
SMALL SPACE ANALOGUES OF

VALIANT’S CLASSES AND THE

LIMITATIONS OF SKEW FORMULAS

Meena Mahajan and B. V. Raghavendra Rao

Abstract. In the uniform circuit model of computation, the width of
a boolean circuit exactly characterizes the “space” complexity of the
computed function. Looking for a similar relationship in Valiant’s alge-
braic model of computation, we propose width of an arithmetic circuit
as a possible measure of space. In the uniform setting, we show that
our definition coincides with that of VPSPACE at polynomial width. We
introduce the class VL as an algebraic variant of deterministic log-space
L; VL is a subclass of VP.
Further, to define algebraic variants of non-deterministic space-bounded
classes, we introduce the notion of “read-once” certificates for arithmetic
circuits. We show that polynomial-size algebraic branching programs
(an algebraic analogue of NL) can be expressed as read-once exponential
sums over polynomials in VL, i.e. VBP ∈ ΣR · VL. Thus read-once
exponential sums can be viewed as a reasonable way of capturing space-
bounded non-determinism. We also show that ΣR · VBP = VBP, i.e.
VBPs are stable under read-once exponential sums.
Though the best upper bound we have for ΣR ·VL itself is VNP, we can
obtain better upper bounds for width-bounded multiplicatively disjoint
(md-) circuits. Without the width restriction, md- arithmetic circuits are
known to capture all of VP. We show that read-once exponential sums
over md- constant-width arithmetic circuits are within VP, and that
read-once exponential sums over md- polylog-width arithmetic circuits
are within VQP.
We also show that exponential sums of a skew formula cannot represent
the determinant polynomial.

Keywords. Arithmetic Circuits, Valiant’s Classes, Space Complexity,
Circuit Width, Algebraic Branching Programs.

Subject classification. 68Q05, 03D15, 68Q15.

2 Mahajan & Rao

1. Introduction

Valiant introduced the classes VP and VNP in algebraic complexity theory
to capture the complexity of algebraic computation of polynomial families
Valiant (1979a, 1982) (see also Bürgisser (2000)). Over Boolean computation
these classes correspond roughly to P and NP; over arithmetic computation
with Boolean inputs they correspond roughly to #LogCFL (Vinay (1991)) and
#P (Valiant (1979b)). Given the rich structure within P and LogCFL(Cook
(1971)), it is natural to ask for a complexity theory that can describe algebraic
computation at this level. In particular, there are two well-known hierarchies
within polynomial-size Boolean circuit families: the NC hierarchy based on
depth, modeling parallel time on a parallel computer (Borodin (1977), see also
Greenlaw et al. (1995)), and the SC hierarchy based on width, modeling si-
multaneous time-space complexity of P machines (see Cook (1979); Johnson
(1990); Pippenger (1979)). It is straightforward to adapt Valiant’s definition
of VP to classes like AC0 and NC1. But an adaptation capturing a space-bound
is more tricky, especially when dealing with sub-linear space.

The main obstacle in this direction is defining a “right” measure for space.
Two obvious choices are: 1) the number of arithmetic “cells” or registers used
during the course of computation (i.e. the unit-space model), and 2) the size
of a succinct description of the polynomials computed at each cell. A third
choice is the complexity of computing the coefficient function for polynomi-
als in the family. All three of these space measures have been studied in
the literature, Koiran & Perifel (2009a,b); Michaux (1989); de Naurois (2006);
Nisan & Wigderson (1995); Valiant (1976), with varying degrees of success.
As the brief overview in Section 3.1 shows, the models of Koiran & Perifel
(2009a,b); Michaux (1989) when adapted to logarithmic space are too power-
ful to give meaningful insights into small-space classes, whereas the model of
de Naurois (2006) as defined for log-space is too weak.

The main purpose of this paper is to propose yet another model for describ-
ing space-bounded computations of families of polynomials. Our model is based
on the width of arithmetic circuits (see Arvind et al. (2010); Jansen & Sarma
(2010); Limaye et al. (2010) for more on width-bounded arithmetic circuits),
and captures both succinctness of coefficients and ease of evaluating the poly-
nomials. We show that our notion of space VSPACE(s) coincides with that of
Koiran & Perifel (2009a,b) at polynomial space with uniformity (Theorem 3.2),
and so far avoids the pitfalls of being too powerful or too weak at logarithmic
space VL (see Lemma 3.9).

Continuing along this approach, we propose a new way of describing non-

Small space analogues of Valiant’s classes 3

deterministic space-bounded computation in this context. Valiant’s framework
captures non-determinism by defining VNP as Σ · VP. However, for non-
deterministic log-space NL, there is a well-known model that directly carries
over to the arithmetic setting, namely polynomial-size branching programs BP.
(See Section 2.1 for formal definitions.) Thus, treating VBP as VNL, we would
like an analogous characterization of the form (VNL =) VBP = Σ·VL. However,
this does not quite work, since Σ ·VL equals all of VNP. (This follows from the
facts that VNP = Σ ·VNC1, see Bürgisser (2000), and that VNC1 ⊆ VL.) Hence
we use another model for non-determinism based on read-once certificates; this
also provides the correct description of NL in terms of L in the Boolean world
in the sense that NL = ∃R · L. We show that the algebraization of this model,
ΣR · VL, does contain arithmetic branching programs VBP (Theorem 4.4).

Surprisingly, we are unable to show the converse. In fact, we are unable
to show any good (non-trivial) upper bound on the complexity of read-once
certified log-space polynomial families. This raises the question: Is the read-
once certification procedure inherently too powerful? We show that this is not
always the case; for branching programs, read-once certification adds no power
at all (Theorem 4.8). Further, if the circuit is multiplicatively disjoint and
of constant width, then read-once certification does not take us beyond VP

(Theorem 5.1).

We also study the class of polynomial size skew formulas, denoted SkewF.
The motivation for this study arises from Valiant’s characterizations of the
classes VP and VNP (see Valiant (1979b)). Valiant proved that every polyno-
mial p(X) ∈ VNP, and in particular every polynomial in VP, can be written as
p(X) =

∑

e∈{0,1}m φ(X, e), where the polynomial φ has an arithmetic formula,
or expression, of polynomial size. We know that the family of Permanent poly-
nomials is complete for VNP (see e.g.Bürgisser (2000)). It is also known Toda
(1991) that the family of Determinant polynomials is complete for the class of
polynomials computed by skew circuits of polynomial size. The question we
ask is: can we prove a similar equivalence in the case of skew circuits? That
is, can we write polynomials computed by skew circuits as an exponential sum
of polynomials computed by skew formulas? We show that this is not possible,
by showing that any polynomial which is expressible as an exponential sum of
a skew formula can again be represented by a skew formula.

The rest of the paper is organized as follows: Section 3 gives a detailed
account of existing notions of space for algebraic computation and introduces
circuit width as a possible measure of space. In section 4 we introduce the
notion of read-once certificates and read-once exponential sums. Section 5
contains upper bounds for read-once exponential sums of some restricted circuit

4 Mahajan & Rao

classes. In section 6 we present the limitations of skew formulas.

2. Preliminaries

We use standard definitions for complexity classes such as polynomial space
PSPACE, logarithmic space L, non-deterministic log-space NL (see e.g. Vollmer
(1999),Arora & Barak (2009)).

2.1. Circuit classes. A Boolean circuit is a directed acyclic graph C, where
nodes with non-zero in-degree are labeled from {∨,∧,¬}, and nodes of zero-in-
degree (called leaf nodes) are labeled from X ∪ {0, 1}, where X = {x1 . . . , xn}
is the set of variable inputs to the circuit. An output node of C is a node of
zero out-degree, and it computes a function f : {0, 1}n −→ {0, 1}. Without
loss of generality, we can assume that negations appear only at the leaves.

An arithmetic circuit over a ring K = 〈K, +,×, 0, 1〉 is similarly a directed
acyclic graph C, where nodes with non-zero in-degree are labeled from {+,×},
and nodes of zero-in-degree (called leaf nodes) are labeled from X ∪ K. An
output node of C computes a polynomial in K[X]. (A circuit can have more
than one output node, thus computing a set of polynomials.)

The following definitions apply to both arithmetic and boolean circuits,
hence we simply use the term circuit. The depth of a circuit is the length of
a longest path from a leaf node to an output node, and its size is the number
of nodes and edges in it. The circuit is said to be layered if the vertices can
be partitioned into sets V0, V1, . . . , Vd such for every edge e there is an i such
that e is directed from Vi to Vi+1. The sets V0, V1, . . . , Vd are the layers of the
circuit. If a circuit is layered, its width is the maximum number of nodes at
any particular layer. We assume that all output nodes appear at the last layer.
Every circuit has an equivalent layered circuit obtained by subdividing some
edges (using a g ∨ 0 or g + 0 node at a sub-division point g).

Let C be a complexity class defined in terms of Turing machines. A circuit
family (Bn)n≥0 is said to be C-uniform, if the direct connection language for
Bn can be decided in C (see Vollmer (1999)).

It is known that languages accepted by Turing machines with a simultaneous
space bound S(n) and time bound T (n) can be decided by uniform circuits of
depth O(T (n)) and width O(S(n)) (using the standard tableau construction,
see for instance the proof of Theorem 2.10 in Arora & Barak (2009)).

Polynomial size poly-log depth Boolean circuits of bounded fan-in (every
non-leaf node other than a negation node has degree 2) form the class NC. Its
subclass of log-depth circuits is called NC1, which, with the additional con-

Small space analogues of Valiant’s classes 5

straint of DLOGTIME uniformity or even log-space uniformity, is known to
be contained in L. Polynomial size poly-log width Boolean circuits of bounded
fan-in form the class SC; SC0 is the subclass of constant-width circuits and
SC1 is the subclass of log-width circuits. It is known that SC0 equals NC1

(Barrington (1989)) and uniform SC1 equals L (via the tableau method). Poly-
nomial size poly-log depth Boolean circuits with unbounded fan-in form the
class AC; its subclass of constant depth circuits is the class AC0 which is known
to be contained in NC1. Polynomial size poly-log depth Boolean circuits with
semi-unbounded fan-in (∨ gates have unbounded fan-in, but ∧ gates have fan-
in 2) form the class SAC; in particular, if the depth is O(logi n), then the class
is SACi.

An arithmetic (resp. Boolean) circuit C is said to be skew if for every
multiplication gate f = g×h (resp. ∧ gate f = g∧h), either h or g is a leaf node.
C is said to be weakly skew if for every f = g × h, either the edge (g, f) or the
edge (h, f) is a bridge in the circuit, i.e. removing the edge disconnects its end-
points in the resulting circuit. Poly-size Boolean skew circuits and weakly skew-
circuits are known to characterize NL (Toda (1992); Venkateswaran (1992)).

An algebraic branching program (BP for short) over a ring K is a layered
directed acyclic graph, where edges are labeled from {x1, . . . , xn} ∪ K. There
are two designated nodes, s and t, where s has zero in-degree and t has zero
out-degree. The size of a BP is the number of nodes and edges in it, and the
width is the maximum number of nodes at any layer. The length of a BP is
the length of a longest directed path in it. The polynomial P computed by a
BP B is the sum of the weights of all s − t paths in B, where the weight of a
path is the product of all edge labels in the path. We will also consider multi-
output BPs, where the above is generalized in the obvious way to several nodes
t1, t2, . . . , tm at the last level. Note that BPs can be simulated by skew circuits
and vice versa with a constant blow up in the width (see, e.g. , Limaye et al.

(2010); Toda (1992)).

2.2. Polynomial families. VP denotes the class of families of polynomials
(fn)n≥0 such that ∀n ≥ 0

◦ fn ∈ K[x1, . . . , xu(n)], where u ≤ poly(n)

◦ deg(fn) ≤ poly(n)

◦ fn can be computed by a polynomial size arithmetic circuit.

VPe is the sub-class of VP corresponding to poly-size arithmetic formulas (i.e.
circuits with out-degree at most 1, also called expressions). VNC1 is the sub-

6 Mahajan & Rao

class of VP containing polynomial families computed by polynomial size, log-
depth arithmetic circuits of bounded fan-in. For i ≥ 0, VSCi denotes the sub-
class of VP, containing polynomial families computed by arithmetic circuits of
polynomial size and logi n width. It is known that VPe is the same as VNC1

(see Bürgisser (2000)). If the circuits computing fn have quasi polynomial size
2logc n, we say that {fn} is in the class VQP.

Exponential sums of polynomial families are defined as follows.

Definition 2.1. For a polynomial g ∈ K[X,Y], with X = {x1, . . . , xn}, and
Y = {y1, . . . , ym}, EY (g) denotes the exponential sum of g(X,Y) over all
Boolean settings of Y . That is,

EY (g)(X) =
∑

e⊆{0,1}m

g(X, e)

Definition 2.2. Let C be an algebraic complexity class in Valiants’ model.
Σ · C is the set of families of polynomials (fn)n≥0 such that there exists a
polynomial family (gm)m≥0 in C with

fn(X) = EY (gn+m′)(X) =
∑

e∈{0,1}m′

gn+m′(X, e) where m′ ≤ poly(n).

The class VNP is defined to be VNP = Σ · VP.

We denote by VBP and VBWBP the classes of families of polynomials com-
puted by polynomial size algebraic branching programs of polynomial and con-
stant width, respectively. Without loss of generality, we can treat these classes
as polynomial size skew circuits of polynomial and constant width respectively
(Malod & Portier (2008)).

3. Notion of space for arithmetic computations?

In the case of boolean computations, the notion of “width” of a circuit captures
the notion of space in the Turing machine model (under certain uniformity
assumptions; see Pippenger (1979)). In the case of arithmetic computations,
defining a notion of “space bounded computation” seems to be a hard task.

3.1. Previously studied notions.

Small space analogues of Valiant’s classes 7

Number of Registers. One possible measure for space is the number of
arithmetic “cells” or registers used in the course of computation (i.e. the unit-
space model). This measure of space was considered by Valiant (1976) way
back in 1976. Later it was again considered by Nisan & Wigderson (1995)
in the context of time-space trade-offs for arithmetic straight-line programs.
Subsequently, Michaux (1989) showed that with this notion of space, any lan-
guage that is decided by a machine in the Blum-Shub-Smale (BSS) model of
computation (a general model for algebraic computation capturing the idea of
computation over reals, Blum et al. (1997); see also Bürgisser (2000)) can also
be computed using O(1) registers. Hence there is no space-hierarchy theorem
under this measure of space. However, Michaux’s result exploits the order
relation available in the BSS model of real computation; such a relation is
not available in Valiant’s algebraic model. See the appendix for a (very) brief
description of the BSS model and Michaux’s result.

Succinct descriptions of polynomials, and weak space. Another pos-
sible measure is the size of a succinct description of the polynomials com-
puted at each cell. de Naurois (2006) introduced a notion of weak space in
the Blum-Shub-Smale model, and defined the corresponding log space classes
LOGSPACEW and PSPACEW . This in fact is a way of measuring the complexity
of succinctly describing the polynomials computed by or represented at each
“real” cell. Though this is a very natural notion of “succinctness” of describing
a polynomial, this definition has a few drawbacks:

1. Over R, it is not known whether NC1 is contained in LOGSPACEW . This
is in contrast to the situation in the Boolean world.

2. The polynomials representable at every cell have to be “sparse”, i.e. the
number of monomials with non-zero coefficients should be bounded by
some polynomial in the number of variables.

The second condition above makes the notion of weak space very restrictive if we
adapt the definition to Valiant’s algebraic computation model. This is because
the corresponding log-space class in this model will be computing only sparse
polynomials, but in the non-uniform setting sparse polynomials are known to
be contained in a highly restrictive class called skew formulas (see Section 6),
which, as we show in Corollary 6.2, is in fact a proper subclass of constant
depth arithmetic circuits (i.e. VAC0).

The Koiran,Perifel model and VPSPACE. Koiran & Perifel (2009a,b) sug-
gested another notion of polynomial space for Valiant’s classes. The main pur-
pose of their definition was to prove a transfer theorem over R and C. Under

8 Mahajan & Rao

their definition, Uniform-VPSPACE is defined as the set of families (fn) of mul-
tivariate polynomials fn ∈ F [x1, . . . , xu(n)] with integer coefficients such that

◦ u(n) is bounded by a polynomial in n.

◦ The degree of fn is bounded by 2poly(n).

◦ Each coefficient of fn can be represented using 2poly(n) bits.

◦ Every bit of the coefficient function of fn is computable in PSPACE.

(The non-uniform counterpart can be defined similarly, allowing the PSPACE

algorithm for computing coefficients to use polynomially many bits of non-
uniform advice.)

Koiran & Perifel (2009b) observed that the class VPSPACE is equivalent to
the class of polynomials computed by uniform arithmetic circuits of polynomial
depth and exponential size. Uniform Boolean circuits of polynomial depth and
exponential size compute exactly PSPACE, hence the name VPSPACE. Thus
one approach to get reasonable smaller space complexity classes is to generalize
this definition. We can consider VSPACE(s(n)) to consist of families (fn)n≥1 of
polynomials satisfying the following:

◦ f ∈ Z[x1, . . . , xu(n)], where u(n), the number of variables in fn, is bounded
by some polynomial in n.

◦ The degree of fn is bounded by 2s(n).

◦ The number of bits required to represent each of the coefficients of fn is
bounded by 2s(n), i.e. the coefficients of fn are in the range [−22s(n)

, 22s(n)
].

◦ Given n in unary, an index i ∈ [1, 2s(n)], and a monomial M , the ith bit
of the coefficient of M in fn is computable in DSPACE(s(n)).

It is easy to see that with this definition, even the permanent function
PERMn is in VSPACE(log n). Thus VSPACE(log n) would be too big a class to
be an arithmetic version of log-space. The reason here is that this definition,
unlike that of de Naurois (2006), goes to the other extreme of considering
only the complexity of coefficient functions and ignores the resource needed to
compute and add the monomials with non-zero coefficients. The relationship
between the complexity of coefficient functions and the polynomials themselves
is explored more thoroughly in Malod (2007).

Small space analogues of Valiant’s classes 9

3.2. Defining VPSPACE in terms of circuit width. In this section we
propose width of a (layered) circuit, with additional conditions on the number
of variables, the degree and the coefficient size, as a possible measure of space
for arithmetic computations. Note that treating width as space is essentially
the register model, with manipulations of register contents allowed using only
the ring operations.

Definition 3.1. For any S : N −→ N such that S(n) ≥ n, ∀ n, VWIDTH(S)
is the class of polynomial families (fn)n≥0 ∈ Z[X] (with integer coefficients)
with the following properties:

◦ fn ∈ Z[x1, . . . , xu(n)], where u(n), the number of variables in fn is at most
poly(n).

◦ deg(f) ≤ max{2S(n), poly(n)}.

◦ The coefficients of fn are representable using max{2S(n), poly(n)} many
bits.

◦ There is an arithmetic circuit of width S(n) and size max{2S(n), poly(n)}
computing fn.

Further, if the arithmetic circuits in the last condition are DSPACE(S)-uniform,
we call the class Uniform-VWIDTH(S).

We show now that at polynomial space, this definition is equivalent to that
of Koiran & Perifel (2009b).

Theorem 3.2. The class Uniform-VPSPACE as defined in Koiran & Perifel
(2009b) coincides with Uniform-VWIDTH(poly).

We use the following easy fact:

Fact 3.3. A degree d polynomial over t variables has at most
(

d+t
t

)

monomials.

Now, Theorem 3.2 follows from the two lemmas below.

Lemma 3.4. Uniform-VPSPACE ⊆ Uniform-VWIDTH(poly).

Proof. Let (fn)n≥0 be a family of polynomials in VPSPACE. Then by def-
inition, the bits of the coefficients of fn can be computed in PSPACE and
hence by exponential size Boolean circuits of polynomial width. The (expo-
nentially many) bits can be put together with appropriate weights to obtain

10 Mahajan & Rao

an arithmetic circuit computing the coefficient itself. The exponential-degree
monomials can each be computed by an exponential-size constant-width cir-
cuit. Thus we can use the naive method of computing fn: expand fn into
individual monomials, compute each coefficient and each monomial, and add
them up sequentially. By Fact 3.3, there are only exponentially many distinct
monomials. Thus we get a polynomial width exponential-size circuit comput-
ing fn. �

The converse direction is a little more tedious, but essentially follows from
the Lagrange interpolation formula for multivariate polynomials.

Lemma 3.5. Uniform-VWIDTH(poly) ⊆ Uniform-VPSPACE.

Proof. Let (fn)n≥0 be a family of polynomials in VWIDTH(poly(n)). Let
N = u(n) be the number of variables in fn, and let q(n) be a polynomial such
that 2q(n) is an upper bound on both d = deg(fn) and on the number of bits
required to represent each coefficient. Let w(n) = poly(n) and s(n) ∈ 2O(nc)

respectively be the width and size of a witnessing arithmetic circuit C that
computes fn.

To show that fn ∈ VPSPACE, we need to give a PSPACE algorithm which,
given 1n and 〈i1, . . . , iN〉 as input, computes the coefficient of the monomial
∏N

k=1 xik
k .

We use the following notation: S = {0, 1, . . . , d}, T = SN , x̃ = 〈x1, . . . , xN〉,

and for ĩ = 〈i1, . . . , iN〉 ∈ T , the monomial m(̃i) =
∏N

k=1 xik
k is denoted x̃ĩ. We

drop the subscript n in fn for convenience.
Using Lagrangian interpolation for multivariate polynomials we have

f(x̃) =
∑

ĩ∈T

f (̃i)Equal(x̃, ĩ) =
∑

ĩ∈T

f (̃i)
N
∏

k=1

Equal(xk, ik)

where Equal(x, i) =
∏

a∈S\{i}

(

x − a

i − a

)

=

∏

a∈S\{i}(x − a)

i!(d − i)!(−1)d−i

Thus for any t̃ ∈ T , the coefficient of the monomial m(t̃) is given by

coeff(m(t̃)) =
∑

ĩ∈T

f (̃i)
N
∏

k=1

coeff of xtk
k in

∏

a∈S\{ik}
(xk − a)

ik!(d − ik)!(−1)d−ik

But we have a nice form for the inner numerator:

coeff of xtk
k in

∏

a∈S\{ik}
(xk − a) is (−1)d−tkSd,d−tk(0, 1, . . . , ik − 1, ik +1, . . . , d)

Small space analogues of Valiant’s classes 11

where Sd,j denotes the elementary symmetric polynomial of degree j in d vari-
ables.

To compute the desired coefficient in PSPACE, we use the Chinese Remain-
dering technique; See Chiu et al. (2001) for more details. Since symmetric poly-
nomials are easy to compute (e.g. Shpilka & Wigderson (2002) or Th 2.5.4 in
Tzamaret (2008)), and since f (̃i) is computable by a polynomial-width arith-
metic circuit by assumption, a PSPACE algorithm can compute the coefficient
modulo a prime p, for any prime p that has an O(d) bit representation. (The
algorithm will require O(w(n) log p + log s(n)) space to evaluate f (̃i) mod p).
Reconstructing the coefficient from its residues modulo all such primes can also
be performed in PSPACE. (see Chiu et al. (2001).) �

Remark 3.6. It is straightforward to see that Lemma 3.4 holds without the
uniformity condition, i.e. VPSPACE ⊆ VWIDTH(poly). However it is not clear
if the same is true for Lemma 3.5. If a polynomial family is computed by non-
uniform arithmetic circuits of polynomial width and exponential size, then we
do not how to compute coefficient functions in PSPACE using only polynomially
many bits of advice. (The advice is not long enough to encode the circuit.)

3.3. VWIDTH(S) for sub-linear S. Motivated by the equivalence in Theo-
rem 3.2, we now consider using Definition 3.1 for sub-linear functions, specifi-
cally, for poly-logarithmic space. We immediately run into a problem; for i ≥ 2,
VWIDTH(logi n) and VSCi, though close, are different for the following reasons:

◦ Polynomials in VWIDTH(logi n) can have degree O(2logi n), whereas de-
gree of polynomials in VSCi is bounded by poly(n).
Since we are concerned with polynomials in VNP, we can simply change
the degree constraint in VWIDTH to a polynomial upper bound. But then
Theorem 3.2 will not go through. With the current definition, however,
this is not a problem for VSC0 and VSC1.

◦ The coefficients of polynomials in VWIDTH(logi n) are integers and their
size is bounded by O(2logi n), whereas polynomials in VSCi can have ar-
bitrary coefficients from the underlying ring.
This is not a problem if we consider VSC circuits where leaf labels are from
the set X∪{0, 1} or X∪Z. However, the main reason for the integer coef-
ficients with polynomial bit size in Definition 3.1 and in Koiran & Perifel
(2009b) is to allow a simulation by uniform PSPACE machines. Since we
are not directly concerned with such a simulation here, we can alterna-
tively change the coefficient constraint in Definition 3.1 to allow arbitrary

12 Mahajan & Rao

ring elements. In this case the constraint on coefficient size should also
be dropped.

We thus consider the following definition for sub-linear functions:

Definition 3.7. For a sub-linear function S : N −→ N, VWIDTH(S) is the
class of polynomial families (fn)n≥0 with the following properties:

◦ The number of variables u(n) in fn is bounded by poly(n).

◦ deg(fn) ≤ max{2O(S(n)), poly(n)}.

◦ There is a family of arithmetic circuits of size max{2O(S(n)), poly(n)} and
width O(S(n)) computing (fn).

Then we have VWIDTH(log0 n) = VSC0 and VWIDTH(log n) = VSC1.
We now define the following algebraic complexity classes:

Definition 3.8. VSPACE(S(n))
∆
= VWIDTH(S(n))

Uniform-VSPACE(S(n))
∆
= Uniform-VWIDTH(S(n))

We denote the log-space class by VL; thus VL = VWIDTH(log n) = VSC1.
The following containments and equalities follow directly from known re-

sults (see e.g., Caussinus et al. (1998); Flarup & Lyaudet (2010); Limaye et al.

(2010)) about width-constrained arithmetic circuits.

Lemma 3.9. VBWBP = VNC1 = VPe ⊆ VSPACE(O(1)) = VSC0 ⊆ VL =
VSC1 ⊆ VP

Thus VL according to this definition is in VP and avoids the trivially “too-
powerful” trap; also, it contains VNC1 and thus avoids the “too weak” trap.

The following closure property is easy to see.

Lemma 3.10. For every S(n) ≥ log n, the classes VSPACE(S(n)) are closed
under polynomially bounded summations and products.

4. Read-Once certificates

In general, non-deterministic complexity classes can be defined via existential
quantifiers. e.g. , NP = ∃ · P. In the algebraic setting, we know that the class
VNP (algebraic counterpart of NP) is defined as an “exponential” sum of values
of a polynomial size arithmetic circuit, i.e. VNP = Σ ·P. It is also known that
VNP = Σ · VPe = Σ · VNC1 (see Bürgisser (2000)).

Small space analogues of Valiant’s classes 13

If we consider smaller classes, NL is the natural non-deterministic version of
L. However to capture it via existential quantifiers, we need to restrict the use
of the certificate, since otherwise ∃ · L = NP. It is known that with the notion
of “read-once” certificates (see, e.g. , Arora & Barak (2009), Chapter 4) one
can express NL as an existential quantification over L. Analogously, we propose
a notion of “read-once” certificates in the context of arithmetic circuits so that
we can get meaningful classes by taking exponential sums over classes that are
below VP.

Definition 4.1. Let C be a layered arithmetic circuit with ℓ layers. Let
X = {x1, . . . , xn} and Y = {y1, . . . , ym} be the input variables of C. C is said
to be “read-once certified” in Y if the layers of C can be partitioned into m
blocks, such that each block reads exactly one variable from Y . That is, there
is a fixed permutation π ∈ Sm, and indices 0 = i1 ≤ . . . ≤ im ≤ im+1 = ℓ,
such that for each 1 ≤ j ≤ m, all occurrences of the variable yπ(j) are at gates
appearing in layers ij + 1 to ij+1.

Without loss of generality, we henceforth assume that π is the identity
permutation.

Now, analogous to Definitions 2.1, 2.2, we define the exponential sum over
read-once certified circuits.

Definition 4.2. Let C be any arithmetic circuit complexity class. A polyno-
mial family (fn)n≥0 is said to be in the class ΣR ·C, if there is a family (gm(n))n≥0

such that m(n) = n + m′(n), m′(n) ≤ poly(n), fn(X) = EY (gm(n)) and gm(n)

can be computed by a circuit of type C that is read-once certified in Y .

We also use the term “read-once exponential sum over C” to denote ΣR · C.
For circuits of width polynomial or more, the restriction to read-once certi-

fication is immaterial: the circuit can read a variable once and carry its value
forward to any desired layer via internal gates. This is equivalent to saying
that for a P machine, read-once input is the same as two-way-readable input.
Thus

Proposition 4.3. ΣR · VP = Σ · VP = VNP

Having seen that the read-once certificate definition is general enough for the
case of large width circuits, we turn our focus on circuits of smaller width.
Once the width of the circuit is substantially smaller than the number of bits
in the certificate, the read-once property becomes a real restriction. If this re-
striction correctly captures non-determinism, we would expect that in analogy

14 Mahajan & Rao

to BP = NL = ∃R · L, we should be able to show that VBP equals ΣR · VL. In
a partial answer, we show in the following theorem in one direction: read-once
exponential sums over VL are indeed powerful enough to contain VBP.

Theorem 4.4. VBP ⊆ ΣR · VL.

In order to prove the above theorem, we consider a problem that is complete
for VBP. We need the following definition:

Definition 4.5. A polynomial f ∈ K[X1, . . . , Xn] is called a projection of g
(denoted f ≤ g) if f(X1, . . . , Xn) is identically equal to g(a1, . . . , am), where
each ai is a ring element or a variable, that is, each ai ∈ K ∪ {X1, . . . , Xn}.

Let f = (fn)n≥0 and g = (gm)m≥0 be two polynomial families. f is said to
be projection reducible to g if

∃n0 : ∀n ≥ n0, fn ≤ gm(n) where m(n) ≤ poly(n)

Let (Gn) = (Vn, En) be a family of directed acyclic graphs defined as follows:

1. Gn is a layered graph with n + 1 layers. For 1 ≤ i ≤ n + 1, the ith
layer contains n vertices, denoted vi

1, . . . v
i
n. (So totally there are n(n+1)

vertices.)

2. For 1 ≤ i, j, k ≤ n, there is a directed edge (vi
j, v

i+1
k), labeled by the

variable xi,j,k.

For a directed path P in Gn, let w(P) denote the monomial obtained by taking
the product of the labels of the edges in P . Let s = v1

1 and t = vn+1
1 . We define

the polynomial family PATH as follows:

PATHn =
∑

P : P is a directed s − t path in Gn

w(P)

Note that PATHn is a polynomial in n3 variables. It is easy to see the following:

Proposition 4.6. (folklore) PATH is complete for VBP under projections.

We prove Theorem 4.4 by showing that PATH ∈ ΣR · VL.

Proof (of Theorem 4.4). Here onwards we drop the index n from Gn.
We define function hG(Z) : {0, 1}n3

→ {0, 1} as follows. We can think of
the variables in Z = {Z1,1,1, . . . , Zn,n,n} as picking a subset of the edges of G.
The function hG(Z) evaluates to 1 if and only if this subset is exactly a directed

Small space analogues of Valiant’s classes 15

s-t path in G. Note that s-t paths P in G are in one-to-one correspondence
with assignments to Z such that hG(Z) = 1. Hence

PATHn =
∑

P : P is a

directed s − t path

w(P)

=
∑

z∈{0,1}n3

hG(z) [weight of edges picked by Z]

=
∑

z∈{0,1}n3

hG(z)
∏

i,j,k

[xi,j,kzi,j,k + (1 − zi,j,k)](4.7)

Provided that the bits of z are given in the correct order (proceeding layer
by layer), hG(z) can be computed in deterministic log-space, with z given on a
read-once input tape, as follows.

1. Input 1n, z ∈ {0, 1}n3
.

2. Initialize current := 1 (because s is the first node in its layer).

3. For i = 1 to n repeat steps 4 and 5.

4. Find a j such that zi,current,j = 1.
If there is no such j or more than one such j then REJECT.

5. Set current := j.

6. If current = 1 then ACCEPT (because s is the first node in its layer)
otherwise REJECT.

The algorithm A above is deterministic and uses a total of O(log n) bits of
work-space. For a fixed n, let C be the O(log n) width boolean circuit corre-
sponding to A . (Without loss of generality, assume that all negation gates in
C are at the leaves. If this is not already the case, transforming C to ensure
this only doubles the width, and does not destroy the read-once property.) Let
D be the natural arithmetization of C. Since Z is on a read-once input tape,
C, and hence D, are read-once certified in the variables from Z. We can at-
tach, parallel to D, constant-width circuitry that collects factors of the product
∏

i,j (xi,j,kzi,j,k + (1 − zi,j,k)) as and when the zi,j,k variables are read, and finally
multiplies this with the computed value hG(Z). The resulting circuit remains
O(log n)-width, and remains read-once certified on Z. From Equation (4.7),

16 Mahajan & Rao

it follows that the read-once exponential sum of D over bit assignments for Z
computes the polynomial PATHn. �

Not only are we unable to show the converse, we are also unable to show a
reasonable upper bound on ΣR ·VL. It is not even clear if ΣR ·VL is contained
in VP. One possible interpretation is that the ΣR operator is too powerful and
can lift up small classes unreasonably. We show that this is not the case in
general; in particular, it does not lift up VBP and VBWBP.

Theorem 4.8. (i) ΣR · VBP = VBP

(ii) ΣR · VBWBP = VBWBP

To prove this theorem, we first state and prove Lemma 4.9 below.

Lemma 4.9. Let C be a layered skew arithmetic circuit on variables X∪Y that
is read-once certified in Y . Let w = width(C), s = size(C) and m = |Y |. Let
f1, . . . , fw denote the output gates (also the polynomials computed by them) of
C. There exists a weakly skew circuit C ′, of size 56mw3s and width 7w, that
computes all the exponential sums EY (f1), . . . , EY (fw).

Proof. We proceed by induction on m = |Y |. In the base case when m = 1,
EY (fj)(X) = fj(X, 0) + fj(X, 1). Putting two copies of C next to each other,
one with y = 0 and the other with y = 1 hardwired, and adding the corre-
sponding outputs, we get a circuit C ′ which computes the required function.
Clearly width(C ′) ≤ 2w and size(C ′) ≤ 2s + 1.

Assume now that the lemma is true for all skew circuits with m′ = |Y | <
m. Let C be a given circuit where |Y | = m. Let Y ′ denote Y \ {ym} =
{y1, . . . , ym−1}. As per definition 4.1, the layers of C can be partitioned into
m blocks, with the kth block reading only yk from Y . Let 0 = i1 ≤ i2 ≤ . . . ≤
im ≤ im+1 = ℓ be the layer indices such that yk is read between layers ik + 1
and ik+1. Let f1, . . . , fw be the output gates of C.

We slice C into two parts: the bottom m−1 blocks of the partition together
form the circuit D, and the top block forms the circuit Cm. Let g1, . . . , gw be the
output gates of D. These are also the inputs to Cm; we symbolically relabel the
non-leaf inputs at level 0 of Cm as z1, . . . zw and the outputs of Cm as h1, . . . , hw.
Clearly, Cm and D are both skew circuits of width w. Further, each hj depends
on X, ym and Z = {z1, . . . , zw}; that is, h1, . . . , hw ∈ R[Z] where R = K[X, ym].
Similarly, each gj depends on X and Y ′; g1, . . . , gw ∈ K[X,Y ′]. The values com-
puted by C can be expressed as fj(X,Y) = hj (X, ym, g1(X,Y ′), . . . , gw(X,Y ′)).

Small space analogues of Valiant’s classes 17

Since C and Cm are skew circuits, and since the variables zj represent non-
leaf gates of C, Cm is linear in these variables. Hence each hj can be written
as hj(X, ym, Z) = cj +

∑w
k=1 cj,kzk, where the coefficients cj, cj,k ∈ K[X, ym].

Combining this with the expression for fj, we have

fj(X,Y) = hj (X, ym, g1(X,Y ′), . . . , gw(X,Y ′))

= cj(X, ym) +
w

∑

k=1

cj,k(X, ym)gk(X,Y ′).

Hence

∑

e∈{0,1}m

fj(X, e) =
∑

e=(e′,em)∈{0,1}m

[

cj(X, em) +
w

∑

k=1

cj,k(X, em)gk(X, e′)

]

= 2m−1

1
∑

em=0

cj(X, em) +
w

∑

k=1

∑

(e′,em)∈{0,1}m

cj,k(X, em)gk(X, e′)

= 2m−1

1
∑

em=0

cj(X, em)

+
w

∑

k=1





∑

em∈{0,1}

cj,k(X, em)









∑

e′∈{0,1}m−1

gk(X, e′)





Thus EY (fj)(X) = 2m−1Eym
(cj)(X) +

w
∑

k=1

Eym
(cj,k)(X)EY ′(gk)(X)

By induction, we know that there is a weakly skew circuit D′ of width 7w
and size 56(m − 1)w3s computing EY ′(gk)(X) for all k simultaneously.

To compute Eym
(cj)(X), note that a copy of Cm with all leaves labeled from

Z replaced by 0 computes exactly cj(X, ym). So the sum Eym
(cj)(X) can be

computed as in the base case, in width 2w. Since we need only one sum as
opposed to w simultaneous sums, the size bound is 2size(Cm) + 1. Multiplying
this by 2m−1 adds nothing to width and 1 to size, so the overall width of this
skew circuit is 2w and the size is at most 2s + 2 ≤ 3s.

To compute Eym
(cj,k)(X), we modify Cm as follows: replace leaves labeled

zk by the constant 1, replace leaves labeled zk′ for k′ 6= k by 0, leave the rest
of the circuit unchanged, and let hj be the output gate. This circuit computes
cj(X, ym) + cj,k(X, ym). Subtracting cj(X, ym) re-computed as above from this

18 Mahajan & Rao

Eym
(cj,w)

×

...

· · ·

EY ′(g1)EY ′(g2) EY ′(gw)

+

D′

Eym
(cj,1)

×

Figure 4.1: Computation of EY (fj) in a width-efficient manner

gives cj,k(X, ym), computed in width 2w and size 2s + 2. (The subtraction
needs two gates: a × − 1 and a +.) Now, again the sum Eym

(cj,k)(X) can be
computed as in the base case; we use two copies of the difference circuit with
ym = 0 and ym = 1 hardwired, and add their outputs. This gives a skew circuit
of width 4w and size 2(2s + 2) + 1 ≤ 5s.

We now use these skew circuits, and the weakly skew circuit D′ available
by induction, to construct the desired circuit. Since we use fresh copies of C
for each of the circuits for cj and cj,k, the resulting circuit is weakly skew.

Putting together these circuits naively may increase width too much. So we
position D′ at the bottom, and carry w wires upwards from it corresponding to
its w outputs. Alongside these wires, we position circuitry to accumulate the
terms for each fj and to carry forward already-computed fk’s. The width in this
part is w for the wires carrying the outputs of D′, w for wires carrying the values
EY (fj), 4w for computing the terms in the sum above (they are computed
sequentially so the width does not add up), and 1 for carrying the partial sum
in this process, overall at most 6w+1 ≤ 7w. Thus the resulting circuit, which is
the desired circuit D, has width at most max{width(D′), 7w} = 7w. Figure 4.1
shows how this is done for one of the sums EY (fj).

To bound the size of the circuit, we bound its depth in the part above D′ by

Small space analogues of Valiant’s classes 19

d; then size is at most size(D′)+width×d. The circuit has w modules, one each
to compute each of the EY (fj)s. The depth of each module can be bounded by
the depth needed to compute Eym

(cj), plus w times the depth to compute any
one Eym

(cj,k), that is, at most 3s+w×5s. So d ≤ w(3s+5sw) ≤ 8w2s. Hence

size(D) ≤ size(D′) + (width above D′) × (depth above D′)

≤ 56(m − 1)w3s + 7w(8w2s)

≤ 56mw3s

�

Now we prove Theorem 4.8:

Proof. We start with the VBP or VBWBP for which we want to compute
the read-once exponential sum. We treat it as a read-once skew circuit and
apply Lemma 4.9 to get a weakly skew circuit for the sum.

1. From Jansen (2008); Kaltofen & Koiran (2008), we know that weakly
skew circuits can be transformed into skew circuits and hence branching
programs with a constant blowup in the size. This gives the desired
equivalence.

2. From Jansen & Rao (2009), we know that when the width of the weakly
skew circuit is a constant, it can be transformed into a skew circuit whose
width is again a constant, and the size blowup is polynomial. This gives
the desired equivalence in this case.

�

5. Read-Once exponential sums of multiplicatively
disjoint circuits

In this section, we explore how far the result of Theorem 4.8 can be pushed to
larger classes within VP. In effect, we ask whether the technique of Lemma 4.9
is applicable to larger classes of circuits. Such a question is relevant because
we do not have any upper bound (better than VNP) even for ΣR · VSC0 and
ΣR · VL.

The generalization we consider is multiplicative disjointness. An arithmetic
circuit C is said to be multiplicatively disjoint (md-) if every multiplication
gate operates on sub-circuits which are not connected to each other. This is
a relaxation of the weakly skew condition, since the sub-circuits are allowed
to have multiple connections to gates above the concerned multiplication gate.

20 Mahajan & Rao

This restriction was first considered in Malod & Portier (2008), where it is
shown that multiplicatively disjoint polynomial size circuits characterize VP.

Examining the proof of Lemma 4.9, we see that the main barrier in extend-
ing it to the larger class of md--circuits is that when we slice C into D and
Cm, Cm may not be linear in the “slice variables” Z. However, for md-circuits,
Cm is multilinear in Z. As far as computing the coefficients cj,α goes, where α
describes a multilinear monomial, this is not a problem; it can be shown that
for such circuits the coefficient function can be computed efficiently. There is a
cost to pay in size because the number of multilinear monomials is much larger.
To handle this, we modify the inductive step, slicing C not at the last block but
at a level that halves the number of Y variables read above and below it. This
works out fine for constant-width, but results in quasi-polynomial blow-up in
size for larger widths.

We show the following:

Theorem 5.1. (i) ΣR · md-VSC0 ⊆ VP.

(ii) ΣR · md-VSC ⊆ VQP.

The high-level strategy for proving Theorem 5.1 is as follows.

1. Break the circuit by a horizontal cut into two parts A and B, so that each
part contains approximately m/2 variables from Y i.e. YA, YB ≤ ⌈m/2⌉
and YA ∪ YB = Y , YA ∩ YB = ∅. Let A be the upper part.

2. Now express the polynomials in A as sums of monomials where the vari-
ables stand for the output gates of B and the coefficients come from
K[X,YA].

3. Inductively compute the EY ’s for the coefficients of A and the monomials
in terms of the output gates of B.

4. Apply Equation 5.2 (from Observation 1 below) to obtain the required
EY (fj)s.

This strategy is spelt out in detail in Lemma 5.3. Theorem 5.1 follows
directly from it.

We need the following observation (which is already used implicitly in the
proof of Lemma 4.9):

Observation 1. 1. If f = g + h, then EY (f) = EY (g) + EY (h).

Small space analogues of Valiant’s classes 21

2. If f = g × h, and if the variables of Y can be partitioned into Yg and Yh

such that g depends only on X ∪ Yg and h depends only on X ∪ Yh, then

EY (f) = EYg
(g) × EYh

(h)(5.2)

Lemma 5.3. Let C be a layered multiplicatively disjoint circuit of width w
and size s on variables X ∪ Y , and let m = |Y |. Let ℓ be the number of layers
in C. Suppose C is read-once certified in Y . Let f1 . . . , fw be the output gates
of C. Then, there is an arithmetic circuit C ′ of size T (w,m, s) ≤ 3smcw which
computes EY (f1), . . . , EY (fw), where c is an absolute constant. (Any c ≥ 5

3−log 7

suffices.)

Proof. The proof is by induction on m = |Y |.
In the base case when m = 1, C ′ has two copies of C with y1 = 0 and y1 = 1

hard-wired, and one + gate for each output. The resulting size is 2s + w ≤ 3s,
since w ≤ s.

Assume the induction hypothesis: For any arithmetic circuit D on variables
X ∪ Y ′ of size s′ and width w′, with |Y ′| = m′ < m, there is an arithmetic
circuit D′ of size T (w′,m′, s′) computing EY (f ′

1), . . . , EY (f ′
w′), where f ′

1, . . . , f
′
w′

are the output gates of D.
Let 0 = i1 ≤ i2 ≤ . . . ≤ im ≤ im+1 = ℓ be the level indices of C as

guaranteed by definition 4.1. Consider level ℓ′ = i⌈m/2⌉+1. Let g1, . . . , gw be the
gates at level ℓ′.

We slice C at level ℓ′; the circuit above this level is A and the circuit
below it is called B. In particular, A is obtained from C by re-labeling the
gates g1, . . . , gw with new variables z1, . . . , zw and removing all gates below
level ℓ′. Let h1, . . . , hw denote the output gates of A. (Note that these are
just relabellings of f1, . . . , fw.) Similarly, B is obtained from C by removing
all nodes above layer ℓ′ and making g1, . . . , gw the output gates. Let sA and sB

respectively denote their sizes. Let YA ⊆ Y (resp. YB) be the set of variables
from Y that appear in A (resp. B). The circuits A and B have the following
properties:

1. A and B are multiplicatively disjoint and are of width w.

2. A is syntactically multilinear in the variables Z = {z1, . . . , zw}: at every
× gate f = g×h, each variable in Z has a path to g or to h or to neither,
but not to both.

3. YA ∩ YB = ∅, YA ∪ YB = Y , |YA| = ⌊m/2⌋ and |YB| = ⌈m/2⌉.

22 Mahajan & Rao

4. For 1 ≤ j ≤ w, gj ∈ K[X,YB] and hj ∈ R[Z], where R = K[X,YA].

5. Let v = v1 × v2 be a multiplication gate in A. If there is a path from zi

to v1 and there is a path from zj (i 6= j) to v2, then the sub-circuits of C
(and hence of B) rooted at gi and gj are disjoint.

Since A is syntactically multilinear in Z and C is md-, the monomials in
hj ∈ R[Z] can be described by subsets of Z, where zi and zk can belong to
a subset corresponding to a monomial only if the sub-circuits rooted at gi

and gk are disjoint. Let S denote the subsets that can possibly correspond to
monomials:

S =

{

S ′ ⊆ Z
∣

∣

∀zi, zk ∈ S ′ with i 6= k, the sub-circuits
rooted at gi and gk are disjoint

}

Generally, we treat S as a set of characteristic vectors instead of actual subsets;
the usage will be understood from the context.

We can express the polynomials computed by A and C as follows:

fj = hj(g1, . . . , gw); hj =
∑

α∈S

cj,αZα

where Zα =
w

∏

i=1

zαi

i and cj,α ∈ K[X,YA]

Hence

fj(X,Y) =
∑

α∈S

cj,α(X,YA)gα(X,YB) where gα(X,YB) =
∏

i

gαi

i (X,YB)

Using Observation 1, we have

(5.4) EY (fj) =
∑

α∈S

EY (cj,αgα) =
∑

α∈S

EYA
(cj,α)EYB

(gα)

We need the following claim:

Claim 5.5. For 1 ≤ j ≤ w, and for α ∈ S, the polynomial cj,α(X,YA) can be
computed by a multiplicatively disjoint circuit [cj,α] of size w · sA and width w.
Moreover, [cj,α] is read-once certified in YA.

Proof. We build an arithmetic circuit [cj,α] for cj,α(X,YA) by induction on
the structure of the circuit rooted at hj. Let α = α1α2 . . . αw, where αi ∈ {0, 1}.

Small space analogues of Valiant’s classes 23

1. Base case: The sub-circuit rooted at hj is a variable zi or an element
a ∈ K ∪ X ∪ YA. Then [cj,α] is set accordingly as follows:

If hj = zi, then [cj,α] =

{

1 if αi = 1, and αk = 0 ∀ i 6= k;

0 otherwise.

If hj = a ∈ (K ∪ X ∪ YA), then [cj,α] =

{

a if αi = 0 ∀i;

0 otherwise.

2. Induction step:

Case 1: hj = h1
j + h2

j . Then [cj,α] = [h1
j,α] + [h2

j,α].

Case 2: hj = h1
j ×h2

j . Then [cj,α] = [h1
j,α′]× [h2

j,α′′], where α′ (respectively
α′′) is α restricted to the Z-variables that appear at the sub-circuit rooted
at h1 (respectively h2). We set [cj,α] to 0 if α′ and α′′ do not form a parti-
tion of α. Note that [h1

j,α], [h2
j,α], [h1

j,α′] and [h2
j,α′′] are the corresponding

coefficients available from the inductive hypothesis.

The size of [cj,α] thus obtained can blow up by a factor of at most w, and the
width remains unchanged. The circuit [cj,α] is a projection of the sub-circuit
rooted at hj, obtained by replacing variables zi by constants 0 or 1. Since the
sub-circuit rooted at hj is read-once certified in YA, so is [cj,α]. �

If α ∈ S, then gα can be computed by an md-circuit of width w and size
sB + w. Let [gα] denote this circuit. (It is a multiplicative circuit sitting on
top of the relevant output gates of B.)

By the induction hypothesis, the polynomials EYA
(cj,α) for 1 ≤ j ≤ w and

α ∈ S can be computed by arithmetic circuits of size T (w, ⌊m/2⌋, wsA). Also,
by induction, the polynomials EYB

(gα) can be computed by arithmetic circuits
of size T (w, ⌈m/2⌉, sB + w). Now, using the expression from Equation 5.4, the
arithmetic circuits that compute all the EYA

(cj,α) and all the EYB
(gα) can be

put together to obtain a circuit C ′ that computes EY (fj) for each 1 ≤ j ≤ w.
The size of C ′ can be bounded above as follows:

24 Mahajan & Rao

size(C ′) ≤
w

∑

j=1

∑

α∈S

size to compute EYA
(cj,α)

+
∑

α∈S

size to compute EYB
(gα) +

w
∑

j=1

∑

α∈S

2

≤ w2wT
(

w,
⌊m

2

⌋

, wsA

)

+ 2wT
(

w,
⌈m

2

⌉

, sB + w
)

+ w2w+1

≤ w2w3wsA

⌊m

2

⌋cw

+ 2w3(s − sA + w)
⌈m

2

⌉cw

+ w2w+1

using induction and the fact that s = sA + sB

≤ w2w3wsA

(

7m

8

)cw

+ 2w3(s − sA)

(

7m

8

)cw

+2w3w

(

7m

8

)cw

+ w2w+1

since ⌈m
2
⌉ ≤ ⌈7m

8
⌉ for m ≥ 2

≤ 23w3s

(

7m

8

)cw

+ 23w3

(

7m

8

)cw

+ 23w

combining the first two terms and using w ≤ 2w for w ≥ 1

≤ 3smcw

[

8w

(

7

8

)cw

+ 8w

(

7

8

)cw

+ 8w

(

7

8

)cw]

≤ 3smcw provided c ≥
5

3 − log 7
≥

3w + log 3

w(3 − log 7)

�

6. Skew formulas

In this section we consider the expressive power of exponential sums of poly-
nomials computed by skew formulas.

It is well known that the complexity class NP is equivalent to ∃ · P and
in fact even to ∃ · F, where F is the class of languages decided by uniform
polynomial-size formulas (circuits with out-degree 1 at each non-leaf node). (It
is known that F equals NC1.) A similar result holds in the case of Valiant’s
algebraic complexity classes too. Valiant has shown that VNP = Σ · VF (see

Small space analogues of Valiant’s classes 25

Bürgisser et al. (1997); Bürgisser (2000)), and thus the polynomial g in the
expression for VNP using Definition 2.2 can be assumed to be computable by
a formula of polynomial size and polynomial degree.

Noting that VNP is the class of polynomials which are projections of the
permanent polynomial family, a natural question arises about the polynomials
which are equivalent to the determinant polynomial. Since the determinant
exactly characterizes the class of polynomials which are computable by skew
arithmetic circuits (Toda (1991)), the question one could ask is: can the de-
terminant be written as an exponential sum of partial instantiations of a poly-
nomial that can be computed by skew formulas of poly size, VSkewF? Recall
that a circuit is said to be skew if every × (or ∧ in the boolean case) gate
has at most one child that is not a circuit input. Skew circuits are essentially
equivalent to branching programs. Thus one could ask the related question:
since VP ⊆ Σ · VP = Σ · VF, can we show that VPskew ⊆ Σ · VSkewF?

We show in Theorem 6.5 that this is not possible. We first give an equiva-
lent characterization of VSkewF in terms of “sparse polynomials” (Lemma 6.1)
placing it inside VAC0 (Corollary 6.2), and then use it to show that Σ ·VSkewF

is in fact equal to VSkewF (Theorem 6.4). Recall that VAC0 denotes the class
of polynomial families computed by arithmetic circuits of polynomial size, un-
bounded fan-in, and constant depth.

Lemma 6.1. (i) Let f ∈ K[X] be computed by a skew formula Φ of size s.
Then the degree and number of monomials in f are bounded by s.

(ii) Conversely, if f ∈ K[X] is a degree d polynomial, where at most t mono-
mials have non-zero coefficients, then f can be computed by a skew for-
mula Φ of size O(td).

Proof. Let F be a skew formula of size s. Consider a sub-tree T of F such
that root of F is in T and for any gate g in T , if g is a + gate then exactly
one child of g is in T and if g is a × gate then both children of g are present
in T . We call such a subtree T a “proving subtree” of F . Since F is skew, T
looks like a path, with edges hanging out at nodes labeled ×. But in a tree, the
number of root to leaf paths is bounded by the number of leaves in the tree.
Thus the number of distinct proving subtrees of F is upper bounded by s. Let
pF ∈ K[X] be the polynomial computed by the formula F , where X is the set
of input variables of F . It is easy to see that a proving subtree in F corresponds
to a monomial in pF (monomial with some value from K as coefficient). Thus
the number of non-zero monomials in pF is bounded by s. Since the degree of

26 Mahajan & Rao

the monomial contributed by such a path is at most the length of the path, the
degree of pF is at most s.

On the other hand, if a polynomial p ∈ K[X] has t non-zero monomials
m1, . . . ,mt, then we can explicitly multiply variables to get each monomial mi

and finally get the sum
∑

i cimi, where ci ∈ K is the coefficient of mi in p. This
formula computes p in size O(td). �

Note that the above translation from a degree d polynomial to a constant-
depth circuit requires × gates with fan-in d. Thus, unless d ∈ O(1), the circuit
is not an SAC0 circuit. Here, SAC denotes semi-unbounded circuits, where the
∨ or + gates are allowed unbounded fan-in but the ∧ or × gates are restricted
to have constant fan-in.

Corollary 6.2. VSAC0 ⊂ VSkewF ⊂ VAC0.

Proof. Polynomials computed by a VSAC0 circuit have O(1) degree. Thus
they have at most polynomially many distinct monomials, and hence from
Lemma 6.1.(2) they are in VSkewF. From Lemma 6.1.(1), polynomials in
VSkewF have poly(n) monomials of poly(n) degree, so they can be computed
by a circuit of depth 2 and size O(s2), that is, in VAC0.

To see why the containments are proper: (1) The monomial
∏n

i=1 xi is in
VSkewF, but its degree is not O(1), and so it is not in VSAC0. (2) The function
∏n

i=1(xi+yi) is in VAC0 but not in VSkewF because it has too many monomials.
�

Remark 6.3. The constructions in Lemma 6.1 work even in the multilinear
world and allow us to construct equivalent syntactically multilinear skew for-
mulas. Since the functions

∏n
i=1 xi and

∏n
i=1(xi + yi) have syntactically multi-

linear VSkewF formulas and VAC0 circuits respectively, Corollary 6.2 also holds
if each of the classes referred to there is further restricted to be syntactically
multilinear: sm-SAC0 ⊂ sm-VSkewF ⊂ sm-AC0.

Theorem 6.4. Σ · VSkewF = VSkewF.

Proof. The containment VSkewF ⊆ Σ · VSkewF is obvious.
To show the converse, let f ∈ K[X] be such that f(X) =

∑

e∈{0,1}m φ(X, e),

where φ has a poly size skew formula and m ≤ poly(n). We need to show
f ∈ VSkewF.

Since φ(X,Y) (where X = x1, . . . , xn and Y = y1, . . . , ym) has a poly size
skew formula, by Lemma 6.1 we know that the number of non-zero monomials

Small space analogues of Valiant’s classes 27

in φ is bounded by some polynomial q(n,m), or equivalently, by some other
polynomial p(n). Hence the number of non-zero monomials in φ(X,Y)|X (i.e.
monomials in X with coefficients from K[Y]) is also bounded by p(n). Sum-
ming these coefficient polynomials over all Boolean settings to Y yields the
coefficients of f . Thus f has no more than p(n) monomials. The result now
follows from Lemma 6.1. �

Since the number of monomials in the determinant polynomial is exponen-
tial, using Lemma 6.1 and Theorem 6.4 we obtain

Theorem 6.5. The family of determinant polynomials is not contained in the
class Σ · VSkewF.

Conclusion and Open questions

Summary of results:

1. We proposed a notion of “small space” for algebraic computations in
terms of circuit width. VL was defined as the class of polynomials com-
puted by log-width circuits with certain degree and constraints on the co-
efficients. However it is easy to see that our definition of VWIDTH(S(n))
can be extended to polynomials with arbitrary coefficients from K.

Since VBP is a natural arithmetic version of NL, a good validation of
our thesis that width defines space would be a proof that VL ⊆ VBP.
Unfortunately, we were unable to show any upper bound for VL better
than the obvious bound VP.

2. We introduced the notion of read-once certificates and read-once expo-
nential sums of arithmetic circuits. It is shown that with this definition,
some classes behave on the expected lines: 1) ABPs are closed under
taking read-once exponential sums. 2) Applying read-once exponential
sum to VP yields exactly the class VNP.

For the case of ΣR · VL the best upper bound we can see is only VNP

which is obvious from the definition itself. However, we believe that VL

is indeed the analogue of log-space, and that read-once exponential sums
over it does yield the analogue of non-deterministic log-space. That is,
we conjecture the following.

Conjecture 6.6. ΣR · VL = VBP.

28 Mahajan & Rao

Open questions We conclude with the following questions:

◦ Is VL contained in VBP? i.e. do the class of all log width poly degree
and size circuits have equivalent poly size algebraic branching programs?

◦ Is ΣR · VL ⊆ VP? Even in the case of VSC0, it will be interesting to see
an upper bound of VP, i.e. is ΣR · VSC0 ⊆ VP?

◦ Circuits corresponding to VSC families compute an output polynomial of
polynomial degree, but intermediate nodes could compute polynomials
of higher degree, with the high degree terms eventually canceling out.
Such cancellations cannot always be made explicit without increasing
the circuit width a lot; see Limaye et al. (2010) for a treatment of this.
Therefore we can define a further subclass of VP as polynomial families in
VSC where the witnessing SC circuits have polynomial syntactic degree.
(Syntactic degree is defined as follows: The syntactic degree of a leaf is
1, that of a + or ∨ node is the maximum of the syntactic degrees of its
children, and and that of a × or ∧ node is the sum of the syntactic degrees
of its children. The syntactic degree of a circuit is the syntactic degree of
its output node, and is an upper bound on the degree of the computed
polynomial.) sSC, or small SC, denotes polynomial-size poly-log width
circuits with polynomial syntactic degree, and VsSC denotes families of
polynomials computed by arithmetic circuits of this form.

Branching programs obey the syntactic small degree restriction. Thus
VBWBP ⊆ VSC0. Since VNC1 = VBWBP, VNC1 is contained in VsSC0.
Is this containment proper? Are VNC1 and VsSC0 separate?

Can the study of read-once exponential sums throw some light on this
question?

Since we do not have a nice definition of read-once certificates for depth
bounded circuits, we use the equivalence VBWBP = VNC1 for this pur-
pose. From Theorem 4.8, we have ΣR ·VBWBP = VBWBP; hence we can
say that ΣR ·VNC1 = VNC1. On the other hand, we do not know any up-
per bound for ΣR ·VsSC0 better than ΣR ·VL ⊆ VNP. (In Mahajan & Rao
(2009) it was erroneously claimed that ΣR · VsSC ⊆ VQP.)

◦ Is there any natural family of polynomials complete for VL?

Small space analogues of Valiant’s classes 29

Acknowledgments

The authors are indebted to the anonymous reviewers for very detailed com-
ments, which helped to significantly improve the presentation of the results,
and for pointing out a flaw in an earlier version. The results in this paper were
announced in FCT 2009, in Mahajan & Rao (2009).

Much of this work was done when the second author was at The Institute
of Mathematical Sciences, Chennai.

References

Sanjeev Arora & Boaz Barak (2009). Computational Complexity: A Modern
Approach. Cambridge University Press, New York, NY, USA. ISBN 0521424267,
9780521424264.

Vikraman Arvind, Pushkar S. Joglekar & Srikanth Srinivasan (2010). On
Lower Bounds for Constant Width Arithmetic Circuits. In ISAAC, Yingfei Dong,
Ding-Zhu Du & Oscar Ibarra, editors, Lecture Notes in Computer Science, 637–
646. Springer Berlin / Heidelberg.

David.A.Mix Barrington (1989). Bounded-Width Polynomial-Size Branching
Programs Recognize Exactly Those Languages in NC1. Journal of Computer and
System Sciences 38(1), 150–164.

Lenore Blum, Felipe Cucker, Mike Shub & Steve Smale (1997). Complexity
and Real Computation. Springer.

Allan Borodin (1977). On Relating Time and Space to Size and Depth. SIAM J.
Comput. 6(4), 733–744.

P Bürgisser, M. Clausen & M.A. Shokrollahi (1997). Algebraic Complexity
Theory. Springer-Verlag.

Peter Bürgisser (2000). Completeness and Reduction in Algebraic Complexity
Theory. Algorithms and Computation in Mathematics. Springer-Verlag.

Hervé Caussinus, Pierre McKenzie, Denis Thérien & Heribert Vollmer

(1998). Nondeterministic NC1 Computation. Journal of Computer and System Sci-
ences 57, 200–212.

A Chiu, G Davida & B Litow (2001). Division in Logspace-Uniform NC1. RAIRO
Theoretical Informatics and Applications 35, 259–276.

S. Cook (1971). Characterizations of pushdown machines in terms of time-bounded
computers. Journal of Association for Computing Machinery 18, 4–18.

30 Mahajan & Rao

Stephen A. Cook (1979). Deterministic CFL’s Are Accepted Simultaneously in
Polynomial Time and Log Squared Space. In Proceedings of the ACM Symposium
on Theory of Computing STOC, 338–345.

Uffe Flarup & Laurent Lyaudet (2010). On the Expressive Power of Perma-
nents and Perfect Matchings of Matrices of Bounded Pathwidth/Cliquewidth. Theory
Comput. Syst. 46(4), 761–791.

Raymond Greenlaw, James Hoover & Walter Ruzzo (1995). Limits To Par-
allel computation: P-Completeness Theory. Oxford University Press.

Maurice Jansen & Jayalal M. N. Sarma (2010). Balancing Bounded Treewidth
Circuits. In CSR, volume 6072 of Lecture Notes in Computer Science, 228–239.

Maurice J. Jansen (2008). Lower Bounds for Syntactically Multilinear Algebraic
Branching Programs. In MFCS, 407–418.

Maurice J. Jansen & B. V. Raghavendra Rao (2009). Simulation of Arith-
metical Circuits by Branching Programs with Preservation of Constant Width and
Syntactic Multilinearity. In CSR, 179–190.

David S. Johnson (1990). A Catalog of Complexity Classes. In Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity (A), Jan van

Leeuwen, editor, 67–161. Elsevier and MIT Press.

Erich Kaltofen & Pascal Koiran (2008). Expressing a fraction of two determi-
nants as a determinant. In ISSAC, 141–146.

Pascal Koiran & Sylvain Perifel (2009a). VPSPACE and a transfer theorem
over the complex field. Theor. Comput. Sci. 410(50), 5244–5251.

Pascal Koiran & Sylvain Perifel (2009b). VPSPACE and a Transfer Theorem
over the Reals. Computational Complexity 18(4), 551–575.

Nutan Limaye, Meena Mahajan & B. V. Raghavendra Rao (2010). Arith-

metizing Classes Around NC1 and L. Theory of Computing Systems 46(3), 499–522.
Preliminary version in STACS 2007, LNCS vol. 4393 pp. 477–488.

Meena Mahajan & B. V. Raghavendra Rao (2009). Small-Space Analogues of
Valiant’s Classes. In 17th International Symposium on Fundamentals of Computation
Theory, FCT, 250–261.

Guillaume Malod (2007). The Complexity of Polynomials and Their Coefficient
Functions. In IEEE Conference on Computational Complexity, 193–204.

Small space analogues of Valiant’s classes 31

Guillaume Malod & Natacha Portier (2008). Characterizing Valiant’s alge-
braic complexity classes. J. Complexity 24(1), 16–38.

Christian Michaux (1989). Une remarque à propos des machines sur R introduites
par Blum, Shub et Smale. Comptes Rendus de l’Académie des Sciences de Paris
309(7), 435–437.

Paulin Jacobé de Naurois (2006). A Measure of Space for Computing over the
Reals. In CiE, 231–240.

Noam Nisan & Avi Wigderson (1995). On the complexity of bilinear forms. In
STOC ’95: Proceedings of the twenty-seventh annual ACM symposium on Theory of
computing, 723–732. ACM, New York, NY, USA.

Nicholas Pippenger (1979). On Simultaneous Resource Bounds. In 20th Annual
Symposium on Foundations of Computer Science FOCS, 307–311.

Amir Shpilka & Avi Wigderson (2002). Depth-3 arithmetic circuits over fields
of characteristic zero. Computational Complexity 10, 1–27. ISSN 1016-3328.

Seinosuke Toda (1991). Counting problems computationally equivalent to the
determinant. Technical Report CSIM 91-07, Dept. Comp. Sci. and Inf. Math., Univ.
of Electro-Communications, Tokyo.

Seinosuke Toda (1992). Classes of arithmetic circuits capturing the complexity
of computing the determinant. IEICE Transactions on Informations and Systems
E75-D, 116–124.

Iddo Tzamaret (2008). Studies in Algebraic and Propositional Proof Complexity.
Ph.D. thesis, Tel Aviv University.

L. G. Valiant (1979a). Completeness classes in algebra. In STOC ’79: Proceedings
of the eleventh annual ACM symposium on Theory of computing, 249–261. ACM,
New York, NY, USA.

Leslie G. Valiant (1976). Graph-theoretic properties in Computational Complex-
ity. Journal of Computer and System Sciences 13, 278–285.

Leslie G. Valiant (1979b). The Complexity of Computing the Permanent. Theor.
Comput. Sci. 8, 189–201.

Leslie G. Valiant (1982). Reducibility by algebraic projections. Logic and Algo-
rithmic: an International Symposium held in honour of Ernst Specker 30, 365–380.

H. Venkateswaran (1992). Circuit Definitions of Nondeterministic Complexity
Classes. SIAM Journal on Computing 21, 655–670.

32 Mahajan & Rao

V Vinay (1991). Counting auxiliary pushdown automata and semi-unbounded arith-
metic circuits. In Proceedings of 6th Structure in Complexity Theory Conference,
270–284.

H. Vollmer (1999). Introduction to Circuit Complexity: A Uniform Approach.
Springer-Verlag New York Inc.

7. Appendix

7.1. Blum Shub Smale (BSS) model of computation. In this section
we briefly describe the model of computation over reals proposed by Blum,
Shub and Smale. For more details reader is referred to Blum et al. (1997). The
BSS model is defined for computation over the field R of real numbers. We
present the version used in de Naurois (2006).

A BSS machine M has an input tape output tape and a work tape, where
each cell stores a value from R and a set of parameters A = {A1, . . . , Ak},
where Ai ∈ R. In a single step, M can perform one of the following operations:

◦ Input: reads a value from the input tape into its work tape.

◦ Computation: Performs an arithmetic operation over values in the work
tape (The number of operands is some fixed constant).

◦ Output: Writes a value on the output tape.

◦ Constant: Writes a constant Ai ∈ R.

◦ Branch: Compares two real values and branches accordingly

Naturally we can associate a function φM : R
∗ → R with M . We say that a

real set L ⊆ R
∗ is decided by M if the characteristic function of L, χL equals

φM . We can make the machine M above non-deterministic by allowing non-
deterministic choices at every step. PR is the set of all languages from R

∗ that
are decidable by polynomial time bounded BSS machines. Also, NPR is the
class of languages that are computable by non-deterministic polynomial time
bounded BSS machines.

In the unit space model, we count the number of work tape cells used by
the machine as the space used. Michaux (1989) showed that any language that
can be decided by a machine in the BSS model can in fact be decided using
O(1) space; that is,

Small space analogues of Valiant’s classes 33

Proposition 7.1 (Michaux 1989). Let L ⊆ R be a language computed by a
machine M . Then there is machine M ′ and a constant k such that M ′ computes
L using space k.

Manuscript received 18 June 2010

Meena Mahajan

The Institute of Mathematical Sciences
Chennai 600113, India
meena@imsc.res.in

http://www.imsc.res.in/~meena/

B. V. Raghavendra Rao

Universität des Saarlandes, Informatik
66041 Saarbrücken, Germany
bvrr@cs.uni-sb.de

http://www.imsc.res.in/~bvrr/

	Introduction
	Preliminaries
	Circuit classes
	Polynomial families

	Notion of space for arithmetic computations?
	Previously studied notions
	Defining VPSPACE in terms of circuit width
	VWIDTH(S) for sub-linear S

	Read-Once certificates
	Read-Once exponential sums of multiplicatively disjoint circuits
	Skew formulas
	Appendix
	Blum Shub Smale (BSS) model of computation

