
Journal of Automata, Languages and Combinatorics u (v) w, x–y
c© Otto-von-Guericke-Universität Magdeburg

On the complexity of membership and counting in
height-deterministic pushdown automata

Nutan Limaye

The Institute of Mathematical Sciences,
Chennai 600 113, India.

e-mail: nutan@imsc.res.in

Meena Mahajan

The Institute of Mathematical Sciences,
Chennai 600 113, India.

e-mail: meena@imsc.res.in

and

Antoine Meyer

LIAFA, Université Paris Diderot – Paris 7,
Case 7014, 75205 Paris Cedex 13, France.
e-mail: ameyer@univ-paris-diderot.fr

ABSTRACT

Visibly pushdown languages properly generalise regular languages and are properly
contained in deterministic context-free languages. The complexity of their membership
problem is equivalent to that of regular languages. However, the corresponding counting
problem – computing the number of accepting paths in a visibly pushdown automaton
– could be harder than counting paths in a non-deterministic finite automaton: it is
only known to be in LogDCFL.

We investigate the membership and counting problems for generalisations of vis-
ibly pushdown automata, defined using the notion of height-determinism. We show
that, when the stack-height of a given pushdown automaton can be computed using a
finite transducer, both problems have the same complexity as for visibly pushdown lan-
guages. We also show that when allowing pushdown transducers instead of finite-state
ones, both problems become LogDCFL-complete; this uses the fact that pushdown trans-
ducers are sufficient to compute the stack heights of all real-time height-deterministic
pushdown automata, and yields a candidate arithmetization of LogDCFL that is no
harder than LogDCFL (our main result).

Keywords: pushdown automata, complexity, membership, counting

2

1. Introduction

There is a close connection between complexity classes and formal language theory.
Over the years, various language classes have been studied from the perspective of
complexity theory. Characterising the complexity of the membership problem has
been the main goal in this approach. The study of language classes and their com-
plexity under meaningful closures was first started by Sudborough [21, 20]. In [21], he
showed that the nondeterministic linear context-free languages or LIN are complete
for the complexity class NL (nondeterministic log-space). In [20], he defined two in-
teresting complexity classes, namely LogCFL and LogDCFL, as the log-space closures
of context-free languages (CFL) and their deterministic counterparts (DCFL) respec-
tively. Ibarra, Jiang, and Ravikumar [14] further studied subclasses of CFL such as
DLIN LL(1) (the deterministic counterpart of LIN defined by LL(1) linear grammars),
Dyck2 (well-matched strings over two types of parentheses), and bracketed expressions
and showed that they are contained in the circuit complexity class NC1 comprising
of polynomial size, logarithmic depth, bounded fan-in and-or circuits. Holzer and
Lange [13] showed that deterministic linear context-free languages (DLIN), as defined
via LR(1) linear grammars, are equivalent to those accepted by deterministic 1-turn
pushdown automata (DPDA1-turn), which are deterministic pushdown automata that
never push after a pop move. They showed that deciding membership in a DLIN lan-
guage is complete for L, in contrast to the result of [14]. Barrington made an important
contribution to the above study [3], showing that the class of regular languages, REG,
is complete for NC1. (As the classes get smaller, completeness is not understood via
L-reductions but via appropriate weaker notions such as AC0-many-one-reductions.)
See [15] for an overview of these results.

Visibly pushdown automata (VPA) are real-time pushdown automata whose stack
behaviour is dictated solely by the input letter being read. They are essentially
equivalent to input-driven PDA, IDA. Concretely, the input alphabet Σ of a VPA or
IDA P can be partitioned into three distinct sets Σc, Σr, and Σi of call, return, and
internal symbols. When reading a symbol in one of these sets, P respectively has to
push a symbol on its stack, pop its topmost stack symbol, and perform a transition
without accessing or modifying the stack. Hence for any such partition of Σ and any
VPA or IDA, the stack height at any point along a run is determined by the sequence
of symbols read so far. The complexity of the membership problem for IDA was
considered in [18, 5, 12]. In [12] it is shown that languages accepted by such PDA are
in NC1. In [16, 17] it is observed that membership in VPA reduces to membership in
IDA. A rigorous language-theoretic study of VPA was done in [1], where it is shown
that they can be determinised. Thus they lie properly between REG and DCFL, and
their membership problem is complete for NC1.

A related line of study is understanding the power of counting. Counting com-
plexity classes essentially describe sets of functions from words to integers which are
computable by a given formalism. For instance, it is easy to see from the proof of [21]
that the problem of computing the number of parse trees associated with a given word
in a linear grammar, #LIN, is equivalent to that of counting accepting paths in an NL

3

machine. At the lower end, however, though Barrington’s result showed that deciding
membership in REG (and hence in the language of a nondeterministic finite-state au-
tomaton or NFA) is equivalent to NC1, counting accepting paths in an NFA (#NFA) is
not yet known to be equivalent to arithmetic NC1, #NC1 (which consists of functions
computable by O(log n) depth, polynomial sized (NC1-like) circuits where gates are
interpreted as integer plus and multiply functions (instead of Boolean and and
or)). In [11], a one-way containment is shown: #NFA ⊆ #NC1, but to this day the
converse reduction remains open1. A natural question to ask is what generalisation of
NFA can capture #NC1 in this setting. In [16], it was claimed that the generalisation
to VPA adds no power, #VPA is equivalent to #NFA. However, this claim was later
retracted in [17], where it is shown, however, that #VPA functions can be computed
in LogDCFL (and are hence presumably weaker than #PDA functions).

Our starting point in this note is a careful examination of what makes membership
and path-counting easier in VPA than in general PDA. The intention is to identify
a largest possible class of PDA for which the technique used for VPA can still be
applied. This technique exploits the fact that, despite nondeterminism, all paths
on a given input word have the same stack-profile, and furthermore, this profile is
very easily computable. One can view the partitioning of the input alphabet as
height-advice being provided to an algorithm for deciding membership. This naturally
leads to the conjecture that PDA possessing easy-to-compute height-advice functions
should be easier than general PDA. The real-time height-deterministic PDA defined
by Nowotka and Srba ([19]), rhPDA, are a natural candidate: they are defined as
precisely those PDA that possess height-advice functions. They also very naturally
generalise a subclass of the synchronised PDA defined by Caucal ([7]), namely the
subclass where the synchronisation function is the stack-height, and, as in general
synchronised PDA, is computable by a finite-state transducer. (A recent result in [9]
implies that this subclass in fact coincides with the entire class of synchronised PDA.)
We provide a parameterised definition of rhPDA that captures this generalisation: the
complexity of the transducer computing the height-advice function is the parameter.
We then examine the complexity of membership and path-counting at either end of
the parameterisation.

A related model equivalent to VPA is that of nested word automata (NWA), defined
in [2] with a view to applications in software verification and XML document process-
ing. Motley word automata (MWA) are defined in [4] as a generalisation of NWA. Our
techniques can be used to show that the equivalence is indeed very strong: deciding
membership and counting accepting paths in NWA and MWA are NC1-equivalent to
the same problems over VPA.

In the next section, we give some basic notations and definitions. In Section 3,
we give a brief overview of Dymond’s membership algorithm [12] for VPL, which
yields the NC1 upper bound. In Section 4, the membership problem and the counting
problem for rhPDA are studied. In Section 5 we discuss the membership and the
counting problem for NWA and MWA.

1In [11] a weaker converse is shown: every #NC1 function can be expressed as the difference of
two #NFA functions.

4

2. Preliminary definitions

2.1. Pushdown automata and variants

A pushdown automaton (PDA) over Σ is a tuple P = (Q, q0, F,Γ,Σ, δ) where Q is a
finite set of control states, q0 ∈ Q the initial state, F ⊆ Q a set of accepting states,
Γ a finite alphabet of stack symbols, Σ a finite alphabet of labels and δ a finite set
of transition rules pU a−→ qV with p, q ∈ Q, U, V ∈ Γ∗, and a ∈ Σ ∪ {ε}. There is in
general no restriction on U and V in a transition rule. However, when |UV | ≤ 1 in
every rule, the automaton is usually called weak. Weak PDA have the same expressive
power as general PDA. From here on, and for simplicity, we will only be considering
weak PDA, unless otherwise stated. If no transition rule is labelled by ε, then the
PDA is said to be real-time. A PDA is called deterministic (DPDA) if for every pair of
rules pU a−→ qV , pU b−→ q′V ′, whenever a = b then qV = q′V ′, and whenever a = ε,
then also b = ε.

A configuration of P is a word of the form pW with p ∈ Q and W ∈ Γ∗, where p is
the current control state and W is the current stack content read from top to bottom.
The stack height at configuration pW is |W |.

The semantics of P is defined with respect to its transition graph GP = {pUW a−→
qV W | a ∈ Σ∪ {ε}, pU a−→ qV ∈ δ, W ∈ Γ∗}. Note that GP is an infinite graph, but
it is “finitely represented” by the finite set of transition rules. A run of P on input
word w ∈ Σ∗ from configuration pW is a path in GP between vertex pW and some
vertex qW ′, written pW w−→ qW ′. Such a run is successful (or accepting) if pW = q0
and q belongs to the set F of accepting states of P . By L(GP , S, T) where S, T are
sets of vertices of GP , we mean the set of all words w ∈ Σ∗ such that c w−→ c′ for some
configurations c ∈ S, c′ ∈ T . The language of P is the set of all words w over which
there exists an accepting run; i.e. it is the language L(GP , {q0}, FΓ∗). (Deterministic)
context-free languages, (D)CFL, are the languages accepted by PDA (DPDA).

An input-driven pushdown automaton (IDA) over Σ is a PDA P where Σ is par-
titioned as Σc ∪ Σr ∪ Σi (for call, return and internal), and δ satisfies the following:
for every rule pU a−→ qV in δ, |U | = 1 and

• if a ∈ Σc, then |V | = 2.
• if a ∈ Σi, then |V | = 1.
• if a ∈ Σr, then |V | = 0.

Note that the PDA so defined are not weak; however, it is straightforward to define
equivalent weak PDA satisfying

• If a ∈ Σc, then any rule pU a−→ qV has U = ε, V ∈ Γ.
• If a ∈ Σi, then any rule pU a−→ qV has U = V = ε.
• If a ∈ Σr, then any rule pU a−→ qV has U ∈ Γ, V = ε.

If additional transitions of the form p⊥ a−→ q⊥ with a ∈ Σr are allowed, where ⊥ is
a special marker indicating that the stack is empty, one obtains the class of visibly
pushdown automata (VPA). Both formalisms are essentially equivalent except that

5

VPA are allowed to read return symbols even when the stack is empty. Both IDA and
VPA can be nondeterministic, i.e. δ need not be a function.

VPA are strictly more expressive than IDA: for example, no IDA can accept the
language L∗ where L = {anbn+1 | n ≥ 1}, but the VPA with p as its single initial and
accepting state and the following set of rules can:

p
a−→ qX q

a−→ qX qX
b−→ r rX

b−→ r r⊥ b−→ p

However, they are equivalent to IDA when run on well-matched strings, i.e. strings
w ∈ (Σc ∪ Σi ∪ Σr)∗ such that every prefix w has at most as many letters in Σr

as it has in Σc. Indeed, on such strings the automaton never encounters an empty
stack while reading a pop letter. Membership testing for visibly pushdown languages
can be easily reduced to that for input-driven languages, as observed in [16, 17]: for
every VPA M , there is another VPA M ′ on a slightly enlarged alphabet, and for every
input w to M there is an input g(w) to M ′, such that M ′ never makes an empty-
stack pop move on g(w). (Thus g(w) is a well-matched input.) In fact, M ′ is an
IDA. Furthermore, M ′ has as many accepting paths on g(w) as M has on w, and the
function g is computable in NC1 (defined below).

Since we are concerned only with classes at least as large as NC1, the difference
between VPA and IDA is irrelevant in this work. For this reason, in the rest of this
paper we make no distinction between both notions, and implicitly consider only VPA
acting on well-matched strings.

2.2. Circuits and complexity classes

We describe some circuit classes that are relevant to our study. A circuit is a directed
acyclic graph with internal nodes labeled by operators, typically and and or, leaves
labelled by literals xi or x̄i, and a designated output node. It accepts an input
x = x1 . . . xn if, when the values of x are fed in at the leaves, the output node
evaluates to 1. A family of circuits {Cn | n ≥ 1} accepts a language L ⊂ {0, 1}∗ if for
each x ∈ Σ∗, x ∈ L if and only if C|x| accepts x. To extend this notion to languages
over larger alphabets, we allow leaves to be labelled by (0-1 valued) predicates of the
form [i, a] for i ∈ [n], a ∈ Σ. Such a predicate evaluates to 1 exactly when the ith
letter of the input word, xi, equals a. The family has polynomial size if for some fixed
polynomial p, each Cn has at most p(n) nodes. It has logarithmic depth if the longest
path from a leaf to the output node in Cn has length O(log n). It is (C-)uniform if
there is an algorithm (running in C) that on input 1n, produces a description of the
circuit Cn. We only consider uniform circuits in this paper.

By NC1, we denote the class of languages L accepted by families of circuits of
polynomial size, logarithmic depth, in which every node has bounded fan-in and
internal nodes are labelled and and or. AC0 is a subclass of NC1, consisting of
languages accepted by polynomial size constant depth circuits over and and or, where
each node is allowed unbounded fan-in. TC0 is another subclass of NC1 consisting of
polynomial size constant depth circuits where each gate is allowed unbounded fan-in,
and gates compute majority and not. It is known that AC0 is properly contained
in TC0, and that NC1 is contained in L.

6

By #NC1, we denote the class of functions from Σ∗ to N computable by polynomial-
size logarithmic depth circuits where the internal nodes are labelled plus and multi-
ply. Also, for any class A of automata, we define the associated counting complexity
class #A as follows:

#A = {f : Σ∗ → N | for some M ∈ A, f(x) = #accM (x) for all x ∈ Σ∗}

Here, #accM (x) denotes the number of accepting paths in M on input x ∈ Σ∗.

Proposition 1 ([11, 17]) The following inclusions hold:
#NC1 // L // LogDCFL

#NFA

::uuuuuuuuu
// #VPA

99ssssssssss

Here, the containment involving both a function class F and a language class
C, F ⊆ C, is interpreted as: for every f ∈ F , the language Lf = {〈x, i, b〉 |
the ith bit of f(x) is b} is in C. Also, LogDCFL is the class of languages logspace
many-one reducible to some deterministic context-free language, or equivalently the
class of languages accepted by DPDA possessing an auxiliary logspace read-write work
tape (called DAuxPDA) and running in polynomial time.

3. Revisiting the proof of VPL ⊆ NC1

In [12], Dymond proved that the membership problem for VPL is in NC1. Dymond’s
proof transforms the problem of recognition/membership to efficiently evaluating an
expression whose values are binary relations over a finite set and whose operations
are functional compositions and certain unary operations depending on the inputs.
This transformation is done in NC1. Containment in NC1 follows from the result, due
to Buss [6], that the evaluation of formulae involving k-ary operators over a finite
domain is in NC1.

For a VPA P , on any input w, the stack height after processing i letters, h(i, w) (or
simply h(w) if i = |w|), is the same across any run. Let w[i,j] denote a well-matched
substring w(i) . . . w(j) of w for 1 ≤ i < j ≤ |w|. Let w[i] denote w[i,i]. We define a
set of binary relations ⇒i,j

P (or simply ⇒i,j if P is clear from the context) on surface
configurations (q, γ) ∈ Q× Γ (state and stack-top pair), as

(q, γ)⇒i,j (q′, γ′) ⇐⇒ qγ
w[i,j]−→
GP

qγ′.

Note that even though i, j are integer indices of this relation, the domain for any
relation indexed by i, j is finite (i.e. (Q × Γ)2). These relations are expected to
capture all the cases where surface configurations are reachable from one another
without accessing the previous stack profiles. A pair (i, j) of indices is called height-
matched if the string wi+1 . . . wj is well-matched. The relations ⇒i,j are defined only
for height-matched (i, j).

7

The relations ⇒i,j where j ∈ {i, i + 1} can be obtained directly from w and δ.
Given two relations ⇒i,j and ⇒j,k for height matched (i, j) and (j, k), the relation
⇒i,k can be computed from these using composition as follows:

⇒i,j ◦ ⇒j,k=

(q, γ, q′, γ′)
∃q′′ ∈ Q, γ′′ ∈ Γ : (q, γ)⇒i,j (q′′, γ′′),

(q′′, γ′′)⇒j,k (q′, γ′)

Given the relation⇒i,j , if w[i−1] is a call letter a and w[j+1] is the matching return

letter b, then the relation⇒i−1,j+1 can be computed as Ext{a,b}(⇒i,j) using the unary
extension operation Ext defined as follows:

Ext{a,b}(⇒i,j) =

(q, γ, q′, γ′)
∃q1, q2 ∈ Q, γ1, γ2 ∈ Γ : (q1, γ1)⇒i,j (q2, γ2),

q
a−→ q1γ1 ∈ δ, q2γ2

b−→ q′ ∈ δ

Given ⇒i,j , if w[j+1] is an internal letter c, then ⇒i,j+1= Ext{c}(⇒i,j) where:

Ext{c}(⇒i,j) =
{

(q, γ, q′, γ′) ∃q1 ∈ Q : (q, γ)⇒i,j (q1, γ′) and q1
c−→ q′ ∈ δ

}
Let ⇒Id denote the identity relation, i.e. (q, γ) ⇒Id (q′, γ′) if and only if q = q′

and γ = γ′.
Given a string w, the goal is to compute⇒1,|w|. The main work is to figure out the

correct indices for the relations and then the appropriate operations. But that can be
accomplished essentially by computing stack heights for various configurations, which
is easy for VPA.

Example 2 Consider a VPA with Σc = {a},Σr = {b},Σi = {c} on word w =
aabaabcbb. The relation ⇒1,|w| can be computed using Ext{a,b},Ext{c} and ◦ as fol-
lows:

⇒1,|w|= Ext{a,b}(Ext{a,b}(⇒Id) ◦ Ext{a,b}(Ext{a,b}(⇒Id) ◦ Extc(⇒Id))).

As pointed out in [12], the above transformation works for potentially larger classes.

Remark 3 ([12]) Dymond’s NC1 membership algorithm works for any pushdown au-
tomaton P satisfying the following three conditions.

• P should be real-time (i.e. have no ε-rules).

• Accepting runs should end with an empty stack (and in a final state).

• There should exist an NC1-computable function h such that for w ∈ Σ∗ and
0 ≤ i ≤ |w|, h(i, w) is the height of the stack after processing the first i symbols
of w. If P is non-deterministic, then h(i, w) should be consistent with some run
ρ of P on w; further, if P accepts w, then ρ should be an accepting run.

Clearly, VPA satisfy these conditions. By definition, they have no ε-rules. Though
they may not end with an empty stack, this can be achieved by appropriate padding

8

that is computable in TC0, see for instance [16, 17]. Though VPA may be nondeter-
ministic, all runs have the same height profile, and the function h(i, w) can in fact be
computed in TC0.

Since any computation up to NC1 can be allowed for Dymond’s proof to apply, VPL
do not fully exploit Dymond’s argument. We explore a generalisation of VPA allowing
us to define more general classes for which Dymond’s scheme (or its precursor from
[5]) may work for deciding membership, and then examine the power of counting in
these models.

4. More general height functions: height-determinism

As already mentioned, adding a pushdown stack to an NFA significantly increases
the complexity of both membership and path-counting. However, if stack operations
are restricted to an input-driven discipline, as in VPA, then membership is no harder
than for NFA, and path-counting seems easier (in FLogDCFL, the class of functions
computable by polynomial time DAuxPDA) than over general PDA. What is being
exploited is that, despite nondeterminism, all paths on a given input word have the
same stack-profile, and this profile is computable in NC1 (and even in TC0). One
can view the partitioning of the input alphabet as height-advice being provided to an
algorithm for deciding membership. This naturally leads to the question: what can
be deduced from the existence of such height-advice, independent of how this function
is computed?

The term height-determinism, coined by [19], captures precisely this idea. A PDA
is height-deterministic if the stack height reached after any partial run depends only
on the input word w which has been read so far, and not on non-deterministic choices
performed by the automaton. Consequently, in any real-time height-deterministic
pushdown automaton (rhPDA), all runs on a given input word have the same stack
profile. Another way to put it is that for any rhPDA P , there exists a height-advice
function h from Σ∗ to Z, such that h(w) is the stack-height reached by P on any run
over w.

Any rhPDA that accepts on an empty stack and whose height-advice function h
is computable in NC1 directly satisfies the conditions in Remark 3, and hence its
membership problem lies in NC1. In this section, we explore some subclasses of
rhPDA and discuss the complexity of their membership and counting problems.

4.1. Definition and properties

Let us first give a formal definition of rhPDA.

Definition 4 (rhPDA, [19]) A real-time (weak) pushdown automaton2 P = (Q, q0,
F, Γ, Σ, δ) is called height-deterministic if it is complete (for every input word, there
is a run that reads the entire input), and ∀w ∈ Σ∗, q0

w−→ qα and q0
w−→ pβ imply

|α| = |β|.
2In [19], the definition involves rules of the form pX

a−→ qα where α ∈ {ε,X} ∪ {Y X|Y ∈ Γ}.
This is not an essential requirement for the results presented here.

9

Note that the requirement that an rhPDA be complete can be interpreted in more
than one way. As a syntactic requirement, the PDA is complete if for every node
in GP , and every letter a ∈ Σ, there is an outgoing edge labelled a. A (weaker)
semantic requirement would be that this condition is met only on nodes reachable
from the initial node. A more subtle (and also weaker) semantic requirement would
be that for every word w ∈ Σ∗, there is a path q0

w−→ qW ′ in GP for some q ∈ Q,
W ′ ∈ Γ∗. For a DPDA, there is at most one computation path on any input. Thus,
by introducing a dead state one can complete any weakly complete DPDA to fullfill
the strong completeness condition. Hence, unless stated otherwise, we will always be
using the stronger notion of syntactic completeness for DPDA.

The robustness of the notion of height-determinism is illustrated by the fact that
rhPDA retain most good properties of VPA, even when the actual nature of the height-
advice function is left unspecified. This had already been obtained in [7] for a slightly
different class (which the authors of [19] admittedly used as a starting point in the
elaboration of their paper).

Proposition 5 ([19, 7]) Any rhPDA can be determinised. Consequently, for a fixed
h, the class of languages accepted by rhPDA and whose height-advice function is h
forms a boolean algebra (and properly includes regular languages). Moreover, language
equivalence between two rhPDA with the same height-advice function is decidable.

All these results are effective as soon as h is computable. Note that h being
computable is a sufficient condition. However, it is not necessary: in fact one can do
the product constructions for the union and intersections and other constructions even
without knowing the the function h at all, as long as the two automata synchronize.

Since any deterministic real-time PDA is also height-deterministic, another con-
sequence of the fact that rhPDA can be determinised is that the whole class rhPDA
accepts precisely the class of real-time DCFL.

Something slightly stronger than determinisation is shown in [19] and will turn out
to be useful for us.

Proposition 6 ([19]) For every rhPDA A with initial state p0, there is a language-
equivalent real-time, complete DPDA B with initial state q0 such that if w labels a
path p0

w−→ pW in GA and a path q0
w−→ qY in GB, then |W | = |Y |.

4.2. Instances of height-deterministic PDA

The definition of a rhPDA leaves the exact nature of the height-advice function h
unspecified. This is troublesome, since h could be arbitrarily complex. We consider
some classes of specific height-advice functions, the simplest non-trivial one being
VPA.

Following the framework developed in [7], we consider classes T of transducers
mapping words to integers. A transducer T over Σ and Z is a transition system
(C, c0, F, (Σ × Z), δ), where c0 denotes the initial configuration and F a set of final

configurations, and whose transitions described by δ are of the form c
a/k−→ d with

10

c, d ∈ C, a ∈ Σ and k ∈ Z. In such a rule, a is considered as an input and k as

an output. A run c0
a1/k1−→ c1 . . . cn−1

an/kn−→ cn is associated with the pair (w, k) =
(a1 . . . an, k1 + . . .+ kn). Such a transducer defines a relation gT ⊆ Σ∗ ×Z defined as
the set of all pairs (w, k) labelling an accepting run in T .

In our setting, we only consider both input-complete and input-deterministic trans-
ducers (i.e. transducers whose underlying Σ-labelled transition system is determin-
istic and complete), in which all configurations are final (in which case we omit F
in the definition). Consequently, for any such transducer T the relation gT is actu-
ally a function, and is defined over the whole set Σ∗. The transition graph GP of a
PDA P is said to be compatible with a transducer T if for every vertex s of GP , if
u, v ∈ L(GP , {q0}, {s}) then gT (u) = gT (v). If T is compatible with P , then poten-
tially T can be used to “synchronise” P : we can define a function g from the reachable
nodes of GP to integers, where g(pW) is exactly the function gT (u) for some string
u ∈ L(GP , {q0}, {pW}), and compatibility ensures that such a g is well-defined. In
particular, if the function g so defined satisfies g(pW) = |W |, for all reachable nodes
pW , we can say that T synchronises P via stack-height. In what follows, we are
concerned with only stack-height synchronisation.

One may consider several kinds of transducers. The simplest class is finite-state
transducers (FST), where the configuration space C is simply a finite set of control
states (often written Q). One may also consider pushdown transducers (PDT) whose
underlying Σ-labelled transition system is a PDA transition graph, or even more
complex transducers (for instance defined using Turing machines).

Definition 7 For any class T of complete deterministic transducers, rhPDA(T) is
the class of rhPDA whose height function h can be computed by a transducer T in T ,
in the sense that h(w) = |gT (w)| (absolute value of gT (w)) for all w.

Note that the height-advice function of any VPA running on well-matched strings
can be computed by a single-state transducer, that reads letters and outputs +1 or
−1 or 0 depending on whether the letter is in Σc or Σr or Σi. However, note that
such single-state transducers can also compute stack-heights for languages that are
provably not in VPL, as the following example shows.

Example 8 The language EQ(a, b) = {w | |w|a = |w|b} is not accepted by any
VPA for any partition of {a, b}. But it is in rhPDA(T) for a single-state transducer
T . Consider a finite transducer T = (Q, q,Σ × Z, δT) where Q = {q}, Σ = {a, b},
δT = {q a/+1−→ q, q

b/−1−→ q}, and a PDA P = (QP , q0, F,Γ,Σ, δ) where QP = {qa, qb, q0},
F = {q0}, Γ = {X,A,B}, and δ is as follows:

q0
a−→ qaX qa

a−→ qaA qaA
b−→ qa qaX

b−→ q0

q0
b−→ qbX qb

b−→ qbB qbB
a−→ qb qbX

a−→ q0

Then T correctly computes the stack-heights of P .

Also, allowing more than one state in a FST provably enlarges the class of languages.

11

Example 9 REV = {wcwR | w ∈ {a, b}∗} is not a VPL. The obvious DPDA accept-
ing this has a height function computable by a two-state transducer, with loops labelled
a/+ 1 and b/+ 1 on the first state, loops labelled a/− 1 and b/− 1 in the second, and
a transition labelled c/0 from the first state to the second one. It is easy to see that
for any PDA accepting REV, two states in the transducer are necessary for computing
the stack height.

Note that the PDA in Example 8 is complete in the weak sense. It, as well as the
PDA in Example 9, can be completed by adding a dead state. The stack moves in the
dead state should be consistent with the transducer. This consistency may require
adding more than one dead state.

Further, in [19] there is a separating example in rhPDA but not in rhPDA (FST).

Example 10 Consider the set of stringsambnw
m > n > 0, |w|a = |w|b and if w 6= ε,

then the first letter of w is a

This language can be accepted by an rhPDA, but no rhPDA(FST) accepts it. The
intuitive reason is that, for the FST T in Example 8 to synchronize with a PDA
accepting words w such that |w|a = |w|b, it specifically relies on the fact that stack-
height is computed by absolute value. However, this is only possible if the pushdown
stack is initially empty when beginning to read w, which is not the case in the present
example, where reading the prefix ambn may bring the stack to an arbitrary height for
any PDA accepting this language. For a formal proof of this result, we refer the reader
to the (unpublished) appendix of [19].

From Proposition 11 below, it follows that this language is in fact in rhPDA (PDT).

In the remainder of this section, we will focus on the classes rhPDA(FST) and
rhPDA(PDT), and also to some extent on the class rhPDA(rDPDA1-turn), where the
transducer is a 1-turn PDT. A 1-turn PDA or PDT is one that satisfies the following
property: on any run on any word, once a rule of the form qA

a−→ p is used (that is,
once the PDA pops an element from the stack), then all subsequent rules are of the
form qγ

a−→ p (the PDA no longer pushes elements onto the stack).
The class we define as rhPDA(FST) is a subclass of the synchronised pushdown

automata considered in [7] and later generalised in [10, 8, 9] using the formalism of
graph grammars. In fact, this class coincides with the class of languages synchronized
by linear deterministic graph grammars, or equivalently linear regular graphs (see [8]
for more details on this equivalence).

Finally, we note that since, by definition, rhPDA are complete, it is in fact unnec-
essary to consider more complex transducers than deterministic and complete PDT.
Formally:

Proposition 11 For any rhPDA P whose height-advice function is h, there exists a
deterministic and complete pushdown transducer T such that h(w) = gT (w) for all
w ∈ Σ∗. That is, every rhPDA is in rhPDA(PDT).

12

Proof. Let P = (Q, q0, F,Σ,Γ, δ). If P is syntactically complete, we can proceed as
follows: define P ′ = (Q, q0, F,Σ,Γ, δ′) in which δ′ is a subset of δ containing only
the lexicographically first transitions for every nondeterministic transition defined
in δ. This automaton is deterministic, and since rhPDA are complete, it is also
complete. It has its own height-advice function h. But since the automaton P is
height-deterministic, all runs of P , and in particular the lex-first run, have the same
stack height. This implies that P and P ′ admit the same height-advice function h.

If P satisfies the weaker completeness requirement, we appeal to Proposition 6 and
use the DPDA obtained there as P ’.

It is now straightforward to define a deterministic and complete pushdown trans-
ducer T whose underlying pushdown automaton is P ′, and such that gT (w) = h(w)
for any input word w (for this, each transition of T simply has to output the integer
matching the stack movement performed by this transition. Note that it is depen-
dent on the transitions locally and not on the entire run). By definition of P ′ and T
and since T is complete, the height-advice function of P is well-defined and correctly
computed by T . 2

We now turn to studying the complexities of the membership and counting prob-
lems over rhPDA(FST) and rhPDA(PDT).

4.3. Complexity of the membership problem

As we already mentioned, rhPDA have exactly the same power as real-time DPDA
in terms of accepted languages. Thus the membership question for the whole class
rhPDA (and thus also for rhPDA(PDT)) is in LogDCFL.

It turns out that this is in fact a completeness result. It was shown by Sudborough
[20] that the following language is a hardest DCFL and is complete for the class
LogDCFL.

Definition 12 ([20]) Let u be a string over the alphabet {(1, (2,)1,)2, [,],#} of the
form x0[w1#z1][w2#z2] . . . [wk#zk] for some k ∈ N where x0 ∈ {(1, (2}∗ and for all i
such that 1 ≤ i ≤ k, wi ∈ {)1} · {(1, (2}∗ and zi ∈ {)2} · {(1, (2}∗.

A string u of this form is said to be in the language DetCh(Dyck2) if and only if
for each 1 ≤ i ≤ k, ∃xi ∈ {wi, zi} such that x0x1 . . . xk ∈ Dyck2. That is, there is a
(deterministic) way to choose one of the two substrings wi, zi for each i such that all
the chosen substrings put together in the correct order along with x0 form a balanced
string of parentheses over two types of parentheses.

The language DetCh(Dyck2) is deterministic context-free and is complete for the
class LogDCFL.

A real-time DPDA P accepting DetCh(Dyck2) starts reading the string u and on
x0 simply pushes the string on the stack. The invariant it maintains is: the stack
contains unmatched opening parentheses. After having processed i−1 blocks, suppose
P has a type 1 parenthesis on the top of the stack. Then it chooses xi to be wi, pops
the stack-top, and pushes all but the first letter of wi on the stack. Otherwise, it
chooses xi to be zi and wi is read symbol by symbol and ignored by P . On reading zi

13

the stack-top is popped and all but the first letter of zi are pushed on the stack. The
letters [,],# are treated as markers and appropriate state changes are performed over
them. If finally the stack becomes empty, the string is accepted, else it is rejected.
Thus this language can be accepted by a real-time DPDA; and hence membership
testing for rhPDA is hard for LogDCFL.

This settles the complexity of the membership question for the whole class rhPDA
(and thus also for rhPDA(PDT)); we have

Proposition 13 The membership question for the class rhPDA (and thus also for
rhPDA(PDT)) is complete for LogDCFL under logspace many-one reductions.

We observe easy bounds on the complexity of the height-advice function.

Lemma 14 For a complete deterministic transducer T computing function gT ,

1. If T is a FST, then gT is computable in NC1.
2. If T is a real-time DPDA1-turn, or rDPDA1-turn, then gT is computable in L.
3. If T is a PDT, then gT is computable in LogDCFL.

Proof. 1. Let q0(a1, k1)q1 . . . qn−1(an, kn)qn be the run of transducer T on input
w = (a1 . . . an). In NC1, we can construct the run and hence the sequence
k1, k2, . . . , kn. Now a TC0 circuit can compute, for each i, the sum si =

∑i
j=1 kj .

Since the transducer value is si if si ≥ 0 and −si otherwise, overall, the function
T (w) is computable in NC1.

2. It is known that DPDA1-turn can be simulated in logspace ([13]). Thus if a
function is computed by a rDPDA1-turn transducer, a logspace machine can
keep track of its output, and hence gT is in L.

3. Given input x and an index 1 ≤ i ≤ |x|, a DAuxPDA uses its stack for simulating
the stack of T and the auxiliary work-tape to maintain a counter which sums
all successive integers output by T . The DAuxPDA needs no more than linear
time, and a logarithmic size counter suffices.

2

This allows us to apply Dymond’s algorithm for rhPDA(FST).

Lemma 15 For any fixed rhPDA(FST), the membership problem is in NC1.

Proof. This can be seen as easy corollary of Remark 3. The following simple reduction
brings the given rhPDA(FST) to an appropriate form for Remark 3 to be applicable.
Let P be a PDA in the class rhPDA(FST), and T a finite-state transducer computing
the height-advice function of P . Given a string w = a1 . . . an, the membership problem
asks whether w ∈ L(P). Recall that P cannot have any ε-moves as it is real-time. And
by Lemma 14, we can determine in NC1 the height of the stack on any prefix of the
input. To meet the second condition, we determine in NC1 if the final stack height is
some k 6= 0. In this case, we convert the string w ∈ Σ∗ to a string wXk ∈ (Σ∪{X})∗,
where X is a new letter. We extend the PDA to a new PDA P ′ that has all the moves

14

of P , and further, it reads X and pops the stack, without changing the acceptance
status of the control state. Then w ∈ L(P)⇔ wXk ∈ L(P ′), and P ′ satisfies all the
conditions of Remark 3. 2

This membership algorithm exploits Dymond’s construction better than VPA, as
the height function requires a possibly NC1-complete computation (predicting states
of the transducer). Recall that for VPA, the height function is computable in TC0, a
subclass of NC1.

In [5], the membership problem for VPL is shown to be in L. We observe that their
algorithm can be more explicitly implemented as a log-space machine with access to
an oracle that supplies the stack height of the VPA after seeing a given word. That
is, the log-space machine makes height queries to the height-function g of the VPL;
we denote the class of such machines as Lg. In this form, it can be generalised to
any rhPDA having height function g, as stated in Theorem 16 below. The proof
follows from Lemmas 18 and 19, and the result, along with Lemma 14, yields the
next corollary since LL = L.

Theorem 16 For any fixed rhPDA P with height function g, the membership problem
is in Lg.

Corollary 17 The membership problem for rhPDA(rDPDA1-turn) is in L.

The class rhPDA(rDPDA1-turn) referred to here contains all languages accepted by
real-time DPDA1-turn as well as languages accepted by rhPDA(FST). It is contained
in DCFL.

Let P be an rhPDA. A string w is said to be well-matched with respect to P , if the
stack height before and after processing w is the same, say h, and while processing w,
it never becomes less than h. (The above definition of well-matched strings cannot
be extended to a PDA that is not height-deterministic, because on the same string,
the stack heights on different runs may be different.)

Lemma 19 uses the algorithm from [5] to establish the LgT bound for well-matched
inputs, and Lemma 18 brings the input in that form.

Lemma 18 For every rhPDA(T) P over an alphabet Σ, there is a corresponding
rhPDA(T ′) P ′ over an alphabet Σ′ and a LgT ′ many-one reduction f such that for
every x ∈ Σ∗, #accP (x) = #accP ′(f(x)), and f(x) is well-matched.

Proof. The rhPDA(T ′) P ′ is essentially the same as P . It has two new input symbols
A,B, and a new stack symbol X. On seeing an A, X is pushed, and on B X is
expected and popped. P ′ has a new state q′ that is the only initial state. P ′ expects
an input from A∗Σ∗B∗. On the prefix of A’s it pushes X’s. When it sees the first
letter from Σ, it starts behaving like P . The only exception is when P performs a pop
move on ⊥, P ′ performs the same move on X. On the trailing suffix of B’s it pops
X’s. It is straightforward to design δ′ from δ. The transducer T ′ exactly mimics the
transducer T , except when it sees an A it outputs +1 and on B it outputs −1 on any
configuration.

15

Let |x| = n. The logspace machine with oracle access to the height computing
function gT ′ does the following: It queries the oracle for the height of the string Anx,
say d. It then outputs y = AnxBd. By the way P ′ is constructed, it should be clear
that #accP (x) = #accP ′(y) and that P ′, on y, never pops on an empty stack. In fact
y is well-matched. 2

Lemma 19 (Variant of algorithm 2 of [5]) Let T be a transducer, and let P be
a rhPDA(T) accepting well-matched strings. Given an input string x, checking mem-
bership of x in L(P) can be done in LgT .

Proof. In [5], a logspace algorithm for membership testing when P is a VPA is given.
In [17], this algorithm is modified and a recursive procedure is described to obtain
a LogDCFL bound for counting accepting paths in a VPA. We essentially use the
recursive procedure from [17]. However, if it is used as is, the bound obtained will be
LogDCFLgT for height function gT , so some further modifications are needed.

We describe some details and all the changes made to the proof of [17] for the sake
of completeness. Let the PDA be P = (Q,Σ, Qin,Γ, δ, QF). Let xij = xi+1..xj be a
well-matched substring of the string x. (Define xii = ε, the empty string.) Define a(
(|Q|×|Γ|)×(|Q|×|Γ|)

)
matrix over {0, 1}, where each row and column is indexed by

a state-stack-top pair (surface configuration). The entry indexed by [(q,X), (q′, X ′)]
is 1 if and only if X = X ′ and P has a run from surface configuration (q,X) to (q′, X ′)
on the input string xij . We will call such a matrix the table Tij corresponding to the
string xij . P has an accepting run on x if and only if the entry [(q0,⊥), (q,⊥)] is 1 for
some q ∈ QF in the table corresponding to x0n. Thus, it is sufficient to compute this
table. However, in order to do so, we may have to compute many/all such tables.

We say that an interval r = [i, j] is valid if i ≤ j and xr, the string represented
by the interval, is well-matched; otherwise it is said to be invalid. A fragment is a
pair (r,Λ) where Λ is a pair (r′, T ′), r and r′ are valid intervals, T ′ is a table. The
fragments that arise in the algorithm satisfy the properties: (1) the interval r′ is
nested inside the interval r, and (2) T ′ is the table corresponding to the string xr′ ,
that is, T ′ = Tr′ . For r = (i, j), Λ = (r′, T ′) is trivial if r′ = [l, l] where l = d(i+2j)/3e
(and hence xr′ = ε), and T ′ is the identity table Id. The recursive procedure T takes
a fragment (r,Λ) as an input and computes the table Tr, assuming that T ′ = T ′r′

where r′ is a valid interval nested inside r. The main call made to the procedure is
([0, n],Λ) with trivial Λ.

The procedure T does the following: If the size of r − r′ is at most 2, then it
computes the table Tr immediately from δ and T ′. If the size of r− r′ is more than 2,
then it breaks r into three valid intervals r1, r2, r− (r1∪r2), where (1) the size of each
of r1, r2, r−(r1∪r2) is small (in two stages, each subinterval generated will be at most
three-fourth the size of r − r′), (2) one of r1, r2 completely contains r′, (3) r1, r2 are
contiguous with r1 preceding r2. It then creates fragments (r1,Λ1) and (r2,Λ2) where
Λ1 = Λ and Λ2 is trivial if r1 contains r′, and Λ2 = Λ and Λ1 is trivial if r2 contains
r′. Now it evaluates these fragments recursively to obtain the tables T (r1,Λ1) = Tr1 ,
T (r2,Λ2) = Tr2 , and obtains the table Tr3 = Tr1 × Tr2 , where r3 = r1 ∪ r2 and the
× represents Boolean matrix product. Setting Λ3 = (r3, Tr3), it finally makes the

16

recursive call T (r,Λ3) to compute Tr. In [5], it is shown that such fragments can
always be defined and can be found deterministically and uniquely. (We will discuss
the complexity of finding such fragments shortly.) It is also shown that the tables
computed by the above recursion procedure have the following property: for the table
T corresponding to the interval r = [i, j], the [(q,X), (q′, X ′)]-th entry is 1 exactly
when the machine has at least 1 path from (q,X) to (q′, X ′) on string xij . This proof
is by induction on the length of the intervals.

Note that the above procedure yields a O(log n) depth recursion tree (see [17], [5]
for detailed proofs), with each internal node having three children corresponding to
the three recursive calls made. The leaves of this recursion tree are disjoint effective
intervals (for fragment (r, (r′, T ′)), the effective interval is r − r′). As the main call
is made to the fragment ([0, n],Λ) with trivial Λ, the size of such a tree will be O(n).
The traversal of such a tree can be performed by a Turing machine that uses O(log n)
space and makes queries to the oracle machine providing height-advice for machine
P as follows: At any point the current fragment being evaluated is remembered
in O(log n) space. (At the beginning the interval [0, n] is remembered). Let the
three recursive calls made for a given fragment (r,Λ) be called Left, Right, and
Other ((r1,Λ1), (r2,Λ2), (r,Λ3)) respectively. Let the label of the node be the
string w ∈ {Left,Right,Other}∗ that indicates its position in the recursion tree.

Claim 20 Given the label (the path from the root) of any node in the recursion tree,
the intervals corresponding to the fragment associated with the node can be computed
in LgT .

The input to the logspace oracle machine querying the height function of the trans-
ducer, gT , is the string x and a label w = w1w2 . . . wk where k is O(log |x|) and w
is a string over the alphabet {Left,Right,Other}. The machine is expected to
compute the indices of the interval corresponding to the label and the gap indices for
that interval. The following algorithm will compute these indices. Let trivial([i, j])
for 0 ≤ i ≤ j ≤ n be defined as the trivial interval corresponding to [i, j], that is
[d(i+ 2j)/3e, d(i+ 2j)/3e]. The work-tape of the machine is initialised with the triple
(0, r, r′) where r = [0, n] and r′ = trivial(r).

A prefix of the label corresponds to a node in the recursion tree. After having
read w1w2 . . . wm, suppose the the node in the tree corresponding to this prefix is
an interval [im, jm] with a gap [i′m, j

′
m]. Then the invariant maintained after having

read w1w2 . . . wm is that the worktape contains (m, r, r′) where r = [im, jm] and
r′ = [i′m, j

′
m].

Supposing the work-tape has a correct triple (m− 1, r, r′) after having read m− 1
bits of the label, we now describe how to compute the next triple (m, s, s′) upon
reading wm. For the current pair (r, r′), steps to compute the intervals r1, r2, r3 will
be discussed shortly. Supposing one can do this in LgT , now the letter wm is read and
the pair (s, s′) is obtained as follows:

17

wm Left Right Other

s r1 r2 r

s′
r′ if r′ ⊆ r1

trivial(r1) otherwise
r′ if r′ ⊆ r2

trivial(r2) otherwise
r3 = r1 ∪ r2

The modifications continue as long as |r− r′| > 2 after which r and r′ can be thought
of as left unchanged. (In the algorithm, this case will not arise.)

We now describe how to compute r1, r2, r3 given r and r′. Let r = [i, j] and
r′ = [i′, j′] be such that i ≤ i′ ≤ j′ ≤ j and (r − r′) > 2. Consider the larger of the
two subintervals [i, i′] and [j′, j]. Break it into two equal size parts. Consider the part
closer to r′. In this, find an index t such that the height of the stack of P just after
reading xt (denoted as h(t)) is the lowest in that part. Now find two more points
b, a such that b ≤ t ≤ a, h(b) = h(t) = h(a), and the interval [b, a] is the maximal
valid subinterval containing t and within [i, j]. (Note: b, t, a need not be all distinct.)
Let r1 = [b, t], r2 = [t, a]. Once r1, r2 are fixed, the three fragments can be found as
described above. Thus, finding the three fragments essentially boils down to finding
b, t, a. These values a, b, t can be found by the base logspace machine by querying the
height computing function.

Example 21 Consider the word w = aabaabcbb from the VPL of Example 2. The
recursion tree has depth 2. For simplicity, we write (i, j, i′, j′) to refer to a node
with intervals r = [i, j] and r′ = [i′, j′]. The root of the tree is (0, 9, 6, 6) and has
(b, t, a) = (1, 3, 8), thus its three children are (1, 3, 3, 3), (3, 8, 6, 6), (0, 9, 1, 8). The
middle child here needs further expansion: it has (b, t, a) = (4, 4, 7), and thus its three
children are (4, 6, 6, 6), (6, 7, 7, 7), (3, 8, 4, 7).

Claim 22 The tree can be traversed in LgT .

From Claim 20, we know that once the label is available the interval itself can be
computed in Lg. We now see how the remaining computations can be performed by
a logspace base machine.

The depth of the tree is O(log n). Thus, the size of any label is O(log n). Depending
on which child is going to be evaluated, the label is updated by suffixing it with the
appropriate letter Left, Right, or Other. Also if the step results in computing a
table, that table is stored along with the previously added suffix. At any stage, the
number of tables to be remembered is also at most the maximum depth of the tree.
Each table is of size O(1). Thus the overall space required is O(log n). To move along
the recursion tree, the intervals need to be computed; this can be done in LgT by the
previous claim. Thus a full traversal can be done in LgT . 2

4.4. Complexity of the counting problem

The aspect of rhPDA which interests us in this study is that it is a nondeterministic
model capturing the deterministic class LogDCFL. It thus provides a way of arith-
metising LogDCFL, simply by counting the number of accepting paths on each word

18

in a rhPDA. We call the class of such functions #rhPDA. In particular, we consider
the classes #rhPDA(FST) and #rhPDA(PDT).

We have seen that although rhPDA(FST) properly generalises VPA (Example 8),
the membership problem has the same complexity as that over VPA (Lemma 15). It
turns out that even the path-counting problem has the same complexity.

Theorem 23 #rhPDA(FST) ≡ #VPA (via NC1 many-one reductions).

Proof. VPA are contained in the class rhPDA(FST), so we only need to show that
computing #rhPDA(FST) functions reduces to computing #VPA functions. This is
easy to observe, since the functions computed by an FST can be computed in NC1.

Let P be an rhPDA with height-advice computed by FST T . A naive approach
would be to construct a single PDA P ′ that simulates (P, T) by running PDA P along
with transducer T . However, such a PDA P ′ will not necessarily be a VPA. Now
consider the string rewritten using an enriched alphabet which consists of the input
letter along with a tag indicating whether P should push or pop. On this enriched
alphabet, if the tags are correct, then a PDA that simulates the original PDA P (i.e.
ignores the tags) behaves like a VPA. But by Lemma 14, the correct tags for any
word can be computed in NC1.

Formally, let P = (QP , qP
0 , F,Γ,Σ, δ

P) and T = (QT , qT
0 ,Σ, δ

T). We construct a
VPA M as follows: M = (QP , qP

0 , F,Γ,Σ
′, δ), where Σ′ = Σ × {c, r, i}, the partition

of Σ′ is defined as: Σ′x = Σ × {x} for x ∈ {c, r, i}, and δ is the same as δP (i.e. it
ignores the second component of the expanded alphabet).

Given input w = a1 . . . an, consider the string w′ = 〈a1, t1〉 . . . 〈an, tn〉, where tj ∈
{c, r, i}, and tj = c, r, i depending on whether |gT (a1 . . . aj)| − |gT (a1 . . . aj−1)| = 1
or −1 or 0. By Lemma 14, we can produce the string w′ in NC1.

It is straightforward to see that accepting runs of M on w′ are in one-to-one cor-
respondence with accepting runs of P on w. 2

Theorem 24 shows that membership and counting for rhPDA have the same com-
plexity, a situation rather unusual for nondeterministic complexity classes.

Theorem 24 #rhPDA is in LogDCFL.

The proof proceeds in several stages. To compute a #rhPDA function f on input x,
we first compute f(x) modulo several small (logarithmic) primes, and then reconstruct
f(x) from these residues. This is the standard Chinese remainder technique (see for
instance [22]), and we use it as stated formally below.

Lemma 25 (folklore) Let P be a fixed rhPDA. There is a constant c ≥ 0, depending
only on P , such that given input x, the number of accepting paths of P on input x
can be computed in logarithmic space with oracle access to the language Lres defined
below. (Here pi denotes the ith prime number.)
Lres = {〈x, i, j, b〉|1 ≤ i ≤ |x|c, the jth bit of #accP (x) mod pi is b }

19

We now show that Lres can be computed by a polynomial time DAuxPDA ma-
chine making oracle queries to the height-advice function gT . This follows from the
technique of [5] as used in [17] to show that #VPA functions are in LogDCFL.

Lemma 26 If P is any rhPDA and T a PDT computing its height-advice function,
then Lres is in LogDCFLgT .

Proof. First, we note that by the Prime Number Theorem, all the primes required in
Lres can be represented in O(log |x|) bits, and hence can be obtained in logarithmic
space. So we can assume that the primes are explicitly available.

In [17], it is shown that if the fixed rhPDA P is in fact a VPA, then the language Lres

is in LogDCFL without any oracle. In the proof of Lemma 19, we modified this proof
from [17] for giving neat parameterisation for membership problems of subclasses of
rhPDA. Here, we will modify it similarly to obtain the required bound on the language
Lres corresponding to a rhPDA.

Essentially the same recursion procedure from [5] which was described in the proof
of Lemma 19 is used here. Here we only describe the required changes.

The semantics of the matrices Tij is slightly different here: a number k is stored
at the entry ((q,X), (q′, X)) if there are k (mod pi) paths in the VPA M starting in
configuration (q,X) and ending in configuration (q′, X) having read the well-matched
string xij .

A similar recursion tree is obtained. Claim 20 remains unchanged, however the
matrices stored along any root to leaf path on tree are now of size O(log n). Claim 22
thus changes to:

Claim 27 The tree can be traversed in LogDCFLgT .

Since along any root to leaf path there can beO(log n) such tables to be remembered
during traversal, a logspace transducer does not suffice as the base machine. The
DAuxPDA base machine uses its stack to store the tables while performing the traversal
of the tree. Everything else goes through as in proof of Claim 22. 2

Lemmas 14 and 26 together imply that Lres is in LogDCFL(LogDCFL). This is
not adequate for us, since it is not known whether LogDCFL(LogDCFL) ⊆ LogDCFL.
(Relativising a space-bounded class is always tricky. Here, we have a pushdown
class with auxiliary space, making the relativisation even more sensitive.) However,
we further note that the LogDCFLgT machine accepting Lres makes oracle queries
which all have short representations: each query can be written in logarithmic space.
(Strictly speaking, the input x is also part of the query. But for eliminating the oracle,
this plays no role.) In such a case, we can establish a better bound, which may be of
independent interest:

Lemma 28 Let L(MA) be the language accepted by a poly-time DAuxPDA M which
makes O(log n)-bits oracle queries to a language A ∈ LogDCFL. Then L(MA) ∈
LogDCFL.

20

Proof. Consider a DAuxPDA M ′ that has three auxiliary tapes s1, s2, s3 of size
O(log n) bits each. The machine starts simulating M using s1. When M is computing
query bits, it notes down the query bits on tape s2. When the query is computed, it
is on the tape s2 of M ′. At this stage, M ′ marks the stack with a special stack marker
to indicate that the simulation of the oracle machine is going to begin. It then starts
simulating the machine for A, say M ′′, using the tape s3 as a work tape and tape s2
as the input tape. Once the simulation of M ′′ is completed, the answer to the query
is available on s3. Machine M ′ now pops the stack till the special marker is popped.
At this stage it has all the information needed to resume the computation of M . 2

Combining these lemmas proves Theorem 24, since L(LogDCFL) equals LogDCFL.

5. Related models: nested and motley words

In [2], Alur and Madhusudan defined nested word automata (NWA) as an equivalent
model for VPA, motivated by applications in software verification and XML document
processing. In [4], Blass and Gurevich defined motley word automata (MWA) as a
generalisation of NWA. The definitions of models of NWA and MWA are orthogonal to
the notion of height-determinism. However, we observe that their complexity bounds
are the same as that of VPL for both membership and counting problems.

We begin with definitions of NWA and MWA.
A nested relation ν of width n, for n ≥ 0, is a binary relation over [1, n] such

that (1) if ν(i, j) then i < j; (2) if ν(i, j) and ν(i′, j′) then either {i, j} = {i′, j′} or
{i, j}∩{i′, j′} = ∅, and (3) if ν(i, j) and ν(i′, j′) and i < i′ then either j < i′ or j′ < j.

If ν is a nested relation with ν(i, j), then i is the call-predecessor of j and j is
the return-successor of i. The definition requires that each position has at most one
call-predecessor or at most one return-successor but not both.

A nested word over an alphabet Σ is a pair (w, ν) such that w ∈ Σ∗, and ν is a
nested relation of width |w|. A position k ∈ [1, |w|] of w is a call position if (k, j) ∈ ν
for some j, a return position if (i, k) ∈ ν for some i, and an internal position otherwise.

Definition 29 (NWA) A nested word automaton (NWA) A over an alphabet Σ is a
tuple (Q, q0, F,Σ, δ) where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q
is a set of final states , δ = 〈δc, δi, δr〉 is a set of transitions such that δc ⊆ Q×Σ×Q,
δi ⊆ Q × Σ × Q and δr ⊆ Q × Q × Σ × Q are the transitions for call, internal, and
return positions respectively.

A starts in state q0 and reads the word left to right. At a call or internal position,
the next state is determined by the current state and input symbol, while at a return
position, the next state can also depend on the state just before the matching call-
predecessor. A run ρ of the automaton A over a nested word nw = (a1 . . . an, ν) is a
sequence q0, . . . , qn over Q such that for each 1 ≤ j ≤ n,

• if j is a call position, then (qj−1, aj , qj) ∈ δc
• if j is an internal position, then (qj−1, aj , qj) ∈ δi
• if j is a return position with call-predecessor k, then (qj−1, qk−1, aj , qj) ∈ δr.

21

A accepts the nested word nw if qn ∈ F . The language L(A) of a nested-word
automaton A is the set of nested words it accepts.

A motley word mw of dimension d over Σ is a tuple (w, ν1, . . . , νd), where w ∈ Σ∗

and ν1, . . . , νd are nested relations of width |w|.

Definition 30 (MWA) A motley word automaton (MWA) A of dimension d is a
direct product A1 × . . .×Ad of d NWA A1, . . . , Ad.3

A run of A on dimension d motley word mw = (w, ν1, . . . , νd) with |w| = n is a
sequence (q10 , . . . , q

d
0), . . . , (q1n, . . . , q

d
n) of states of A such that every (qk

0 , . . . , q
k
n) is a

run of Ak on the nested word (w, νk). A run of A on mw is accepting (or mw is
accepted by A) if each of the d constituent runs is. L(A) is defined as usual.

The languages of nested/motley words accepted by NWA or MWA are called regular
nested/motley languages. Regular motley languages strictly generalise regular nested
languages [4], since for some i 6= j, the same position can be a call-position for νi and
a return position for νj .

It is shown in [2] (Theorem 6) that for a fixed NWA, the membership question
is in NC1. The analogous question for a fixed MWA is easily seen to have the same
complexity, since it involves answering membership questions for d different, but fixed,
NWA, where d is the dimension of the MWA. Thus

Proposition 31 The membership problem for any regular motley languages is in
NC1.

In both models, NWA and MWA, non-determinism is allowed in the definition. We
show that path-counting in NWA and MWA is equivalent to that in VPA. This does
not follow from the equivalence of membership testing; rather, it requires that the
equivalence be demonstrated by a parsimonious reduction.

Lemma 32 For each NWA A, there is a VPA M , and for each nested word nw over
Σ there is a word w over ΣM , such that #accA(nw) = #accM (w). Further, w can be
constructed from nw by an AC0 circuit, for a suitable encoding of nw.

Proof. Let A = (Q, q0, F,Σ, δA) be the NWA. We first describe the construction of
the VPA. We let M = (Q, q0, F,Γ,ΣM , δM), where Γ = Q, ΣM = {c, r, i}×Σ, and δM

is defined as follows: for (q, a, q′) ∈ δA
c , δM has the rule q

(c,a)−→ q′q; for (q, a, q′) ∈ δA
i ,

δM has the rule q
(i,a)−→ q′; and for (q, q′, a, q′′) ∈ δA

r , δM has the rule qq′
(r,a)−→ q′′.

Now we describe the encoding of the nested word nw = (a, ν). This is a string over
Σ∪{0, 1,#, (,)} where {0, 1,#, (,)} is assumed to be disjoint from Σ. Each pair (i, j)
in ν is encoded as an opening bracket, followed by a bit string describing i in binary,
followed by a #, then a bit string describing j in binary, and then a closing bracket.
The nested word nw is presented by giving a, followed by a list of the encodings of
all pairs in ν.

3As NWA are in general non-deterministic, so are motley automata. A MWA A1 × . . . × Ad is
deterministic if every nested word automata Ak is so.

22

The AC0 reduction works as follows:
Given a nw = (a1 . . . an, ν) over Σ, encode it as a word w over ΣM as follows:

w = (x1, a1) . . . (xn, an) where xj = c if j is a call position, xj = r, if j is a return
position and xj = i if j is an internal position. An AC0 circuit will determine if j is
a call position, by comparing j with the strings appearing between (and # in the
input (first co-ordinate of the ν relation). From the definition of the nesting relation,
a valid encoding of a nested word will have exactly one such occurrence of j if j is
indeed a call position. Similarly, an AC0 circuit can determine whether a position
j is a return position (comparing strings between # and)) or an internal position
(checking if there is no occurrence of j anywhere in the encoding of ν).

It is straightforward to see that this reduction is parsimonious (path preserving).
That is, the number of accepting paths of A on nw = (a, ν) is exactly the same as
the number of accepting paths of M on w. 2

Lemma 33 #MWA ≡ #NWA ≡ #VPA, (via TC0 reductions).

Proof. #NWA ≤ #VPA: This follows directly from Lemma 32.
#VPA ≤ #NWA: We first describe how to come up with a NWA A from a VPA

M . We set Q′ = Q × Γ, q′0 = (q0,⊥), F ′ = {(q,⊥) | q ∈ F} and δ′ can be described
as follows: If for a ∈ Σc, q a−→ (p,A) ∈ δ then for all B ∈ Γ, ((q,B), a, (p,A)) ∈ δ′c.
If for a ∈ Σi, q

a−→ p ∈ δ then for all B ∈ Γ, ((q,B), a, (p,B)) ∈ δ′i. If for a ∈ Σr,
(q, A) a−→ p ∈ δ then for all B ∈ Γ, for all p′ ∈ Q ((q, A), (p′, B), a, (p,B)) ∈ δ′r.

We now describe how to convert a word w ∈ Σ∗ where Σ = Σc∪Σr∪Σi to a nested
word nw = (a1...an, ν). The string a1...an is exactly w. The nesting relation ν can
be computed as follows: For every 1 ≤ j ≤ n such that aj ∈ Σr, find the matching
call position i < j and put the pair (i, j) in ν. The positions of the internal letters do
not feature in the relation ν as per the definition of ν.

It is easy to see that accepting paths of M on w and of A on nw are in one-to-one
correspondence, and that nw can be obtained from w in TC0.

#MWA ≡ #NWA: By definition, #MWA contains #NWA. To see the converse
reduction, we define for any MWA M an NWA N that acts on d copies of the input
string. Formally, the NWA N is described as: Q = ∪d

j=1Q
j ; q0 = q10 ; F = F d;

if d > 1 then Σ′ = Σ ∪ {$} else Σ′ = Σ; δc = ∪d
j=1δ

j
c ; δr = ∪d

j=1δ
j
r ; if d > 1

δi = ∪d
j=1δ

j
i ∪ {(p, $, q) | ∀p ∈ F l−1, q = ql

0, 2 ≤ l ≤ d}, else δi = δ1i .
The nested word nw = (b1...b(n+1)d, ν) can be obtained from the motley word mw

as follows: b1...b(n+1)d is a string obtained by taking d copies of a1...an separated by
$. The nesting relation puts in each νi with an appropriate shift:
ν = {((n+ 1)(l − 1) + i, (n+ 1)(l − 1) + j) | (i, j) ∈ νl, 2 ≤ l ≤ d, 1 ≤ i < j ≤ n}.

Again, it is easy to see that accepting paths of M on mw and of A on nw are in
one-to-one correspondence, and that nw can be obtained from mw in TC0. 2

From [2], Proposition 31 and Lemma 33 we get the following:

Theorem 34 Deciding membership and counting accepting paths in NWA and MWA
are equivalent, via TC0-many-one reductions, to the corresponding problems over VPA.

23

6. Conclusion

We have studied a range of real-time height-deterministic pushdown automata ly-
ing between visibly and real-time deterministic pushdown automata. Figures 1, 2
and 3 depict the relations between language classes, their closures under appropriate
reductions, and the corresponding counting classes. (Dashed arrows denote incom-
parability, solid arrows denote containment, and arrows with a cut denote proper
containment.)

VPL / //
OO

���
�
�
� rhPDA(FST)

/

**
// rhPDA(rDLIN) //

OO

���
�
�
� rhPDA

/
RRRR

))RRRR

REG

/mmmm

66mmmm

/
RRRR

((RRR
DCFL

rDLIN / // DLIN

/dddddddddddd

22ddddddddddd

Figure 1: Summary of language classes

NC1, REG, VPL,
rhPDA(FST),
DLIN LL(1)

// rhPDA(rDLIN) // L, DLIN

LR(1)

//
rhPDA,
DCFL,
LogDCFL

Figure 2: Summary of language classes closures

NC1 // #NFA // #VPL,
#rhPDA(FST)

// #rhPDA(rDLIN) // #rhPDA // LogDCFL

Figure 3: Summary of counting classes

Some open questions remain. First, it would be interesting to investigate additional
classes lying between rhPDA(FST) and rhPDA(PDT). Such classes need independent
study, both for their properties as language classes and to investigate their closures
under appropriate reductions.

Secondly, the only known upper bound for #VPL, #rhPDA(FST) and
#rhPDA(rDLIN), is LogDCFL. It would be interesting to refine this bound. We believe
that #VPL should indeed be reducible to a much smaller class, either L, or maybe
even #NFA. Actually proving such a bound may well yield a different membership
algorithm for VPLs.

24

References

[1] R. Alur, P. Madhusudan, Visibly pushdown languages. In: 36th STOC .
ACM, 2004, 202–211.

[2] R. Alur, P. Madhusudan, Adding nesting structure to words. In: 10th DLT .
LNCS 4036, 2006, 1–13.

[3] D. Barrington, Bounded-Width Polynomial-Size Branching Programs Recog-
nize Exactly Those Languages in NC1. Journal of Computer and System Sciences
38 (1989) 1, 150–164.

[4] A. Blass, Y. Gurevich, A note on nested words. Technical Report MSR-TR-
2006-139, Microsoft Research, October 2006.
http://research.microsoft.com/~gurevich/Opera/180.pdf

[5] B. V. Braunmuhl, R. Verbeek, Input-driven languages are recognized in log n
space. In: 4th FCT . LNCS 158, 1983, 40–51.

[6] S. Buss, The Boolean Formula Value Problem Is in ALOGTIME. In: 19th
STOC . ACM, 1987, 123–131.

[7] D. Caucal, Synchronization of Pushdown Automata. In: 10th DLT . LNCS
4036, Springer, 2006, 120–132.

[8] D. Caucal, Boolean algebras of unambiguous context-free languages. In: 28th
FSTTCS . LIPIcs 2, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008,
83–94.

[9] D. Caucal, Synchronization of regular automata. In: 34th MFCS . LNCS 5734,
Springer, 2009, 2–23.

[10] D. Caucal, S. Hassen, Synchronization of Grammars. In: 3rd CSR. LNCS
5010, Springer, 2008, 110–121.

[11] H. Caussinus, P. McKenzie, D. Thérien, H. Vollmer, Nondeterministic
NC1 computation. Journal of Computer and System Sciences 57(2) (1998),
200–212.

[12] P. Dymond, Input-driven languages are in log n depth. Information Processing
Letters 26 (1988), 247–250.

[13] M. Holzer, K.-J. Lange, On the Complexities of Linear LL(1) and LR(1)
Grammars. In: 9th FCT . LNCS 710, 1993, 299–308.

[14] O. Ibarra, T. Jiang, B. Ravikumar, Some subclasses of context-free lan-
guages in NC1. Information Processing Letters 29 (1988), 111–117.

[15] K.-J. Lange, Complexity and Structure in Formal Language Theory. In: 8th
Conference on Computational Complexity . IEEE Computer Society, 1993, 224–
238.

[16] N. Limaye, M. Mahajan, B. V. R. Rao, Arithmetizing Classes arround NC1

and L. In: 24th STACS . LNCS 4393, 2007, 477–488.

25

[17] N. Limaye, M. Mahajan, B. V. R. Rao, Arithmetizing Classes arround NC1

and L. Theory of Computing Systems (2009), to appear. (spl. issue for STACS
2007). See also Electronic Colloquium on Computational Complexity, ECCC
TR07-87.

[18] K. Mehlhorn, Pebbling mountain ranges and its application to DCFL recog-
nition. In: 7th ICALP . LNCS 85, 1980, 422–432.

[19] D. Nowotka, J. Srba, Height-Deterministic Pushdown Automata. In: MFCS .
LNCS 4708, 2007, 125–134.

[20] I. Sudborough, On the Tape Complexity of Deterministic Context-Free Lan-
guages. Journal of the ACM 25(3) (1978), 405–414.

[21] I. H. Sudborough, A Note on Tape-Bounded Complexity Classes and Linear
Context-Free languages. Journal of the ACM 22 (1975) 4, 499–500.

[22] H. Vollmer, Introduction to Circuit Complexity: A Uniform Approach.
Springer, 1999.

