
On the Bipartite

Unique Perfect Matching Problem

Thanh Minh Hoang⋆1, Meena Mahajan2, and Thomas Thierauf3

1 Abt. Theor. Inform., Universität Ulm, 89069 Ulm, Germany
2 Inst. of Math. Sciences, Chennai 600 113, India

3 Fak. Elektr. und Inform., Aalen University, 73430 Aalen, Germany

Abstract. In this note, we give tighter bounds on the complexity of
the bipartite unique perfect matching problem, bipartite-UPM. We show
that the problem is in C=L and in NL

⊕L, both subclasses of NC
2.

We also consider the (unary) weighted version of the problem. We show
that testing uniqueness of the minimum-weight perfect matching problem
for bipartite graphs is in L

C=L and in NL
⊕L.

Furthermore, we show that bipartite-UPM is hard for NL.

1 Introduction

The perfect matching problem PM asks whether there exists a perfect matching
in a given graph. PM was shown to be in P by Edmonds [5], but it is still
open whether there is an NC-algorithm for PM. In fact, PM remains one of the
most prominent open questions in complexity theory regarding parallelizability.
It is known to be in randomized NC (RNC) by Lovász [12]; subsequently Karp,
Upfal and Wigderson [9], and then Mulmuley, Vazirani, and Vazirani [13] showed
that constructing a perfect matching, if one exists, is in RNC3 and RNC2,
respectively. Recently, Allender, Reinhardt, and Zhou [3] showed that PM (both
decision and construction) is in non-uniform SPL. However, to date no NC
algorithm is known for PM.

In this paper we consider the complexity of the unique perfect matching prob-
lem posed by Lovász (see [10]), UPM for short. That is, for a given graph G,
one has to decide whether there is precisely one perfect matching in G. Fur-
thermore, we consider the problem of testing if a (unary) weighted graph has a
unique minimum-weight perfect matching. The latter problem has applications
in computational biology. The unique maximum-weight perfect matching can be
used to predict the folding structure of RNA molecules (see [17]).

Gabow, Kaplan, and Tarjan [6] observed that UPM is in P. Kozen, Vazirani,
and Vazirani [10, 11] showed that UPM for bipartite graphs is in NC. Their
techniques don’t seem to generalize to arbitrary graphs (see Section 3.2 for more
detail). 4

⋆ Supported by DFG grant Scho 302/7-1.
4 In [10] it is claimed that the technique works also for the general case, but this was

later retracted in a personal communication by the authors; see also [11].

In this paper we give tighter bounds on the complexity of UPM for bipar-
tite graphs (bipartite-UPM, for short). Our bounds place bipartite-UPM into
complexity classes lying between logspace L and NC2. The classes we consider
are non-deterministic logspace (NL), exact counting in logspace (C=L), and
logspace counting modulo 2 (⊕L). Some known relationships among these classes
and their relativized versions are as follows:

L ⊆ NL ⊆ C=L ⊆ LC=L = NLC=L ⊆ NC2, L ⊆ ⊕L ⊆ NL⊕L ⊆ NC2.

These classes are important because they capture, via completeness, the com-
plexities of important naturally defined problems. Reachability in directed graphs
is complete for NL, as also 2-CNF-SAT. Testing whether a square matrix over
integers is singular is complete for C=L, and computing the rank of an integer
matrix is complete for LC=L. A complete problem for ⊕L is deciding whether
the number of perfect matchings in a bipartite graph is odd.

Our results (from Section 3) place bipartite-UPM in C=L ∩ NL⊕L. The
first upper bound implies that G is in bipartite-UPM if and only if an associated
matrix A, obtainable from G via very simple reductions (projections), is singular.
We show in Section 4 that (unary) weighted bipartite-UPM is in LC=L∩NL⊕L.
By the preceding upper bounds, it might well be the case that bipartite-UPM is
easier than the perfect matching problem. However, we show in Section 5 that
bipartite-UPM is hard for NL; thus the best known lower bounds for PM and
for UPM coincide. Our results thus place bipartite-UPM between NL and C=L.
Furthermore, our results provide a new complete problem for NL. This is the
problem of testing if a given perfect matching is unique in a bipartite graph.

2 Preliminaries

Complexity Classes: L and NL denote languages accepted by deterministic
and nondeterministic logspace bounded Turing machines, respectively. For a
nondeterministic Turing machine M , we denote the number of accepting and
rejecting computation paths on input x by accM (x) and by rejM (x), respec-
tively. The difference of these two quantities is gapM , i.e., for all x: gapM (x) =
accM (x)− rejM (x). The complexity class GapL is defined as the set of all func-
tions gapM (x) where M is a nondeterministic logspace bounded Turing machine.
The class C=L (Exact Counting in Logspace) is the class of sets A for which there
exists a function f ∈ GapL such that ∀ x : x ∈ A ⇐⇒ f(x) = 0. C=L is
closed under union and intersection, but is not known to be closed under com-
plement. ⊕L is the class of sets A for which there exists a function f ∈ GapL
such that ∀ x : x ∈ A ⇐⇒ f(x) ≡ 0 (mod 2). ⊕L is closed under Turing
reductions. Circuit classes NCk are all families of languages or functions that
can be computed by polynomial-size circuits of depth O(logk n).

Perfect Matchings: Let G = (V, E) be an undirected graph. A matching in G

is a set M ⊆ E such that no two edges in M have a vertex in common. A

matching M is called perfect if every vertex from V occurs as the endpoint of
some edge in M . By # pm(G) we denote the number of perfect matchings in G.

The perfect matching problem and the unique perfect matching problem are
defined as PM = {G | # pm(G) > 0 } and UPM = {G | # pm(G) = 1 }. Re-
stricted to bipartite graphs, we denote the problem bipartite-UPM. We also con-
sider the problem of testing whether there exists precisely one perfect matching
with minimal weight in a weighted graph.

For graph G with n vertices, the (order n) skew-symmetric adjacency matrix
A is as defined below:

ai,j =

1 if (i, j) ∈ E and i < j,

−1 if (i, j) ∈ E and i > j,

0 otherwise.

By transforming ai,j 7→ ai,j(x) = ai,jxi,j , for indeterminate xi,j = xj,i, we
get a skew-symmetric variable matrix A(x) called the Tutte’s matrix of G.

Theorem 1 (Tutte 1952). G ∈ PM ⇐⇒ det(A(x)) 6= 0.

Since det(A(X)) is a symbolic multivariate polynomial, it can have expo-
nential length in n, when written as a sum of monomials. However, there are
randomized identity tests for polynomials that just need to evaluate a polyno-
mial at a random point [18, 15]. Since the determinant of an integer matrix is
complete for GapL, a subclass of NC2, Lovász observed that Tutte’s Theorem
puts PM in RNC2.

It is well known from linear algebra that, for an n×n skew-symmetric matrix
(A = −AT), det(A) = 0 if n is odd and det(A) = det(AT) ≥ 0 if n is even.

The following fact is a consequence of Tutte’s Theorem:

Fact 1 1. # pm(G) = 0 =⇒ det(A) = 0,
2. G ∈ UPM =⇒ det(A) = 1.

Rabin and Vazirani [14] used Fact 1 for reconstructing the unique perfect match-
ing as follows. Let G be in UPM with the unique perfect matching M . Let
Gi,j = G−{i, j} denote the subgraph of G obtained by deleting vertices i and j,
and let Ai,j be the skew-symmetric adjacency matrix of Gi,j . For each edge
(i, j) ∈ E, one can decide whether (i, j) belongs to M or not by:

(i, j) ∈M =⇒ Gi,j ∈ UPM =⇒ det(Ai,j) = 1,

(i, j) 6∈M =⇒ Gi,j 6∈ PM =⇒ det(Ai,j) = 0.

Hence, if G ∈ UPM we can compute the perfect matching by looking at the
values det(Ai,j) for all edges (i, j) of G.

3 Testing unique perfect matching

3.1 Bipartite UPM is in LC=L
∩ NL⊕L

As seen in the last section, if G ∈ UPM then the unique perfect matching M

in G can be easily computed [14]. Our approach is to assume G ∈ UPM and

attempt to construct some perfect matching M as above. If this succeeds, then
we check whether M is unique.

Note that any perfect matching can be represented as a symmetric permu-
tation matrix. We construct the matrix B = (bi,j) of order n, where

bi,j = |ai,j | det(Ai,j).

Since A and each Ai,j are skew-symmetric, B is symmetric non-negative. From
the discussion above we have

Lemma 1. G ∈ UPM =⇒ B is a symmetric permutation matrix.

The first step of our algorithm for UPM is to check that the symmetric
matrix B is indeed a permutation matrix. This is so if and only if every row
contains precisely one 1 and all other entries are 0. This is equivalent to

n
∑

i=1

n
∑

j=1

bij

− 1

2

= 0. (1)

Since all bij ’s can be computed in GapL, the expression on the left hand side
in equation (1) can be computed in GapL too. We conclude

Lemma 2. {G | B is a permutation matrix } ∈ C=L.

Now assume that B is a permutation matrix (if not, already G 6∈ UPM), and
therefore defines a perfect matching M in G. Suppose there is another perfect
matching M ′ in G. Then the graph (V, M △M ′) is a union of disjoint alternating
cycles, defined below.

Definition 1. Let M be a perfect matching in G. An alternating cycle in G

with respect to M is an even simple cycle that has alternate edges in M and not
in M .

Lemma 3. Let M be a perfect matching in G. G ∈ UPM if and only if G has
no alternating cycle with respect to M .

Alternating Cycle(G, B)

1 guess s ∈ V

2 i← s

3 repeat
4 guess j ∈ V

5 if bi,j = 0 then reject
6 guess k ∈ V \ {i}
7 if aj,k = 0 then reject
8 i← k

9 until k = s

10 accept

Given graph G and a permutation ma-
trix B that defines some perfect match-
ing M in G, algorithm Alternating

Cycle searches for an alternating cy-
cle in G with respect to M in nondeter-
ministic logspace. It guesses a node s

of an alternating cycle in G (line 1).
Assume that we are at node i in the
moment. Then Alternating Cycle

makes two steps away from i. The first
step is to node j such that (i, j) ∈ M

(line 4 and 5), the second step is to a

neighbor k 6= i of j such that (j, k) 6∈ M (line 6 and 7). If k = s in line 9 we
closed a cycle of length at least 4 that has edges alternating in M and not in M .
Note that the cycle may not be simple. However, if G is bipartite, then all cycles
in G have even length, and so we have visited at least one alternating cycle on
the way. Since NL equals co-NL [8, 16], we have

Lemma 4. Given a bipartite graph G and a matching M in G, testing if G ∈
UPM is in NL.

Consider the setting that Alternating Cycle has just graph G as input, and
matrix B is provided by the oracle set S = { (G, i, j, c) | bi,j = c } ∈ C=L. Then

Alternating Cycle can be implemented in NLS . Note that the oracle access
is very simple: the queries are just a copy of the input and of some variables. In
particular, this fulfills the Ruzzo-Simon-Tompa restrictions for oracle access by
space bounded Turing machines. Since NLC=L = LC=L [2], we have

Lemma 5. Let G be a bipartite graph such that B is a permutation matrix.
Then in LC=L we can decide whether G is in UPM.

Combining the algorithms from Lemma 2 and 5, we obtain the following:

Theorem 2. bipartite-UPM ∈ LC=L.

Unfortunately, Alternating Cycle works correctly only for bipartite
graphs, since these do not have any odd cycles. On input of an non-bipartite
graph, Alternating Cy-

cle might accept a cycle
of alternating edges with
respect to some perfect match-
ing which is not simple,
thereby possibly giving a

4

6

5

3

1

2

false answer. The graph G alongside provides an example. The unique perfect
matching is M = {(1, 2), (3, 4), (5, 6)}, but Alternating Cycle outputs ’ac-
cept’.

Permutation(B)

1 for i← 1 to n do
2 k ← 0; l← 0
3 for j ← 1 to n do
4 if bi,j ≡ 1 (mod 2)

then k ← k + 1
5 if bj,i ≡ 1 (mod 2)

then l← l + 1
6 if k 6= 1 or l 6= 1

then reject
7 accept

Interestingly, we can also obtain NL⊕L

as an upper bound for bipartite-UPM.
Recall the oracle set S we use in the
above algorithm. In all the queries we
have c = 0 or c = 1. Suppose we re-
place S by the set T ∈ ⊕L,

T = { (G, i, j, c) | bi,j ≡ c (mod 2) }.

It is easy to design a deterministic
logspace algorithm, see Permutation

alongside, that, with oracle access to T ,
checks whether B is a permutation ma-
trix over Z2.

Since L⊕L = ⊕L, we have

Lemma 6. {G | B is a permutation matrix } ∈ ⊕L.

Consider algorithm Alternating Cycle with oracle T . Although we might get
different oracle answers when switching from S to T , it is not hard to check that
we anyway get the correct final answer. Again we combine the two steps and get

Corollary 1. bipartite-UPM ∈ NL⊕L.

3.2 Bipartite-UPM is in C=L

Based on the method in [11], the upper bound LC=L for bipartite UPM can be
improved to C=L. Note that we do not know whether LC=L = C=L.

Let G = (U, V, E) be a bipartite graph with |U | = |V | = n. Let A be the
bipartite adjacency matrix of G; A is of order n. Then the skew-symmetric

adjacency matrix of G is of the form S =

(

0 A

−AT 0

)

. Since det(S) = det2(A),

Fact 1 gives the following for bipartite graph G.

Fact 2 1. # pm(G) = 0 =⇒ det(A) = 0,
2. G ∈ UPM =⇒ det(A) = ±1.

The following lemma puts the idea of Kozen, Vazirani, and Vazirani [10] in such
a way that we get C=L as an upper bound.

Lemma 7. For bipartite graph G with 2n vertices and bipartite adjacency ma-
trix A, define matrices B = (bi,j) and C of order n as follows

bi,j = ai,j det2(Ai|j), for 1 ≤ i, j ≤ n,

C = I −ABT ,

where I is the n×n identity matrix and Ai|j is the sub-matrix obtained by deleting
the i-th row and the j-th column of A. Then G has a unique perfect matching if
and only if

(i) B is a permutation matrix, and
(ii) the characteristic polynomial of C is χC(x) = xn.

We provide some intuition to the lemma. Just as in the general case of Lemma 2,
if B is a permutation matrix, then matrix B describes a perfect matching. The
product ABT puts the matching edges on the main diagonal of the matrix. Then
I−ABT takes out the matching edges. Now consider C as the adjacency matrix
of a (directed) graph, say H . This can be thought of as identifying vertex i from
the left-hand side with vertex i from the right-hand side of the bipartite graph
ABT . (i.e. if G has vertices U = {u1, . . . , un} and W = {w1, . . . , wn}, then ABT

matches ui with wi, and edge (i, j) in H corresponds to path (ui, wi, uj) in G.)
Then any cycle in graph H corresponds to an alternating cycle in G. Hence

there should be no cycles in H . Equivalently, all coefficients of the characteristic
polynomial of C should be 0.

Another way of seeing this is as follows: χC(x) = det(xI−C) = det((x−1)I+
ABT). But (x− 1)I +ABT is the bipartite adjacency matrix of G when vertices
are renumbered to get the matching edges (of B) on the main diagonal, and with
weights x on these matched edges, weights 1 on other edges. So condition (ii)
checks if the determinant of this matrix is xn.

We consider the complexity of checking the conditions of Lemma 7. Regard-
ing the condition (i), the problem of testing if B is a permutation matrix is
essentially the same as in the general case and can be done in C=L (Lemma 2).
Consider the condition (ii). Here the elements of matrix C are not given as input,
they are certain determinants. However, a result in [1] shows that composition
of determinants is computable again in GapL, i.e. the coefficients of the char-
acteristic polynomial of C can be computed in GapL and they can be verified
in C=L [7]. Therefore condition (ii) can be checked in C=L. We conclude:

Theorem 3. bipartite-UPM ∈ C=L.

The above technique doesn’t seem to generalize to non-bipartite graphs. The
graph G shown here provides an example where the technique doesn’t seem
to work. Observe that G ∈ UPM with the unique perfect matching M =
{(1, 2), (3, 4), (5, 6)}. Permute G and take out the edges of M as described above.
This leads to graph H . Since G ∈ UPM, H should have no directed cycles. But
H contains 4 directed cycles, one of them is (1, 4, 5, 3). Another problem comes
from the sign of the cycles in H .

61

2 5

4

G H

3
3 4 61

2 5

Considering the concept of the skew-symmetric matrix of a non-bipartite
graph, we ask whether there is an analog to Lemma 7. Namely, let A be the skew-
symmetric adjacency matrix of G, and let B be defined as: bi,j = ai,jdet(Ai,j|i,j).
(Ai,j|i,j is the skew-symmetric adjacency matrix of the graph Gi,j|i,j obtained
by deleting vertices i and j, so we delete these rows and columns from A.) Then
an analogous test for whether G ∈ UPM would be: Does B correspond to some
perfect matching M , and does weighting the edges of M with x give matrix Ax

with determinant xn? Unfortunately, this is not true.

The graph G shown alongside provides
an example (even in the bipartite case).
Obviously, G is not in UPM. But the
matrix B = (bi,j) computed by the ex-
pression bi,j = ai,jdet(Ai,j|i,j) is a sym-

metric permutation matrix which corre-
sponds to the perfect matching M =
{(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12),
(13, 14), (15, 16), (17, 18)}. Let B′ be the
skew-symmetric adjacency matrix corre-
sponds to M . By Maple we get χC(x) =
x18 where C = I −AB′T .

3
14

18

17

4

5

7

6
8

9

10

11

12

1

2

13

15

16

4 Unique minimum-weight perfect matching

We now consider graphs with positive edge-weights. We assume that the weights
are given in unary (or are bounded by a polynomial in the number of vertices). It
has been shown by Mulmuley, Vazirani, and Vazirani [13] that there is a RNC2

algorithm (by using Isolating Lemma) for computing some perfect matching
in graph G. This algorithm chooses random weights for the edges of G, then
the Isolating Lemma states that with high probability, there is a unique per-
fect matching of minimal weight. We describe briefly the procedure by [13] for
reconstructing that unique minimum-weight perfect matching.

Let wi,j be the weight of edge (i, j) in G. Consider the skew-symmetric
adjacency matrix D = (di,j) defined as follows: for i < j, di,j = 2wi,j if (i, j) is
an edge and di,j = 0 if (i, j) is not an edge; for i > j, di,j = −dj,i. Then the
following facts hold:

1. If there is a unique minimum-weight perfect matching M with weight W ,
then det(D) 6= 0; moreover, the highest power of 2 dividing det(D) is 22W .

2. Furthermore, edge (i, j) is in M if and only if
det(Di,j)2wi,j

22W is odd where
Di,j is obtained by deleting rows i, j and columns i, j of D.

In our case the weights belong to the input, so the Isolating Lemma does not
help. However, we can still use the above reconstruction procedure to construct
some perfect matching which is potentially of minimal weight, and then test the
uniqueness separately.

Constructing the unique minimum-weight perfect matching. For the first part
of our algorithm (finding a symmetric permutation matrix associated to a per-
fect matching), unfortunately we cannot argue as elegantly as in the case of
unweighted graphs that we treated in the last section, if we follow the recon-
struction procedure by [13]. The reason is that we need values of a GapL func-
tion modulo 2k for some k, and GapL is not known to be closed under integer
division. Thus a LC=L upper bound as in the unweighted case may not hold

by this way. Instead, we describe another method for computing the unique
minimum-weight perfect matching.

Let x be an indeterminate. We relabel all the edges (i, j) of G with xwi,j .
Let G(x) be the new graph and A(x) its Tutte matrix. Then det(A(x)) is a
polynomial, p(x) = det(A(x)) = cNxN + cN−1x

N−1 + · · ·+ c0, cN 6= 0. Note
that the degree N of p is bounded by the sum of all edge-weights of G. Thus
when all the weights wi,j of G are polynomially bounded, N is also polynomially
bounded, and all coefficients of p(x) can be computed in GapL.

Assume for a moment that graph G has the unique minimum-weight perfect
matching M with weight W . Observe that M corresponds to the lowest term
x2W in p(x), moreover we have c2W = 1 and ci = 0, for all 0 ≤ i < 2W .

We denote by Gi,j(x) the graph obtained from G(x) by deleting the edge
(i, j) and by Ai,j(x) the Tutte matrix associated with Gi,j(x). Furthermore, let

pi,j(x) =
∑

k≥0 c
(i,j)
k xk = det(Ai,j(x)). Observe that

– If (i, j) ∈ M then c
(i,j)
2W = c

(i,j)
t = 0, for all 0 ≤ t ≤ 2W , because M can

not be the unique minimum-weight perfect matching in G − (i, j) which is
obtained from G by deleting the edge (i, j). Graph G− (i, j) has potentially
other perfect matchings with weights bigger than W .

– If (i, j) 6∈M then c
(i,j)
2W = 1 = c2W and c

(i,j)
t = 0, for all 0 ≤ t < 2W , because

M remains as the unique minimum-weight perfect matching in G− (i, j).

Let A = (ai,j) be the adjacency matrix of G. Define symmetric matrices Bt =
(

b
(t)
i,j

)

by

b
(t)
i,j = b

(t)
j,i = ai,j

t
∑

k=0

(

ck − c
(i,j)
k

)

, for 0 ≤ t ≤ N. (2)

It is clear that the elements of Bt are GapL-computable. As a consequence of
the above observations we have the following fact.

Fact 3 If G has a perfect matching M with minimal weight W , then B2W is a
symmetric permutation matrix and Bt = 0, for all 0 ≤ t < 2W .

Since all elements of matrices Bt are computable in GapL, in C=L we can
test if Bt is a permutation matrix or a zero-matrix.

Lemma 8. If G has unique minimum-weight perfect matching, then there exists
0 ≤ t ≤ N that ct = 1, cs = 0, Bt is a symmetric permutation matrix, and
Bs = 0, for all 0 ≤ s < t. All these conditions can be tested in C=L.

Testing uniqueness. The second part of our algorithm is to test if a given perfect
matching M is unique with minimal weight in G. For weighted bipartite graphs
we can develop an NL-algorithm that has B as input, where B is the permutation
matrix associated to M . In analogy to the unweighted version of UPM, we don’t
know whether there is an NC-algorithm for weighted non-bipartite UPM.

In the bipartite case we look for an alternating cycle C (with respect to M)
where the edges not in M have the same or less total weight than the edges of

M . If such a cycle exists, then M △C gives another matching M ′ with weight
no more than that of M . If no such cycle exists, then M is the unique minimum-
weight perfect matching in G. Algorithm Alt-Weighted-Cycle nondetermin-
istically searches for such cycles.

With oracle access to B, the algorithm is in NL. Note that here too it is
crucial that weights are given in unary; thus the cumulative weights aM and aM

can be stored on a logspace tape.

Lemma 9. Algorithm Alt-Weighted-Cycle tests correctly if a given perfect
matching M is unique with minimal weight in a bipartite graph. It can be imple-
mented in NL.

Alt-Weighted-Cycle(G, B)

1 aM ← 0; aM ← 0
2 guess s ∈ V

3 i← s

4 repeat
5 guess j ∈ V

6 if bi,j = 0 then reject
7 guess k ∈ V \ {i}
8 if aj,k = 0 then reject
9 aM ← aM + wi,j

10 aM ← aM + wj,k

11 i← k

12 until k = s

13 if aM ≤ aM then reject
14 accept

By combining Lemma 8 and 9
we can test if a bipartite graph G

has unique minimum-weight perfect
matching. Namely, the algorithm com-
putes all matrices Bt, then it searches
the potential perfect matching M by
Lemma 8. Thereafter G and M are the
inputs for algorithm Alt-Weighted-

Cycle. By this way we can show
that the weighted-bipartite UPM is in
NLC=L which is equal to LC=L.

In analogy to the unweighted case
we can modify the computation of
the perfect matching M by B′

t = Bt

(mod 2). The matrices B′
t are com-

puted in ⊕L. The rest of the algorithm
is the same, giving an upper bound of
NL⊕L.

Theorem 4. Weighted-bipartite UPM with polynomially bounded weights is in
LC=L ∩NL⊕L.

5 Unique Perfect Matching is hard for NL

Chandra, Stockmeyer, and Vishkin [4] have shown that the perfect matching
problem is hard for NL. We modify their reduction to show that UPM is hard
for NL. Recall that UPM might be an easier problem than the general perfect
matching problem.

Let G = (V, E) be a directed acyclic graph, and let s, t ∈ V be two vertices.
By # path(G, s, t) we denote the number of paths in G from s to t. The con-
nectivity problem asks whether # path(G, s, t) > 0 and it is complete for NL.
Since NL is closed under complement [8, 16], asking whether # path(G, s, t) = 0
is also complete for NL.

In [4], the following undirected graph H is constructed: H = (VH , EH),
VH = {sout, tin} ∪ { uin, uout | u ∈ V \ {s, t} }
EH = { (uin, uout) | u ∈ V \ {s, t} } ∪ { (uout, vin) | (u, v) ∈ E }
It is easy to see that # path(G, s, t) = # pm(H). Therefore sout is connected to
tin if and only if H ∈ PM.

Now obtain H ′ from H by adding the edge (sout, tin). Observe that H ′ has
at least one perfect matching, namely MH = {(sout, tin)} ∪ { (uin, uout) | u ∈
V − {s, t} }. Other than this, H ′ and H have the same perfect matchings. We
conclude that # pm(H)+1 = # pm(H ′). In summary, # path(G, s, t) = 0 ⇐⇒
pm(H ′) = 1. Note that each edge in H ′ is of the form (uin, vout); thus the
partition S, VH \ S where S = {uin | uin ∈ VH} witnesses that H ′ is bipartite.

Theorem 5. UPM is hard for NL, even when restricted to bipartite graphs.

As a consequence of the hardness of UPM, we consider the problem of testing
if a given perfect matching M is unique in a graph G. The problem for bipartite
graphs can be solved in NL by Lemma 4. For non-bipartite graphs we don’t
know whether the considered problem is in NC (note that if this problem for
non-bipartite graph is in NC, then UPM for non-bipartite graphs is also in
NC, because the unique perfect matching can always be computed in NC).
Furthermore, the problem is hard for NL because in the above construction,
path(G, s, t) = 0 if and only if the perfect matching MH is unique in the
constructed graph H ′. Thus we have

Corollary 2. The problem of testing if a given perfect matching is unique in a
bipartite graph is complete for NL.

Summary and Open Problems

We showed in the paper that the unique perfect matching problem for bipartite
graphs for both cases weighted or unweighted is in NC. We have placed bipartite
UPM between NL and C=L ∩NL⊕L and the unique minimum-weight perfect
matching problem between NL and LC=L∩NL⊕L. Some questions remain open:
1) Is non-bipartite UPM in NC? 2) Can we improve the lower bound NL for
UPM? A possible improvement seems to be important because if UPM is hard
for C=L, we could conclude that C=L ⊆ NL⊕L (which is an open question), if
UPM is hard for ⊕L, we could conclude that ⊕L ⊆ LC=L (which is open too).

The same question about the upper bound can be asked for weighted non-
bipartite graphs. Also, we restricted the weights to be polynomially bounded. It is
not clear how to handle exponential weights. The current technique to determine
one perfect matching would then lead to double exponential numbers. This is no
longer in NC2. Note however, that the weight of an alternating cycle requires
summing up at most n weights, which can be done in NC2.

Note that the results involving ⊕L, namely Lemma 6, Corollary 1 and The-
orem 4, carry over to ModpL for any p as well. The open questions listed above
concerning ⊕L are open for all these classes as well.

Clearly, the most important open problem is: Is the perfect matching problem
in NC?

Acknowledgments

We thank Jochen Messner and Ilan Newman for very interesting discussions. Eric
Allender gave very helpful comments on an earlier version of the paper. We also
thank the anonymous referees for pointing out the generalization to ModpL,
and for comments which improved the presentation.

References

1. E. Allender, V. Arvind, and M. Mahajan. Arithmetic complexity, Kleene closure,
and formal power series. Theory Comput. Syst., 36(4):303–328, 2003.

2. E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity, 8(2):99–126, 1999.

3. E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching and counting: uniform
and nonuniform upper bounds. Journal of Computer and System Sciences, 59:164–
181, 1999.

4. A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM
Journal on Computing, 13(2):423–439, 1984.

5. J. Edmonds. Maximum matching and a polyhedron with 0-1 vertices. Journal of
Research National Bureau of Standards, 69:125–130, 1965.

6. H. N. Gabow, H. Kaplan, and R. E. Tarjan. Unique maximum matching algorithms.
In 31st Symposium on Theory of Computing (STOC), pages 70–78. ACM Press,
1999.

7. T. M. Hoang and T. Thierauf. The complexity of the characteristic and the minimal
polynomial. Theoretical Computer Science, 295:205–222, 2003.

8. N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17(5):935–938, 1988.

9. R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in
random NC. Combinatorica, 6:35–48, 1986.

10. D. Kozen, U. Vazirani, and V. Vazirani. NC algorithms for comparability graphs,
interval graphs, and testing for unique perfect matching. In Proceedings of
FST&TCS Conference, LNCS Volume 206, pages 496–503. Springer-Verlag, 1985.

11. D. Kozen, U. Vazirani, and V. Vazirani. NC algorithms for comparability graphs,
interval graphs, and testing for unique perfect matching. Technical Report TR86-
799, Cornell University, 1986.

12. L. Lovasz. On determinants, matchings and random algorithms. In L. Budach,
editor, Proceedings of Conference on Fundamentals of Computing Theory, pages
565–574. Akademia-Verlag, 1979.

13. K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–131, 1987.

14. M. Rabin and V. Vazirani. Maximum matchings in general graphs through ran-
domization. Journal of Algorithms, 10(4):557–567, 1989.

15. J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27:701–717, 1980.

16. R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26(3):279–284, 1988.

17. J. E. Tabaska, R. B. Cary, H. N. Gabow, , and G. D. Stormo. An RNA fold-
ing method capable of identifying pseudoknots and base triples. Bioinformatics,
14(8):691–699, 1998.

18. R. Zippel. Probabilistic algorithms for sparse polynomials. In International Sym-
posium on Symbolic and Algebraic Computation, LNCS 72, pages 216–226, 1979.

