planar width-2 BPs is hard for
Boolean NC1 under ACC0 (mod 5) reductions.
(Section 3.)

• We show that the counting paths in width-2 BPs
reduces to counting paths in width-2 planar BPs;
thus the non-planar case is no harder than the
planar case. (Section 4.)

• For some special cases of planar width-2 BPs,
we show that path counting can be performed in
TC0. (Section 5.)

• We show that the continued fraction represen-
tation of positive rationals is simpler than the
reduced form representation: given a path in the
Stern-Brocot tree, finding a representation of the
rational at the endpoint of the path is in TC0 for
the continued fractions representation but NC1-
hard for the reduced form representation. (Sec-
tion 6.)

2 Definitions and Preliminaries

A branching program is a directed acyclic graph
in which the vertex set is partitioned into layers
V0, V1, . . . , Vm, and the edge set E is contained
in ∪mi=1Vi−1 × Vi. Edges are labeled by variables
x1, . . . , xn or their negations or the constant 1. There
are special nodes s ∈ V0 and t ∈ Vm. The branching
program is said to accept an input a ∈ {0, 1}n if there
is a path from s to t where all edge labels take the
value 1 under the assignment x = a. A family of
branching programs {Bn}n≥0 accepts a language L
if each Bn accepts exactly L=n. BWBP denotes the
class of (languages accepted by) branching program
families where each Bn has width c and size O(nc),
for some fixed constant c. (Note that in this defini-
tion, the branching programs are non-deterministic.
Note also that the graphs are required to be layered,
since otherwise width does not make sense.)

NCi denotes the class of (languages accepted by)
circuits of polynomial size andO((log n)i) depth using
bounded fan-in gates. We are concerned with only
NC1 and NC0 here.

AC0 denotes the class of (languages accepted by)
circuits of polynomial size and O(1) depth using un-
bounded fan-in ∨ and ∧ gates and negation gates.
ACC0[p] denotes the class of (languages accepted by)
circuits of polynomial size and O(1) depth using un-
bounded fan-in ∨ and ∧ gates, negation gates, and
MODp gates that output a 1 if and only if the num-
ber of 1s in their input is non-zero modulo p. The
union ACC0[p] is denoted ACC0.

TC0 denotes the class of (languages accepted by)
circuits of polynomial size and O(1) depth using un-
bounded fan-in Majority gates and negation gates. A
Majority gate outputs a 1 if and only if at least half
if its inputs are 1.

It is known that NC0 ⊆ AC0 ⊆ ACC0 ⊆ TC0 ⊆
NC1 = BWBP. Further, if the circuit / branching
program families are uniform, then NC1 languages
can be accepted in logarithmic space.

Arithmetic versions of NC1 and AC0 are circuits
with + and × gates instead of ∨ and ∧ and the same
size-depth bounds. It is known that uniform arith-
metic NC1 functions (that is, the bit representations
of numbers computed by arithmetic circuits) can be
computed in logarithmic space.

Arithmetic versions of BPs (that is, BPs comput-
ing functions from strings to numbers) can be defined
in many ways. The simplest way is counting paths.
A more generalised way is where edges in the BP may
be labeled by literals or by integer constants. Such
a BP computes the function that adds up the total
weight of all paths between two designated nodes.
(The weight of a path is the product of the weights
of edges on the path.) Path-counting in width-k BPs
is equivalent to iterated multiplication, over integers,
of k × k matrices with (0,1) entries. The length of
the BP translates to the number of matrices to be
multiplied.

(Remark: The “path-counting”model described
above is less general than algebraic BPs, defined by
Nisan in 1991 ([18]). In that model, the BP computes
polynomials over an underlying field; edges can be la-
beled by arbitrary linear forms. It is also somewhat
different from the arithmetic BPs defined by Beimel
and Gal [6], which actually decide languages rather
than compute functions, but with an acceptance cri-
terion that depends on the path count. It is known
folklore that the path-counting model captures classes
of counting functions based on nondeterministic ma-
chine classes.)

We say that a problem A reduces to a problem
B via AC0 reductions if there is an AC0 circuit fam-
ily augmented with oracle gates for B that correctly
solves A. Other reductions (ACC0, TC0) are analo-
gously defined.

A projection is a mapping Σ∗ → ∆∗ where each
output symbol depends on at most one input symbol.
In particularly, over binary alphabets, a circuit com-
puting the projection merely duplicates and re-routes
wires from the inputs to the output.

See for instance [1, 20] for a detailed treatment of
these topics.

3 Fixing a flaw in Theorem 16 of [3]

Theorem 16 in [3] (ICALP 1999) says that computing
the number of paths in planar width-2 BPs is com-
plete for NC1 under ACC0 (mod 5) reductions.

Though the Theorem claims completeness, as is
clear from the proof, only hardness is established.
In private correspondence, the authors of [3] clari-
fied that the completeness claim is an oversight and
they only show hardness. In fact, as far as we know,
whether paths in planar width 2 branching programs
can be counted in Boolean NC1 is still open.

The hardness proof as stated is flawed, but fixable.
Here is the way the proof is stated.

(a) The 2x2 integer matrices with determinant 1
mod 5, with the binary operation of matrix
multiplication in Z5, form a non-solvable group
(commonly denoted SL(2,5)). So, by Barring-
ton’s result ([5]), the word problem over this

group is complete for NC1.

(b) By [12] (FOCS 99 Theorem 3.1), every matrix
over non-negative integers with determinant 1
can be written as a product of a sequence over
the matrices L and U . So the word problem over
SL(2,5) reduces uniformly to evaluating products
over L, Uand I. This product is a width-2 planar
BP.

(c) Hence every NC1 language can be reduced to
counting paths mod 5 in a width 2 planar BP.

The flaw is in step (b). The matrices U and L have
determinant 1 over the integers. Thus any product
over U and L will have determinant 1 over the inte-
gers. It cannot produce a matrix with determinant,
say, 6 or 11. But such matrices are present in SL(2,5).

One cannot produce matrices like

(
3 3
1 3

)
or

(
0 2
2 0

)
using U , L.

So to use Gurevich’s construction, one first needs
to show that for every matrix M in SL(2,5), there is
a matrix N with non-negative integers, with deter-
minant 1 over integers, such that each entry of N is
equivalent, modulo 5, to the corresponding entry in
M . It turns out that this statement is indeed true,
but it is not needed at all. Even Gurevich’s construc-
tion is not needed. Just replace step (b) in the proof
by the following:

(b’) Dickson’s theorem for finite groups (see for in-
stance [10]; see also the Appendix) tells us
that SL(2,5) is exactly the group generated by(

1 0
2 1

)
and U . But the first matrix is just L2,

so L and U generate SL(2,5).

Remark: The group SL(2,5) is a perfect group;
it equals its commutator subgroup. Hence, follow-
ing Barrington’s construction, when reducing an NC1

language to the word problem over SL(2,5), any ele-
ment of SL(2,5) can be chosen as the accepting ele-
ment. If we choose, say, the matrix L, which differs
from I only in the [2, 1] entry, then the hardness result
above can be restated as follows:

Theorem 1 (Theorem 16 of [3]) For every lan-
guage A in NC1, there is a uniform polynomial-sized
projection r : Σ∗ −→ {L,U, I}∗ such that for every
x ∈ Σ∗, if r(x) = M1M2 . . .Mn, then

x ∈ A =⇒

(
n∏

i=1

Mi

)
[2, 1] ≡ 1 mod 5

x 6∈ A =⇒

(
n∏

i=1

Mi

)
[2, 1] ≡ 0 mod 5

4 Planarizing width-2 BPs

Theorem 1 shows that counting paths in planar
width-2 BPs is hard for NC1, provided we allow a
mod-5 computation at the end. An interesting ques-
tion is whether any simpler reduction is possible.

We first recall that a simpler reduction (without
post-computation) is known (see for instance [1]) in
the generalised model where edges are labeled by
{−1, 0, 1}. Robinson [19] showed that every language
in NC1 reduces to the 2-sided Dyck language with two
generators. Lipton and Zalcstein [15] showed that the
free group on two generators, say g1, g2, is isomor-
phic to the group of invertible matrices over ratio-
nals, with the isomorphism taking g1 to L2 and g2

to U2. Since over rationals, L−1 = L−1 =

(
1 0
−1 1

)
and U−1 =

(
1 −1
0 1

)
, we can put these together to

obtain the following:

Proposition 2 ([19], [15]) For every language A in
NC1, there is a uniform polynomial-sized projection
r : Σ∗ −→ {L,U,L−1, U−1, I}∗ such that for every
x ∈ Σ∗, if r(x) = M1M2 . . .Mn, then

x ∈ A⇐⇒
n∏

i=1

Mi = I

(All arithmetic is over integers.)

Note that for 2× 2 matrices over integers, we can
consider restrictions of differing degrees: (1) Only
(0,1) entries, (pure path-counting) (2) Only non-
negative integers, (3) Only {−1, 0, 1} entries, or
(4) Any integers. And for each of these cases, we
have planar and non-planar matrices. (Recall that we
say a 2× 2 matrix is planar if it has at least one off-
diagonal entry that is zero.) Theorem 1 takes us from
NC1 to planar (0,1) matrix products, using a mod 5
post-computation. Proposition 2 takes us from NC1

to planar {−1, 0, 1} matrix products via a projection.
It is still open whether we can get from NC1 to pla-
nar (0,1) matrix products without post-computation.
(See Figure 1.)

Here, we observe that such a reduction from NC1,
if one exists, will need a different technique, since we
provably cannot planarize such products via a pure
projection (without post-computation). The reasons
are simple: firstly, all planar (0,1) matrices have de-
terminant 0 or 1, and secondly, their products have
non-negative integers. Hence products over them can-

not generate the matrices

(
0 1
1 0

)
and

(
2 1
0 1

)
, with

determinants −1 and 2 respectively. In fact, pla-
nar non-negative matrices have non-negative deter-
minants, and planar {−1, 0, 1} matrices have deter-
minant in {−1, 0, 1}, so we cannot trade off planarity
for different restrictions on the entries.

We show below that we can planarize (0,1) ma-
trix products without post-computation, provided we
relax the requirement that the reduction be a projec-
tion. That is, we allow more pre-computation, and
we piece together the final matrix via a projection.
This is good enough in the computational settings we
are interested in.

Theorem 3 Path-counting in width 2 BPs reduces
to Path-counting in planar width-2 BPs via uniform
AC0[2] reductions.
More precisely, there is an AC0[2] circuit family {Cn}
such that given any sequence of 2 × 2 (0, 1) matrices
〈M1,M2, . . . ,Mn〉, Cn outputs a sequence of 2 × 2
(0, 1) planar matrices 〈U1, U2, . . . , U2n+1〉, and two
more (0, 1) planar matrices U (1) and U (2), satisfying
the following ∀u, v ∈ {1, 2}:(

n∏
i=1

Mi

)
[u, v] =

2n+1∏
j=1

Uj

U (v)

 [u, v]

Proof. We use the following equivalences:(
0 1
1 1

)
= LX;

(
1 1
1 0

)
= UX(

1 1
1 1

)
=

(
0 1
0 1

)(
0 0
1 1

)
;

planar(0, 1) //

''PPPPPPPPPPPP

��

planarN

��

%%KKKKKKKKKK

planar(0,±1) //

��

planarZ

��

(0, 1) //

''PPPPPPPPPPPP N

%%KKKKKKKKKKKKK

(0,±1) // Z

Figure 1: Different cases for width-2 BPs. Arrows denote “special case of”. Dotted lines denote incomparability.

In the first stage, replace each matrix Mi by
the pair A2i−1, A2i, where (1) if Mi = X, then
(A2i−1, A2i) = (I,X), (2) if Mi equals any of the
other non-planar matrices, use one of the equivalences
above, and (3) if Mi is planar, then (A2i−1, A2i) =
(Mi, I). This gives a sequence of length 2n where
the only non-planar matrices are all X. Further,
set A2n+1 = A2n+2 = X. Since X2 = I, we have∏n

i=1Mi =
∏2n+2

j=1 Aj .
The idea now is to pair up the Xs and let

them demolish each other. Note that if D1, . . . , Dt

are planar matrices, then X
(∏t

i=1Di

)
X =

IX
(∏t

i=1(DiXX)
)
XI = I

(∏t
i=1(XDiX)

)
X2I.

So in the sequence of matrices (Ai), we can locally re-
place the Ais that occur between the pairs by XAiX,
and the Xs by Is. Since there may be an odd num-
ber of Xs to begin with, we pad the sequence with
the two Xs at the end, and use one of them if neces-
sary to complete the pairing. Detecting whether an
Ai occurs between a pair rather than between pairs
requires a parity computation; hence the reduction is
an AC0[2] reduction. The last crucial observation is
that for planar D, the matrix XDX is also planar.
The details follow.

For j = 1, . . . , 2n+ 1 define bits bj , cj as follows:

bj =

{
1 if Aj = X
0 otherwise

cj =

j∑
i=1

bj mod 2

For j = 1 . . . 2n, define matrices Bj as follows:

Bj =

{
I if Aj = X
Aj if Aj 6= X and cj = 0
XAjX if Aj 6= X and cj = 1

Further, if c2n = 0 then B2n+1 = B2n+2 = I, other-
wise B2n+1 = I and B2n+2 = X. (c2n = 1 means that
A2n+1 will be paired to its left, so A2n+2 remains X.)

It follows that
∏n

i=1Mi =
∏2n+2

j=1 Bj .
If B2n+2 = I, then we have obtained a pla-

nar product. The reduction outputs Uj = Bj for

j = 1, . . . , 2n+ 1, and U (1) = U (2) = B2n+2.
If B2n+2 = X, we define U (1) and U (2) such that

we can separately extract the columns of the product
matrix, and eliminate B2n+2. It suffices to choose

U (1) =

(
0 0
1 0

)
and U (2) =

(
0 1
0 0

)
. �

5 Some special cases of 2× 2 iterated matrix
multiplication over non-negative integers

For a width 2 planar BP, the interconnections be-
tween adjacent layers may be from any of the 11 pat-
terns shown in Figure 2. The first three correspond
to matrices I, L, U respectively. The last corresponds

to the matrix DD =

(
0 1
0 0

)
, and width 2 rGPs (re-

stricted grid programs) allow only I, L,DD. So over
I, L,DD, we know from [3] that products can be com-
puted in TC0. We explore other subsets of these 11
patterns for which products can be computed in NC1.

Let C be the set of 8 matrices corresponding to
planar interconnections other than I, L, U . Our first
bound shows that over C ∪ {I}, that is if neither L
nor U appear, then path-counting is easy.

Lemma 4 Path-counting in width-2 planar BPs
where neither of the interconnection patterns L,U ap-
pears is in TC0.

Proof. Assume there is no I in the interconnection
patterns; if there are, we preprocess the sequence and
move all occurrences of I to the end. This involves
only counting the number of occurrences of I to the
left of each position, and hence can be done in TC0.

The matrices corresponding to other 8 patterns
can be decomposed as follows:(

1 1
0 0

)
=

[
1
0

]
[1 1];

(
0 0
1 1

)
=

[
0
1

]
[1 1];

(
1 0
1 0

)
=

[
1
1

]
[1 0];

(
0 1
0 1

)
=

[
1
1

]
[0 1];

(
1 0
0 0

)
=

[
1
0

]
[1 0];

(
0 0
1 0

)
=

[
0
1

]
[1 0];

(
0 0
0 1

)
=

[
0
1

]
[0 1];

(
0 1
0 0

)
=

[
1
0

]
[0 1].

Now we show how to construct a TC0 circuit fam-
ily to evaluate an iterated product of a sequence over
the above 8 matrices. Each matrix in the sequence is
given as a 4-bit string. Let the ith matrix be decom-

posed as

[
vi1
vi2

]
· [vi3 vi4]. Regrouping the terms in

◦ // ◦ // ◦

��@
@@

@@
// ◦ //

��@
@@

@@
◦ ◦ // ◦

��@
@@

@@
◦ // ◦ ◦ ◦

��@
@@

@@
◦

◦ // ◦ //

??~~~~~
◦ // ◦ ◦ //

??~~~~~
◦

??~~~~~
◦ // ◦ ◦

??~~~~~
◦ // ◦ ◦

Figure 2: Planar width-2 BP connections

the product, we want to compute

M1M2 . . .Mn

=

([
v11
v12

]
· [v13 v14]

)([
v21
v22

]
· [v23 v24]

)
. . .

([
vn1
vn2

]
· [vn3 vn4]

)
=

[
v11
v12

]
·
(

[v13 v14]

[
v21
v22

])(
[v23 v24]

[
v31
v32

])
. . . [vn3 vn4]

=

{(
[v13 v14]

[
v21
v22

])(
[v23 v24]

[
v31
v32

])
. . .

}
{[
v11
v12

]
· [vn3 vn4]

}
= (a1 × a2 × . . .× an−1)A

Layer 1 (Decomposition): Obtain from each
matrix Mi the corresponding row and column vectors.
This can be done in NC0.

Layer 2 (Inner product): For each 1 ≤ i <

(n−1), compute the product ai = [vi3 vi4]

[
v(i+1)1

v(i+1)2

]
.

Since each vik is 0 or 1, this can be done in NC0,
and gives a sequence of integers a1 . . . an−1 each in
the range {0, 1, 2}. Also compute the 2 × 2 matrix

A =

[
v11
v12

]
· [vn3 vn4]; this can also be done in NC0.

Each entry in A is 0 or 1.
Layer 3 (Iterated multiplication): Compute

a = a1 × a2 × . . .× an−1. This can be done in TC0.
Layer 4 (Scalar product): Finally, compute aA.

Since A is a 0-1 matrix, this requires only NC0 cir-
cuitry. �

It is easy to see that this upper bound is tight:

Theorem 5 Path-counting in width-2 planar BPs is
hard for TC0 even if both of the interconnection pat-
terns L,U do not appear. That is,
Computing products of sequences of matrices from the
set C is hard for TC0.

Proof. The canonical complete problem for TC0 is
checking whether at least half of the input bits are 1.
Given a sequence b1, . . . , bn, construct the sequence
of matrices M1, . . . ,M2n where

M2i−1,M2i =

I, I if bi = 0(

1 1
0 0

)
,

(
1 0
1 0

)
otherwise

Let M =
∏
Mi, and let anan−1 . . . a0 be the binary

representation of M [1, 1]. Then
∑

i bi ≥ n/2 ⇐⇒
∨nj=n/2aj = 1. �

Next we show that computation is easy even if
both L and U appear, provided they are always “well-
separated”.

Theorem 6 Path-counting in width-2 planar BPs
where occurrences of the interconnection patterns
L,U are separated by at least one matrix that is not
in {L,U, I} is in TC0.

Proof. Assume there is no I in the interconnection
patterns; if there are, we preprocess the sequence in
TC0 and move all occurrences of I to the end. Let
the sequence of matrices be M1, . . . ,Mn.

Imagine a boundary placed after each Mi satisfy-
ing any one of the following conditions:

1. Mi = L and Mi+1 6= L,

2. Mi = U and Mi+1 6= U ,

3. Mi 6= L and Mi+1 6= U .

(Assume Mn+1 = I for testing this condition.)
Now mark alternate boundaries starting from the

beginning.
Recall that C is the set of 8 matrices correspond-

ing to planar interconnections other than I, L, U . Be-
tween any two marked boundaries, the subsequence of
matrices has the form AB where A,B ∈ C ∪{Lk, Uk |
k ∈ Z>0} and at least one of A,B is in C. For each
such subsequence, the product AB is a matrix of one
of the following forms:(

0 0
α β

)
,

(
α β
0 0

)
,

(
0 α
0 β

)
,

(
α 0
β 0

)
,

(
1 1
α α

)
,

(
α α
1 1

)
,

(
α 1
α 1

)
,

(
1 α
1 α

)
where α and β are non negative integers. Each of
these can thus be decomposed as follows.(

0 0
α β

)
=

[
0
1

]
[α β];

(
α β
0 0

)
=

[
1
0

]
[α β];

(
0 α
0 β

)
=

[
α
β

]
[0 1];

(
α 0
β 0

)
=

[
α
β

]
[1 0];

(
1 1
α α

)
=

[
1
α

]
[1 1];

(
α α
1 1

)
=

[
α
1

]
[1 1];(

α 1
α 1

)
=

[
1
1

]
[α 1];

(
1 α
1 α

)
=

[
1
1

]
[1 α].

Now the strategy is similar to that used in prov-
ing Lemma 4: delineate the boundaries in the input
sequence, compute the product within each such sub-
sequence, decompose it into a product of a column
vector and a row vector, regroup the terms, evaluate
inner products, multiply the scalars, and finally per-
form O(1) matrix multiplications in case the pairing
up left an unpaired dangling term at the end.

To see that all these operations can be done in
TC0, note that

1. Delineating alternate boundaries requires only
counting modulo 2.

2. To obtain products within a subsequence, we
count the maximal number of consecutive L’s or
U ’s (in TC0) and then perform integer addition
(in AC0).

3. All products have O(log n) bit entries, so the de-
composition can be done in AC0.

4. For the same reason, inner products can also be
computed in AC0.

5. Multiplying the obtained scalars is a TC0 oper-
ation.

6. The remaining O(1) multiplications of 2× 2 ma-
trices is also a TC0 operation.

�

Observe that the above operations continue to be
in TC0 even for numbers represented with O(n) bits.
Thus

Corollary 7 Products of sequences of matrices from
the set C ∪ {Lk, Uk | k ∈ Z>0} can be computed in
TC0.

Finally we observe that if both L and U appear,
not well-separated but in a “regular” fashion, then
computation is easy.

Lemma 8 Products of the form (LaU b)m can be
computed in TC0.

Proof. This follows from the facts that

LaU b =

(
1 b
a ab+ 1

)
, and that powering of O(1)-

sized matrices is in TC0 ([17]).

(Note that computing ab is not an issue: from the
input sequence, we can compute a and b in TC0, and
these numbers are implicitly given in unary represen-
tation in the input.) �

6 Locating rationals in the Stern-Brocot tree

The problem of path-counting in planar width-2 BPs
is closely connected with that of locating positive ra-
tionals in the well-studied Stern-Brocot tree. We de-
scribe the tree and the connection below.

The Stern-Brocot tree is an infinite binary tree
whose nodes are in bijection with the set of positive
rationals. The labeling of nodes with rationals is such
that the tree forms a binary search tree. The label-
ing is constructive (see sections 4.5 and 6.7 of [11]);
however, the complexity of computing the labeling de-
pends on the representation chosen for the rationals.
The bijection between the tree itself and the positive
rationals can be described as follows: Each node of
the tree is associated with an (open) interval and a
“centre”, or a mediant. The interval is described by
a 4-tuple 〈a, b, c, d〉 and is the set of all positive ra-
tionals q such that a

b < q < c
d . The rational a+c

b+d is
associated with the node; we refer to it as the mediant
for the interval. A node with interval 〈a, b, c, d〉 has as
its children the nodes with intervals 〈a, b, a+ c, b+ d〉
and 〈a+c, b+d, c, d〉 respectively. The root of the tree
is associated with the interval 〈0, 1, 1, 0〉 and has 1 as
the mediant. It is well-known that the representation
of the mediant so obtained is already in reduced form.

The following computational question concerning
locating rationals in the Stern-Brocot tree is inti-
mately connected to the question of path-counting in

planar width-2 BPs:
Stern-Brocot Evaluation: Given a binary string
w denoting a path from the root of the Stern-Brocot
tree, find the representation of the positive rational
at the node reached.
We describe the connection in Lemmas 9 and 10.

It is known that every 2 × 2 matrix over non-
negative integers with determinant 1 can be written
as a product of a sequence over L,U (see for instance
[12] Thm 3.1). And every sequence over L,U gives
such a matrix. These sequences are also exactly the
sequences that arise in computing the reduced form
representation of a rational. Thus path counting in
width-2 planar BPs allows us to solve the Evaluation
problem for the reduced form representation of ratio-
nals; a Boolean NC1 circuit for the former implies one
for the latter. More formally,

Lemma 9 The Stern-Brocot Evaluation problem,
where the output is required to be in reduced form,
can be solved by AC0 circuits with oracle gates for
counting paths in planar width-2 BPs.

Proof. The circuit is constructed as follows: con-
vert each bit in w to an instance of L or U to ob-
tain a sequence of matrices M1, . . . ,M|w|, and feed
this sequence to oracle gates that compute the bits of
the planar width-2 Path Counting problem. The out-
puts of the oracle gates are the binary representations
of the 4 numbers m,m′, n, n′ in the product matrix(
n n′

m m′

)
. The desired rational (the mediant at the

node of the tree specified by path w) is then given by
m+m′

n+n′ , and (m + m′) ⊥ (n + n′); see [11] for details.

So placing appropriate AC0 circuitry above the oracle
gates yields the desired reduced form representation.

�

We now show the converse: the Evaluation prob-
lem for the reduced form representation can be used
to perform path counting in planar width-2 BPs.

Lemma 10 The bit representation of the number of
paths in planar width-2 BPs can be computed by TC0

circuits with oracle gates for the Stern-Brocot Evalua-
tion problem where the rationals are output in reduced
form.

Proof. As described in Section 3, computing prod-
ucts of sequences over the 2 × 2 matrices {L,U, I}
is hard for Boolean NC1 under ACC0[5] reductions.
This problem, in turn, reduces to the Evaluation
problem in the Stern-Brocot tree in the reduced form
representation as follows:

Use the equivalence between planar path-
counting and multiplying planar matrices. Let
M1,M2, . . . ,Mn be the given sequence of matrices
to be multiplied; each Mi is one of L,U, I. Since
sorting is in TC0, we can sift out all occurrences of
I to the end, getting the sequence N1, N2, . . . , Nk
followed by n − k occurrences of I. Now each Ni is
either L or U . Encode L as 1 and U as 0 to obtain
a binary string w = w1 . . . wk, which is fed to the
oracle gate for Evaluation. Let 〈m,n〉 be the output
of Evaluation on w. As described in Equation 4.34

in [11], if
∏
Ni =

(
A B
C D

)
, then m = C + D

and n = A + B. To retrieve C,D from m and A,B
from n, let 〈m′, n′〉 be the output of Evaluation
on w1 . . . wk−1. Assume wk = 0, the other case is
handled identically. Then(
A B
C D

)
=

(
E F
G H

)
×
(

1 0
1 1

)
=

(
E + F F
G+H H

)
,

and m′ = G + H and n′ = E + F .
Thus we can construct the required output:∏k

i=1Ni =

(
A B
C D

)
=

(
n′ n− n′
m′ m−m′

)
. Since

addition and subtraction are in AC0, this part is an
AC0 reduction.

One minor detail is that the number k of non-
trivial matrices is a variable, whereas the oracle gate
has a fixed number of inputs. To handle this, use
oracle gates for all values of k from 1 to n, and use
additional circuitry to determine which is the correct
value. This additional circuitry only needs to obtain
the correct count k, and hence can be implemented
in TC0. �

From Lemma 10 and Theorem 1 we can conclude:

Corollary 11 In the reduced form representation,
Stern-Brocot Evaluation is hard for Boolean NC1 un-
der uniform TC0 reductions.

The other commonly used representation for pos-
itive rationals is the continued fraction representa-
tion. In this representation, however, the Stern-
Brocot Evaluation problem is significantly easier:

Lemma 12 The Stern-Brocot Evaluation problem,
where the output is required in the continued fraction
representation, is in uniform TC0.

Proof. We follow the presentation from [11]; the
only additional thing is the observation that the re-
quired computations are in TC0.

We are given w ∈ {0, 1}∗. For w = ε, the rational
is 1, with representation 〈1〉. Otherwise, let w be a
string of length n ≥ 1, written as 1a00a11a2 . . . 0ak−1

where k is even, a0 ≥ 0, ak−1 ≥ 0, and all other
ai ≥ 1. Then the rational at the node reached is

a0 +
1

a1 + 1

. . .+ 1

ak−1+ 1
1

.

So the continued fraction representation is
〈a0, a1, . . . , ak−1 + 1〉 if ak−1 ≥ 1, and
〈a0, a1, . . . , ak−2 + 1〉 if ak−1 = 0. We fix an
encoding where the output has n numbers a1, . . . , an,
each log n bits long, and a control block of length
log n that tells us how many of these numbers are
useful. Constructing the encoding only requires
counting how many blocks precede a bit position;
since Bit-Count is in TC0, the encoding can be
computed in TC0. �

Thus in a concrete computational setting the re-
duced form representation is computationally harder
to work with than the continued fraction representa-
tion.

One can also ask the the following computational
question which is in some sense the inverse of the
Evaluation problem:
Stern-Brocot Path-search: Given the representa-
tion of a positive rational r, and given an index i, find
the ith bit of the path from the root of the Stern-
Brocot tree leading to r. (The path may be described
as a sequence of moves left, right starting from the
root. Or, coding these as 0 and 1, the path can sim-
ply be described as a binary string w.)
Note that the length of the path from a node to the

root of the tree is polynomial in the value of the ra-
tional, not in the bit size. (eg. the rational N = 2n

with bit size n in both representations appears along
the rightmost path at distance N from the root.) So
in looking for feasible computation, we specify an in-
dex position as above and ask for the bit there, rather
than asking for the entire path.

For this question too, the reduced form represen-
tation seems harder. For the continued fraction rep-
resentation, we have a TC0 upper bound:

Lemma 13 In the continued fraction representation,
Stern-Brocot Path-Search is in uniform TC0.

Proof. Essentially invert the process described in
Lemma 12. We design, for each m,n, a circuit Cm,n
that takes n numbers a0, . . . , an−1, each m bits long,
and an additional number i that is m+log n bits long.
(For the rational represented by 〈a0, a1, . . . , ak−1〉,
the path length is at most n2m and so the index is rep-
resented with m+log n bits.) The output is 3-valued:
⊥ if the path to the specified number has length less
than i, and otherwise a 0 or a 1 to describe the ith
bit of the path.

Given 〈a0, a1, . . . , ak−1〉, the path is
1a00a11a2 . . . 0ak−1−1 if k is even, and is
1a00a1 . . . 1ak−1−1 if k is odd. Note that the
the length of the path is at most n, but its actual
length depends on the blocks. So the circuit family
we design simply computes all the prefix sums∑j

i=0 ai and locates i in the correct block with
comparisons. Computing the block lengths, checking
whether k is even or odd, and comparing numbers
can all be done in TC0. �

For the reduced form representation, however, we
have no upper bound other than P . The problem is
related to the Extended Euclidean greatest-common-
divisor (gcd) algorithm but could well be easier. Re-
call that given two numbers a, b, the extended Eu-
clidean gcd algorithm performs a number of steps pro-
portional to max{dlog ae, dlog be}, and finally yields
not only g = gcd(a, b) but also integers such that
as + bt = g. At each step j, it subtracts some mul-
tiple mj of the smaller number from the larger. If
m,n are co-prime, then these multiples precisely de-
scribe the path: m1 moves left, m2 moves right and so
on. Thus any upper bound for implementing the ex-
tended Euclidean gcd algorithm also yields an upper
bound for the Stern-Brocot Path-Search problem in
reduced form representation. Note that to date we do
not even know whether the gcd of two integers can be
computed in NC,not just by the extended Euclidean
method, but by any method whatsoever. However,
the instances arising here are somewhat easier in the
sense that the numbers are known a priori to be co-
prime. it is conceivable that for such instances, the
extended Euclidean method has a parallel implemen-
tation that yields the intermediate multiples.

Another question to which also we do not know
the answer concerns conversion between the two rep-
resentations of positive rationals. An obvious way is
to go from a representation to the path in the Stern-
Brocot tree via Path-Search, and from the path to the
other representation via Evaluation. This approach,
however, does not work because not only do we not
have good upper bounds for Path-Search, but we also
know that the path itself can be exponentially long.
Generating it as a sub-computation is not a feasible
option.

7 Open questions

Several questions are still open.

Regarding Stern-Brocot trees: What is the com-
plexity of these problems?

1. Given m,n in binary with m ⊥ n, and given an
index i, find the ith bit of the path w in the Stern-
Brocot tree leading to the node labeled m/n.
The path can be found by repeatedly applying
the steps of the gcd algorithm, but this process
seems inherently sequential.

2. Given m,n in binary with m ⊥ n, given an in-
dex i, and also given proof that m ⊥ n via non-
negative integers s, t such that ms = nt+ 1, find
the ith bit of path w in the Stern-Brocot tree
leading to the node labeled m/n.
Same problem as above, but now we have addi-
tional information in s, t.

The most intriguing question in this context, of
course, is pinpointing the complexity of computing
greatest common divisors.

Regarding path counting, too, there are several
open problems:

1. Is #BWBP equal to #NC1? That is, can arith-
metic formulas over literals be expressed as path
counting problems in constant-width BPs? (We
know this to be the case if we allow negative con-
stants, [7].)

2. Can path counting in width 2 BPs be done in
NC1? That is, is width-2 #BWBP in Boolean
NC1?

3. Is all of #NC1 in Boolean NC1? Note that the
gap here is very small; it is known ([14], see also
[1]) that bits of #NC1 functions can be computed
by polynomial size bounded fan-in Boolean cir-
cuits of depth O(log n log∗ n). The O(log∗ n) gap
has not been closed for the last 25 years.

Acknowledgements

The development of this note was heavily influenced
by discussions the first author had with Eric Allender
and Samir Datta. Discussions with Kristoffer Hansen
first indicated the planarization for width-2 BPs.

References

[1] E. Allender. Arithmetic circuits and counting
complexity classes. In Jan Krajicek, editor, Com-
plexity of Computations and Proofs, Quaderni
di Matematica Vol. 13, pages 33–72. Seconda
Universita di Napoli, 2004. An earlier version
appeared in the Complexity Theory Column,
SIGACT News 28, 4 (Dec. 1997) pp. 2-15.

[2] Eric Allender. The permanent requires large
uniform threshold circuits. Chicago Journal of
Theoretical Computer Science, 1999(7), August
1999.

[3] Eric Allender, Andris Ambainis, David Mix Bar-
rington, Samir Datta, and Huong LêThanh.
Bounded depth arithmetic circuits: Counting
and closure. In Automata, Languages and Pro-
gramming ICALP, LNCS 1644, pages 702–702,
1999. full version at ECCC; TR99-012.

[4] Eric Allender and Fengming Wang. On the power
of algebraic branching programs of width 2. In
ICALP, LNCS 6755, pages 736–747, 2011.

[5] David Mix Barrington. Bounded-width polyno-
mial size branching programs recognize exactly
those languages in NC1. Journal of Computer
and System Sciences, 38:150–164, 1989.

[6] Amos Beimel and Anna Gál. On arithmetic
branching programs. J. Comput. Syst. Sci.,
59:195–220, 1999.

[7] M. Ben-Or and R. Cleve. Computing algebraic
formulas using a constant number of registers.
SIAM Journal on Computing, 21:54–58, 1992.

[8] H. Caussinus, P. McKenzie, D. Thérien, and
H. Vollmer. Nondeterministic NC1 computa-
tion. Journal of Computer and System Sciences,
57:200–212, 1998. Preliminary version in Pro-
ceedings of the 11th IEEE Conference on Com-
putational Complexity, 1996, 12–21.

[9] Jeremy Gibbons, David Lester, and Richard
Bird. Functional pearl: Enumerating the ratio-
nals. J. Funct. Program., 16:281–291, May 2006.

[10] D. Gorenstein. Finite groups. Harper and Row,
New York, 1968.

[11] Ronald L. Graham, Donald E. Knuth, and Oren
Patashnik. Concrete Mathematics: A Foun-
dation for Computer Science. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 1994.

[12] Y. Gurevich. Matrix decomposition problem is
complete for the average case. In SFCS ’90:
Proceedings of the 31st Annual Symposium on
Foundations of Computer Science, pages 802–
811 vol.2, 1990.

[13] M Jansen, M Mahajan, and B V Raghavendra
Rao. Resource trade-offs in syntactically multi-
linear arithmetic circuits. Computational Com-
plexity, page to appear, 2011.

[14] Hermann Jung. Depth efficient transformations
of arithmetic into boolean circuits. In Funda-
mentals of Computation Theory, FCT ’85, pages
167–174, London, UK, 1985. Springer-Verlag.

[15] Richard J. Lipton and Yechezkel Zalcstein. Word
problems solvable in logspace. J. ACM, 24:522–
526, July 1977.

[16] Meena Mahajan and B. V. Raghavendra Rao.
Arithmetic circuits, syntactic multilinearity and
skew formulae. In MFCS, LNCS vol. 5162, pages
455–466, 2008. full version in ECCC TR08-048.

[17] C. Mereghetti and B. Palano. Threshold circuits
for iterated matrix product and powering. The-
oretical Informatics and Applications, 34:39–46,
2000.

[18] Noam Nisan. Lower bounds for non-commutative
computation. In Proceedings of the twenty-third
annual ACM symposium on Theory of comput-
ing, STOC ’91, pages 410–418, 1991.

[19] David Hill Robinson. Parallel algorithms for
group word problems. PhD thesis, University
of California at San Diego, La Jolla, CA, USA,
1993.

[20] H. Vollmer. Introduction to Circuit Complexity:
A Uniform Approach. Springer-Verlag New York
Inc., 1999.

A self-contained constructive proof of Dick-
son’s theorem for SL(2,p)

Let X =

(
a b
c d

)
be an element of SL(2,p); ad −

bc = 1 mod p. Then X can be expressed, mod p, as
the product of a sequence of 4(p − 1) matrices from
L,U, I as follows: (Sequences below are of length at
most 4(p− 1); pad with Is.)

1. If a = d = 1, then bc = 0. So X is one of I, Lc,
U b.

2. If c 6= 0, then

X =

(
a b
c d

)
=

(
1 e
0 1

)(
1 0
c 1

)(
1 f
0 1

)
where e = (a − 1)c−1 and f = b − (a − 1)c−1d.
The corresponding width-2 program has length
at most 3(p − 1), since each of the matrices on
the right above is of the form Lk or Uk for some
k ≤ (p− 1).

3. If c = 0, then a 6= 0. Now write

X =

(
a b
0 d

)
=

(
1 0

(p− 1) 1

)(
a b
a b+ d

)
and then use the above step. The corresponding
width-2 program has length at most 4(p− 1).

	Introduction
	Definitions and Preliminaries
	Fixing a flaw in Theorem 16 of AABDL
	Planarizing width-2 BPs
	Some special cases of 2 2 iterated matrix multiplication over non-negative integers
	Locating rationals in the Stern-Brocot tree
	Open questions

