
Highlights

On (Simple) Decision Tree Rank

Yogesh Dahiya, Meena Mahajan

• Relating rank of decision tree for Boolean functions with depth (query complexity), size, sparsity, and certificate
complexity.

• Relating rank of composed function with depth of outer function and rank of inner function.

• Decision tree size lower bound for composed functions in terms of depth of outer function and rank of inner
function.

• Sandwiching depth of (AND,OR) decision trees between simple decision tree rank and log size.

On (Simple) Decision Tree Rank

Yogesh Dahiyaa, Meena Mahajana

aThe Institute of Mathematical Sciences, (A CI of Homi Bhabha National Institute HBNI), Tharamani, Chennai, 600113, TN, India

Abstract

In the decision tree computation model for Boolean functions, the depth corresponds to query complexity, and the size
corresponds to storage space. The depth measure is the most well-studied one, and is known to be polynomially related
to several non-computational complexity measures of functions such as certificate complexity. The size measure is
also studied, but to a lesser extent. Another decision tree measure that has received very little attention is the minimal
rank of the decision tree, first introduced by Ehrenfeucht and Haussler in 1989. This measure is closely related to the
logarithm of the size, but is not polynomially related to depth, and hence it can reveal additional information about
the complexity of a function. It is characterised by the value of a Prover-Delayer game first proposed by Pudlák and
Impagliazzo in the context of tree-like resolution proofs.

In this paper we study this measure further. We obtain an upper bound on depth in terms of rank and Fourier
sparsity. We obtain upper and lower bounds on rank in terms of (variants of) certificate complexity. We also obtain
upper and lower bounds on the rank for composed functions in terms of the depth of the outer function and the rank
of the inner function. This allows us to easily recover known asympotical lower bounds on logarithm of the size for
Iterated AND-OR and Iterated 3-bit Majority. We compute the rank exactly for several natural functions and use them
to show that all the bounds we have obtained are tight. We also show that rank in the simple decision tree model
can be used to bound query complexity, or depth, in the more general conjunctive decision tree model. Finally, we
improve upon the known size lower bound for the Tribes function and conclude that in the size-rank relationship for
decision trees, obtained by Ehrenfeucht and Haussler, the upper bound for Tribes is asymptotically tight.

Keywords: Boolean functions, Decision trees, query complexity, rank, certificate complexity, sparsity, iterated
composition

1. Introduction

The central problem in Boolean function complexity is to understand exactly how hard it is to compute explicit
functions. The hardness naturally depends on the computation model to be used, and depending on the model, several
complexity measures for functions have been studied extensively in the literature. To name a few – size and depth for
circuits and formulas, size and width for branching programs, query complexity, communication complexity, length
for span programs, and so on. All of these are measures of the computational hardness of a function. There are
also several ways to understand the hardness of a function intrinsically, independent of a computational model. For
instance, the sensitivity of a function, its certificate complexity, the sparsity of its Fourier spectrum, its degree and
approximate degree, stability, and so on. Many bounds on computational measures are obtained by directly relating
them to appropriate intrinsic complexity measures. See [13] for a wonderful overview of this area. Formal definitions
of relevant measures appear in Section 2.

Every Boolean function f can be computed by a simple decision tree (simple in the sense that each node queries
a single variable), which is one of the simplest computation models for Boolean functions. The most interesting
and well-studied complexity measure in the decision tree model is the minimal depth Depth(f), measuring the query
complexity of the function. This measure is known to be polynomially related to several intrinsic measures: sensitivity,

Email addresses: yogeshdahiya@imsc.res.in (Yogesh Dahiya), meena@imsc.res.in (Meena Mahajan)

Preprint submitted to Theoretical Computer Science January 12, 2023

block sensitivity, certificate complexity. But there are also other measures which reveal information about the function.
The minimal size of a decision tree, DTSize(f), is one such measure, which measures the storage space required to
store the function as a tree, and has received some attention in the past.

A measure which has received relatively less attention is the minimal rank of a decision tree computing the
function, first defined and studied in [9]; see also [1]. In general, the rank of a rooted tree (also known as its Strahler
number, or Horton-Strahler number, or tree dimension) measures its branching complexity, and is a tree measure that
arises naturally in a wide array of applications; see for instance [10]. The rank of a Boolean function f , denoted
Rank(f), is the minimal rank of a decision tree computing it. The original motivation for considering rank of decision
trees was from learning theory – an algorithm, proposed in [9], and later simplified in [5], shows that constant-rank
decision trees are efficiently learnable in Valiant’s PAC learning framework [28]. Subsequently, the rank measure has
played an important role in understanding the decision tree complexity of search problems over relations [23, 11, 18]
– see more in the Related Work part below. The special case when the relation corresponds to a Boolean function
is exactly the rank of the function. However, there is very little work focussing on the context of, and exploiting the
additional information from, this special case. This is precisely the topic of this paper.

In this paper, we study how the rank of boolean functions relates to other measures. In contrast with Depth(f),
Rank(f) is not polynomially related with sensitivity or to certificate complexity C(f), although it is bounded above
by Depth(f). Hence it can reveal additional information about the complexity of a function over and above that
provided by Depth. For instance, from several viewpoints, the Parityn function is significantly harder than the Andn

function. But both of them have the same Depth, n. However, Rank does reflect this difference in hardness, with
Rank(Andn) = 1 and Rank(Parityn) = n. On the other hand, rank is also already known to characterise the logarithm
of decision tree size (DTSize), upto a log n multiplicative factor. Thus lower bounds on rank give lower bounds on
the space required to store a decision tree explicitly. (However, the log n factor is crucial; there is no dimension-free
characterisation. Consider e.g. log DTSize(Andn) = Θ(log n).)

Our main findings can be summarised as follows:

1. Rank(f) is equal to the value of the Prover-Delayer game of Pudlák and Impagliazzo [23] played on the corre-
sponding relation R f (Theorem 3.1). (This is implicit in earlier literature [18, 11].)

2. While Rank alone cannot give upper bounds on Depth(f), Depth(f) is bounded above by the product of Rank(f)
and 1 + log spar(f) (Theorem 5.2).

3. Rank(f) is bounded between the minimum certificate complexity of f at any point, and (C(f) − 1)2 + 1; The-
orem 5.8. The upper bound (Lemma 5.4) is an improvement on the bound inherited from Depth(f), and is
obtained by adapting that construction.

4. For a composed function f ◦ g, Rank(f ◦ g) is bounded above and below by functions of Depth(f) and Rank(g);
Theorem 6.6. The main technique in both bounds (Theorems 6.3 and 6.5) is to use weighted decision trees, as
was used in the context of depth [21]. For iterated composed functions, these bounds can be used recursively
(Corollary 6.8), and can be used to easily recover known bounds on Rank for some functions (Corollary 7.1).

5. The measures Rank and log DTSize for simple decision trees sandwich the query complexity in the more general
decision tree model where each node queries a conjunction of literals (Theorem 7.4).

6. In the relation between Rank(f) and DTSize(f) from [9], the upper bound on log DTSize is asymptotically tight
for the Tribes function (Section 8).

By calculating the exact rank for specific functions, we show that all the bounds we obtain on rank are tight. We also
describe optimal strategies for the Prover and Delayer, for those more familiar with that setting.

Related work.. A preliminary version of this paper, with some proofs omitted or only briefly sketched, appears in the
proceedings of the FSTTCS 2021 conference [8].

In [15, Corollary 12], non-trivial learnability of s-term DNFs is demonstrated. The crucial result that allows this
learning is the transformation of the DNF expression into a polynomial threshold function of not too large degree. An
important tool in the transformation is the rank of a hybrid kind of decision tree; in these trees, each node queries a
single variable, while the subfunctions at the leaves, though not necessarily constant, have a somewhat small degree.
The original DNF is first converted to such a hybrid tree with a bound on its rank, and this is exploited to achieve the
full conversion to low-degree polynomial threshold functions. This generalises an approach credited in [15] to Satya
Lokam.

2

In [1], a model called k+-decision trees is considered, and the complexity is related to both simple decision
tree rank and to communication complexity. In particular, Theorems 7 and 8 from [1] imply that communication
complexity lower bounds with respect to any variable partition (see [19]) translate to decision tree rank lower bounds,
and hence by [9] to decision tree size lower bounds.

In [26], the model of linear decision trees is considered (here each node queries not a single variable but a linear
threshold function of the variables), and for such trees of bounded rank computing the inner product function, a lower
bound on depth is obtained. Thus for this function, in this model, there is a trade-off between rank and depth. In [27],
rank of linear decision trees is used in obtaining non-trivial upper bounds on depth-2 threshold circuit size.

In [23], a 2-player game is described, on an unsatisfiable formula F in conjunctive normal form, that constructs
a partial assignment falsifying some clause. The players are referred to in subsequent literature as the Prover and the
Delayer. The value of the game, Value(F), is the maximum r such that the Delayer can score at least r points no
matter how the Prover plays. It was shown in [23] that the size of any tree-like resolution refutation of F is at least
2Value(F). Subsequently, the results of [18, 11] yield the equivalence Value(F) = Rank(F), where Rank(F) is defined
to be the minimal rank of the tree underlying a tree-like resolution refutation of F. (Establishing this equivalence
uses refutation-space and tree pebbling as intermediaries.) The relevance here is that there is an immediate, and well-
known, connection to decision trees for search problems over relations: tree-like resolution refutations are decision
trees for the corresponding search CNF problem. (See Lemma 7 in [3]). Note that the size lower bound from [23], and
the rank-value equivalence from [18, 11], hold for the search problem over arbitrary relations, not just searchCNF. (See
e.g. Exercise 14.16 in Jukna for the size bound.) In particular, for Boolean function f , it holds for the corresponding
canonical relation R f defined in Section 2. Similarly, the value of an asymmetric variant of this game is known to
characterise the size of a decision tree for the search CNF problem [4], and this too holds for general relations and
Boolean functions.

Organisation of the paper.. After presenting basic definitions and known results in Section 2, we describe the Prover-
Delayer game from [23] in Section 3, and observe that its value equals the rank of the function. We also describe the
asymmetric game from [4]. We compute the rank of some simple functions in Section 4. In Section 5, we describe the
relation between rank, depth, Fourier sparsity, and certificate complexity. In Section 6, we present results concerning
composed functions. In Section 7 we give two applications. Firstly, using our rank lower bound result, we prove the
tight log size lower bound. Secondly, we prove a query lower bound in the Conj decision tree model. In Section 8
we examine the size-rank relationship for the Tribes function. The bounds in Sections 4 to 6 and 8 are all obtained
by direct inductive arguments/decision tree constructions. They can also be stated using the equivalence of the game
value and rank – while this does not particularly simplify the proofs, it changes the language of the proofs and may
be more accessible to the reader already familiar with that setting. Hence we include such game-based arguments for
our results in Section 9.

2. Preliminaries

Decision trees. For a Boolean function f : {0, 1}n −→ {0, 1}, a decision tree computing f is a binary tree with internal
nodes labelled by the variables and the leaves labelled by {0, 1}. To evaluate a function on an unknown input, the
process starts at the root of the decision tree and works down the tree, querying the variables at the internal nodes. If
the value of the query is 0, the process continues in the left subtree, otherwise it proceeds in the right subtree. The
label of the leaf so reached is the value of the function on that particular input. A decision tree is said to be reduced
if no variable is queried more than once on any root-to-leaf path. Without loss of generality, any decision tree can
be reduced, so in our discussion, we will only consider reduced decision trees. The depth Depth(T) of a decision
tree T is the length of the longest root-to-leaf path, and its size DTSize(T) is the number of leaves. The decision tree
complexity or the depth of f , denoted by Depth(f), is defined to be the minimum depth of a decision tree computing
f . Equivalently, Depth(f) can also be seen as the minimum number of worst-case queries required to evaluate f . The
size of a function f , denoted by DTSize(f), is defined similarly i.e. the minimum size of a decision tree computing f .
Since decision trees can be reduced, Depth(f) ≤ n and DTSize(f) ≤ 2n for every n-variate function f . A function is
said to be evasive if its depth is maximal, Depth(f) = n.

3

Weighted decision trees. Weighted decision trees describe query complexity in settings where querying different
input bits can have differing cost, and arises naturally in the recursive construction. Formally, these are defined as
follows: Let wi be the cost of querying variable xi. For a decision tree T , its weighted depth with respect to the
weight vector [w1, . . . ,wn], denoted by Depthw(T, [w1,w2, ...,wn]), is the maximal sum of weights of the variables
specified by the labels of nodes of T on any root-to-leaf path. The weighted decision tree complexity of f , denoted
by Depthw(f , [w1,w2, ...,wn]), is the minimum weighted depth of a decision tree computing f . Note that Depth(f) is
exactly Depthw(f , [1, 1, . . . , 1]). The following fact is immediate from the definitions.

Fact 2.1. For any reduced decision tree T computing an n-variate function, weights w1, . . . ,wn, and i ∈ [n],

Depthw(T, [w1, . . . ,wi−1,wi + 1,wi+1, . . . ,wn]) ≤ Depthw(T, [w1,w2, ...,wn]) + 1.

Certificate Complexity. The certificate complexity of a function f , denoted C(f), measures the number of variables
that need to be assigned in the worst case to fix the value of f . More precisely, for a Boolean function f : {0, 1}n −→
{0, 1} and an input a ∈ {0, 1}n, an f -certificate of a is a subset S ⊆ {1, ..., n} such that the value of f (a) can be
determined by just looking at the bits of a in set S . Such a certificate need not be unique. Let C(f , a) denote the
minimum size of an f -certificate for the input a. That is,

C(f , a) = min
{
|S | | S ⊆ [n];∀a′ ∈ {0, 1}n,

[(
a′j = a j∀ j ∈ S

)
=⇒ f (a′) = f (a)

]}
.

Using this definition, we can define several measures.

For b ∈ {0, 1}, Cb(f) = max{C(f , a) | a ∈ f −1(b)}
C(f) = max{C(f , a) | a ∈ {0, 1}n} = max{C0(f),C1(f)}

Cavg(f) = 2−n
∑

a∈{0,1}n
C(f , a)

Cmin(f) = min{C(f , a) | a ∈ {0, 1}n}

Composed functions. For boolean functions f , g1, g2, . . . , gn of arity n,m1,m2, . . . ,mn respectively, the composed
function f ◦ (g1, g2, ..., gn) is a function of arity

∑
i mi, and is defined as follows: for ai ∈ {0, 1}mi for each i ∈ n,

f ◦ (g1, g2, ..., gn)(a1, a2, ..., an) = f (g1(a1), g2(a2), . . . , gn(an)). We call f the outer function and g1, . . . , gn the inner
functions. For functions f : {0, 1}n −→ {0, 1} and g : {0, 1}m −→ {0, 1}, the composed function f ◦ g is the function
f ◦ (g, g, . . . , g) : {0, 1}mn −→ {0, 1}. The composed function Orn ◦ Andm has a special name, Tribesn,m, and when
n = m, we simply write Tribesn. Its dual is the function Andn◦Orm that we denote Tribesdn,m. (The dual of f (x1, . . . , xn)
is the function ¬ f (¬x1, . . . ,¬xn).)

For any function f : {0, 1}n −→ {0, 1}, that we will call the base function, the iterated composed function f ⊗k :
{0, 1}n

k
−→ {0, 1} is recursively defined as f ⊗1 = f , f ⊗k = f ◦ f ⊗(k−1). The iterated composed functions for the base

functions And2 ◦ Or2 and Maj3 will interest us later.

Symmetric functions. A Boolean function is symmetric if its value depends only on the number of ones in the input,
and not on the positions of the ones.

Proposition 2.2. For every non-constant symmetric boolean function f : {0, 1}n −→ {0, 1},

1. f is evasive (has Depth(f) = n). (See eg. Lemma 14.19 [13].)
2. Hence, for any weights wi, Depthw(f , [w1,w2, ...,wn])) =

∑
i wi.

For a symmetric Boolean function f : {0, 1}n −→ {0, 1}, let f0, f1, ..., fn ∈ {0, 1} denote the values of the function
f on inputs of Hamming weight 0, 1, ..., n respectively. The Gap of f is defined as the length of the longest interval
(minus one) where fi is constant. That is,

Gap(f) = max
0≤a≤b≤n

{b − a : fa = fa+1 = ... = fb}.

Analogously, Gapmin(f) is the length of the shortest constant interval (minus one); that is, setting f−1 , f0 and
fn+1 , fn for boundary conditions,

Gapmin(f) = min
0≤a≤b≤n

{b − a : fa−1 , fa = fa+1 = ... = fb , fb+1}.

4

Fourier Representation of Boolean functions. We include here some basic facts about Fourier representation relevant
to our work. For a wonderful comprehensive overview of this area, see [22]. Consider the inner product space of
functionsV = { f : {0, 1}n −→ R} with the inner product defined as

〈 f , g〉 =
1
2n

∑
x∈{0,1}n

f (x)g(x).

For S ⊆ [n], the function χS : {0, 1}n −→ {−1, 1} defined by χS (x) = (−1)
∑

i∈S xi is the ±1 parity of the bits in S and
therefore is referred to as a parity function. The set of all parity functions {χS : S ⊆ [n]} forms an orthonormal basis
for V. Thus, every function f ∈ V, in particular boolean functions, has a unique representation f =

∑
S⊆[n] f̂ (S)χS .

The coefficients { f̂ (S) : S ⊆ [n]} are called the Fourier coefficients (spectrum) of f . The Fourier sparsity of f , denoted
by spar(f), is the number of non-zero Fourier coefficients in the expansion of f , i.e. |{S ⊆ [n] : f̂ (S) , 0}|. It will be
convenient for us to disregard the Fourier coefficient of the empty set. We therefore define spar(f) = |{S ⊆ [n] : S ,
∅; f̂ (S) , 0}|. For every f , 0 ≤ spar(f) ≤ spar(f) ≤ spar(f) + 1, and only the constant functions have spar = 0.

Sparsity is related to decision tree complexity; large sparsity implies large depth.

Proposition 2.3 (see Proposition 3.16 in [22]). For a Boolean function f : {0, 1}n −→ {0, 1}, log spar(f) ≤ log DTSize(f)+
Depth(f) ≤ 2Depth(f).

In our discussion, we will be interested in the effect of restrictions on the Fourier representation of a function.
Of particular interest to us will be restrictions to subcubes. A subcube is a set of all inputs consistent with a partial
assignment of n bits, and its co-dimension is the number of bits set by the partial assignment. The subcube kill
number of f , denoted by K(f), is the size of a smallest partial assignment that makes the function constant. Formally,
following the notation from [24, 20], a subcube J is a partial assignment (to some of the n variables) defined by (S , ρ)
where S ⊆ [n] is the set of input bits fixed by J and ρ : S −→ {0, 1} is the map according to which the bits in S
are fixed. A subcube is a special type of affine subspace; hence, inheriting notation from subspaces, for J = (S , ρ),
the cardinality of S is called the co-dimension of J, and is denoted by co-dim(J). A function f : {0, 1}n −→ {0, 1}
restricted to J = (S , ρ) is the function f�J : {0, 1}n−|S | −→ {0, 1} obtained by fixing variables in S according to ρ. The
following result quantifies the effect on the Fourier spectrum of subcube restriction.

Theorem 2.4. [24, 20] Let f be any Boolean function f : {0, 1}n −→ {0, 1}. Fix any S ⊆ [n], S , ∅. If f�(S ,ρ) is a
constant, then for every ρ′ : S −→ {0, 1}, spar(f�(S ,ρ′)) ≤ spar(f)/2.

This lemma follows from [24] (in the proof of Theorem 1.7 there) and [20] (see the discussion in Sections 2.1
and 3.1 there). Both papers consider affine subspaces, of which subcubes are a special case. Since the result is not
explicitly stated in this form in either paper, for completeness we give a proof for the subcubes case in the appendix.

The subcube kill number of f , K(f), measures (the co-dimension of) a largest subcube over which f is constant.

K(f) = min{co-dim(J)| f�J is constant}.

Decision Tree Rank. For a rooted binary tree T , the rank of the tree is the rank of the root node, where the rank of
each node of the tree is defined recursively as follows: For a leaf node u, Rank(u) = 0. For an internal node u with
children v,w,

Rank(u) =

{
Rank(v) + 1 if Rank(v) = Rank(w)
max{Rank(v),Rank(w)} if Rank(v) , Rank(w)

The following proposition lists some known properties of the rank function for binary trees.

Proposition 2.5. For any binary tree T ,

1. (Rank and Size relationship): Rank(T) ≤ log(DTSize(T)) ≤ Depth(T).
2. (Monotonicity of the Rank): Let T ′ be any subtree of T , and let T ′′ be an arbitrary binary tree of higher rank

than T ′. If T ′ is replaced by T ′′ in T , then the rank of the resulting tree is not less than the rank of T .
3. (Leaf Depth and Rank): If all leaves in T have depth at least r, then Rank(T) ≥ r.

5

For a Boolean function f , the rank of f , denoted Rank(f), is the minimum rank of a decision tree computing f .
From Proposition 2.5(2), we see that the rank of a subfunction of f (a function obtained by assigning values to

some variables of f) cannot exceed the rank of the function itself.

Proposition 2.6. (Rank of a subfunction): Let fS be a subfunction obtained by fixing the values of variables in some
set S ⊆ [n] of f . Then Rank(fS) ≤ Rank(f).

The following rank and size relationship is known for boolean functions.

Proposition 2.7 (Lemma 1 [9]). For a non-constant Boolean function f : {0, 1}n −→ {0, 1},

Rank(f) ≤ log DTSize(f) ≤ Rank(f) log
(

en
Rank(f)

)
.

It follows that Rank(f) ∈ Θ(log DTSize(f)) if and only if Rank(f) = Ω(n). However, even when Rank(f) ∈ o(n), it
characterizes log DTSize(f) upto a logarithmic factor, since for every f , Rank(f) ∈ Ω(log DTSize(f)/ log n).

For symmetric functions, Rank is completely characterized in terms of Gap.

Proposition 2.8 (Lemma C.6 [1]). For symmetric Boolean function f : {0, 1}n −→ {0, 1}, Rank(f) = n − Gap(f).

Remark 2.9. For (simple) deterministic possibly weighted decision trees, each of the measures DTSize, Depth, and
Rank, is the same for a Boolean function f , its complement ¬ f , and it’s dual f d.

Relations and Search problems. A relation R ⊆ X ×W is said to be X-complete, or just complete, if its projection to
X equals X. That is, for every x ∈ X, there is a w ∈ W with (x,w) ∈ R. For an X-complete relation R, where X is of
the form {0, 1}n for some n, the search problem SearchR is as follows: given an x ∈ X, find a w ∈ W with (x,w) ∈ R.
A decision tree for SearchR is defined exactly as for Boolean functions; the only difference is that leaves are labelled
with elements of W, and we require that for each input x, if the unique leaf reached on x is labelled w, then (x,w) ∈ R.
The rank of the relation, Rank(R), is the minimum rank of a decision tree solving the SearchR problem.

A Boolean function f : {0, 1}n −→ {0, 1} naturally defines a complete relation R f over X = {0, 1}n and W = {0, 1},
with R f = {(x, f (x)) | x ∈ X}, and Rank(f) = Rank(R f).

3. Game Characterisation for Rank

In this section we observe that the rank of a Boolean function is characterised by the value of a Prover-Delayer
game introduced by Pudlák and Impagliazzo in [23]. As mentioned in Section 1, the game was originally described
for searchCNF problems on unsatisfiable clause sets. The appropriate analog for a Boolean function f , or its relation
R f , and even for arbitrary X-complete relations R ⊆ X ×W, is as follows:

The game is played by two players, the Prover and the Delayer, who construct a (partial) assignment ρ in rounds.
Initially, ρ is empty. In each round, the Prover queries a variable xi not set by ρ. The Delayer responds with a bit
value 0 or 1 for xi, or defers the choice to the Prover. In the latter case, Prover can choose the value for the queried
variable, and the Delayer scores one point. The game ends when there is a w ∈ W such that for all x consistent with ρ,
(x,w) ∈ R. (Thus, for a Boolean function f , the game ends when f |ρ is a constant function.) The value of the game,
Value(R), is the maximum k such that the Delayer can always score at least k points, no matter how the Prover plays.

Theorem 3.1 (implied from [23, 18, 11]). For any X-complete relation R ⊆ X × W, where X = {0, 1}n, Rank(R) =

Value(R). In particular, for a boolean function f : {0, 1}n −→ {0, 1}, Rank(f) = Value(R f).

The proof of the theorem follows from the next two lemmas.

Lemma 3.2 (implicit in [18]). For an X-complete relation R ⊆ {0, 1}n ×W, in the Prover-Delayer game, the Prover
has a strategy which restricts the Delayer’s score to at most Rank(R) points.

6

Proof. The Prover chooses a decision tree T for SearchR and starts querying variables starting from the root and
working down the tree. If the Delayer responds with a 0 or a 1, the Prover descends into the left or right subtree
respectively. If the Delayer defers the decision to Prover, then the Prover sets the variable to that value for which the
corresponding subtree has a smaller rank (breaking ties arbitrarily), and descends into that subtree.

We claim that such a “tree-based” strategy restricts the Delayer’s score to Rank(T) points. The proof is by induc-
tion on Depth(T).

1. Base Case: Depth(T) = 0. This means that ∃w ∈ W, X × {w} ⊆ R. Hence the game terminates with the empty
assignment and the Delayer scores 0.

2. Induction Step: Depth(T) ≥ 1. Let xi be the variable at the root node and T0 and T1 be the left and right subtree.
The Prover queries the variable xi. Note that for all b, Depth(Tb) ≤ Depth(T) − 1, and Tb is a decision tree for
the search problem on Ri,b , {(x,w) ∈ R | xi = b} ⊆ Xi,b ×W, where Xi,b = {x ∈ X | xi = b}.
If the Delayer responds with a bit b, then by induction, the subsequent score of the Delayer is limited to
Rank(Tb) ≤ Rank(T). Since the current round does not increase the score, the overall Delayer score is limited
to Rank(T).
If the Delayer defers the decision to Prover, the Delayer gets one point in the current round. Subsequently,
by induction, the Delayer’s score is limited to min(Rank(T0),Rank(T1)); by definition of rank, this is at most
Rank(T) − 1. So the overall Delayer score is again limited to Rank(T).

In particular, if the Prover chooses a rank-optimal tree TR, then the Delayer’s score is limited to Rank(TR) = Rank(R)
as claimed.

Lemma 3.3 (implicit in [11]). For an X-complete relation R ⊆ {0, 1}n ×W, in the Prover-Delayer game, the Delayer
has a strategy which always scores at least Rank(R) points.

Proof. The Delayer strategy is as follows: When variable xi is queried, the Delayer responds with b ∈ {0, 1} if
Rank(Ri,b) > Rank(Ri,1−b), and otherwise defers.

We show that the Delayer can always score Rank(R) points using this strategy. The proof is by induction on the
number of variables n. Note that if Rank(R) = 0, then there is nothing to prove. If Rank(R) ≥ 1, then the prover must
query at least one variable.

1. Base Case: n = 1. If Rank(R) = 1, then the prover must query the variable, and the Delayer strategy defers the
choice, scoring one point.

2. Induction Step: n > 1. Let xi be the first variable queried by the prover.
If Rank(Ri,0) = Rank(Ri,1), then the Delayer defers, scoring one point in this round. Subsequently, suppose the
Prover sets xi to b. The game is now played on Ri,b, and by induction, the Delayer can subsequently score at
least Rank(Ri,b) points. But also, because of the equality, we have Rank(R) ≤ 1 + Rank(Ri,b), as witnessed by
a decision tree that first queries xi and then uses rank-optimal trees on each branch. Hence the overall Delayer
score is at least Rank(R).
If Rank(Ri,b) > Rank(Ri,1−b), then the Delayer chooses xi = b and the subsequent game is played on Ri,b.
The subsequent (and hence overall) score is, by induction, at least Rank(Ri,b). But Rank(R) ≤ Rank(Ri,b), as
witnessed by a decision tree that first queries xi and then uses rank-optimal trees on each branch.

Lemmas 3.2 and 3.3 give us a way to prove rank upper and lower bounds for boolean functions. In a Prover-
Delayer game for R f , exhibiting a Prover strategy which restricts the Delayer to at most r points gives an upper bound
of r on Rank(f). Similarly, exhibiting a Delayer strategy which scores at least r points irrespective of the Prover
strategy shows a lower bound of r on Rank(f).

In [4], an asymmetric version of this game is defined. In each round, the Prover queries a variable x, the Delayer
specifies values p0, p1 ∈ [0, 1] adding up to 1, the Prover picks a value b, the Delayer adds log 1

pb
to his score. Let

ASym-Value denote the maximum score the Delayer can always achieve, independent of the Prover moves. Note that
ASym-Value(R) ≥ Value(R); an asymmetric-game Delayer can mimic a symmetric-game Delayer by using pb = 1 for
choice b and p0 = p1 = 1/2 for deferring. As shown in [4], for the search CNF problem, the value of this asymmetric
game is exactly the optimal leaf-size of a decision tree. We note below that this holds for the SearchR problem more
generally.

7

Proposition 3.4 (implicit in [4]). For any X-complete relation R ⊆ X × W, where X = {0, 1}n, log DTSize(R) =

ASym-Value(R). In particular, for a boolean function f : {0, 1}n −→ {0, 1}, log DTSize(f) = ASym-Value(R f).

(In [4], the bounds have log(S/2); this is because S there counts all nodes in the decision tree, while here we count
only leaves.)

Thus we have the relationship

Rank(f) = Value(R f) ≤ ASym-Value(R f) = log DTSize(f).

This relationship explains where the slack may lie in the inequalities from Proposition 2.7 relating Rank(f) and
log DTSize(f). The symmetric game focuses on the more complex subtree, ignoring the contribution from the
less complex subtree (unless both are equally complex), and thus characterizes rank. The asymmetric game takes
a weighted contribution of both subtrees and thus is able to characterize size.

4. The Rank of some natural functions

For symmetric functions, rank can be easily calculated using Proposition 2.8. In Table 1 we tabulate various
measures for some standard symmetric functions. As can be seen from the Orn and Andn functions, the Rank(f)
measure is not polynomially related with the measures Depth(f) or certificate complexity C(f).

f Depth C0 C1 C Gap Rank
0 or 1 0 0 0 0 n 0
Andn n 1 n n n − 1 1
Orn n n 1 n n − 1 1

Parityn n n n n 0 n
Maj2k 2k k k + 1 k + 1 k k

Maj2k+1 2k + 1 k + 1 k + 1 k + 1 k k + 1
Thrk

n
(k ≥ 1) n n − k + 1 k max

{
n − k + 1,

k

}
max

{
k − 1,
n − k

}
min

{
n − k + 1,

k

}

Table 1: Some simple symmetric functions and their associated complexity measures

For two composed functions that will be crucial in our discussions in Section 5, we can directly calculate the rank
as described below. (The rank can also be calculated using Theorem 3.1; see Section 9, or using Theorem 6.6, which
is much more general. We show these specific bounds here since we use them in Section 5.)

Theorem 4.1. For every n ≥ 1,

1. Rank(Tribesn,m) = Rank(Tribesdn,m) = n for m ≥ 2.
2. Rank(Andn ◦ Paritym) = n(m − 1) + 1 for m ≥ 1.

We prove this theorem by proving each of the lower and upper bounds separately in a series of lemmas below. The
lemmas use the following property about the rank function.

Proposition 4.2. (Composition of Rank): Let T be a rooted binary tree with depth ≥ 1, rank r, and with leaves
labelled by 0 and 1. Let T0,T1 be arbitrary rooted binary trees of ranks r0, r1 respectively. For b ∈ {0, 1}, attach Tb to
each leaf of T labelled b, to obtain rooted binary tree T ′ of rank r′.

1. r′ ≤ r + max{r0, r1}. Furthermore, if T is a complete binary tree, and if r0 = r1, then this is an equality;
r′ = r + r0.

2. If every non-trivial subtree (more than one leaf) of T has both a 0 leaf and a 1 leaf, then r′ ≥ r + max{r0, r1} −1.
If, furthermore, T is a complete binary tree, then this is equality when r0 , r1,

8

Proof. The upper bound on r′ follows from the definition of rank when r0 = r1, in which case it also gives equality
for complete T . When r0 , r1, it follows from Proposition 2.5(2).

For non-trivially labelled T , we establish the lower bound by induction on d = Depth(T).
In the base case d = 1, T has one 0-leaf and one 1-leaf, and r = 1. By definition of rank, r′ satisfies the claimed

inequality.
For the inductive step, let Depth(T) = k > 1. Let v be the root of T , and let T`, Tr be its left and right sub-trees

respectively, with ranks r` and rr respectively. Both Depth(T`) and Depth(Tr) are at most k − 1, and at least one of
these is exactly k − 1 ≥ 1. Also, at least one of r`, rr is non-zero.

Let T ′` be the tree obtained by replacing 0 and 1 leaves of T` by T0 and T1 respectively; let its rank be r′`. Similarly
construct T ′r , with rank r′r. Then T ′ has root v with left and right subtrees T ′` and T ′r .

If r` = 0, then r = rr and Depth(Tr) = k − 1 ≥ 1. By the induction hypothesis, rr + max{r0, r1} − 1 ≤ r′r. Since
r′ ≥ r′r, the claimed bound follows.

If rr = 0, a symmetric argument applies.
If both r`, rr are positive, then by the induction hypothesis, r` + max{r0, r1} − 1 ≤ r′` and rr + max{r0, r1} − 1 ≤ r′r.

If r` = rr then r = r` + 1, and by definition of rank, r′ ≥ 1 + min{r′`, r
′
r} ≥ r` + max{r0, r1} = r + max{r0, r1} − 1,

as claimed. On the other hand, if r` , rr, then r = max{r`, rr}, and by definition of rank, r′ ≥ max{r′`, r
′
r} ≥

max{r`, rr} + max{r0, r1} − 1 = r + max{r0, r1} − 1, as claimed.
For complete binary tree T satisfying the labelling requirements, r` = rr = r − 1. The same arguments, simplified

to this situation, show the claimed equality:

We first establish the bounds for Tribesdn,m =
∧

i∈[n]
∨

j∈[m] xi, j.

Lemma 4.3. For every n,m ≥ 1, Rank(Tribesdn,m) ≤ n.

Proof. We show the bound by giving a recursive construction and bounding the rank by induction on n. In the base
case, n = 1. Tribesd1,m = Orm, which has rank 1. For the inductive step, n > 1. For j ≤ n, let T j,m denote the
recursively constructed trees for Tribesdj,m. Take the tree T which is T1,m on variables xn, j, j ∈ [m]. Attach the tree
Tn−1,m on variables xi, j for i ∈ [n−1], j ∈ [m], to all the 1-leaves of T , to obtain Tn,m. It is straightforward to see that this
tree computes Tribesdn,m. Using Proposition 4.2 and induction, we obtain Rank(Tn,m) ≤ Rank(T1,m) + Rank(Tn−1,m) ≤
1 + (n − 1) = n.

Remark 4.4. More generally, this construction shows that Rank(Andn ◦ f) ≤ nRank(f).

Lemma 4.5. For every n ≥ 1 and m ≥ 2, Rank(Tribesdn,m) ≥ n.

Proof. We prove this by induction on n. The base case, n = 1, is straightforward: Tribesd1,m is the function Orm,
whose rank is 1.

For the inductive step, let n > 1, and consider any decision tree Q for Tribesdn,m. Without loss of generality (by
renaming variables if necessary), let x1,1 be the variable queried at the root node. Let Q0 and Q1 be the left and the
right subtrees of Q. Then Q0 computes the function Andn ◦ (Orm−1,Orm, ...,Orm), and Q1 computes Tribesdn−1,m, on
appropriate variables. For m ≥ 2, Tribesdn−1,m is a sub-function of Andn◦(Orm−1,Orm, ...,Orm), and so Proposition 2.6
implies that Rank(Q0) ≥ Rank(Andn ◦ (Orm−1,Orm, ...,Orm)) ≥ Rank(Tribesdn−1,m). By induction, Rank(Q1) ≥
Rank(Tribesdn−1.m) ≥ n − 1. Hence, by definition of rank, Rank(Q) ≥ 1 + min{Rank(Q0),Rank(Q1} ≥ n. Since this
holds for every decision tree Q for Tribesdn,m, we conclude that Rank(Tribesdn,m) ≥ n, as claimed.

Next, we establish the bounds for Andn ◦ Paritym =
∧

i∈[n]
⊕

j∈[m] xi, j. The upper bound below is slightly better
than what is implied by Remark 4.4.

Lemma 4.6. For every n,m ≥ 1, Rank(Andn ◦ Paritym) ≤ n(m − 1) + 1.

Proof. Recursing on n, we construct decision trees Tn,m for Andn ◦ Paritym, as in Lemma 4.3. By induction on n, we
bound the rank, also additionally using the fact that the rank-optimal decision tree for Paritym is a complete binary
tree.

9

Base Case: n = 1. And1 ◦ Paritym = Paritym. From Table 1, Rank(Paritym) = m; let T1,m be the optimal decision
tree computing Paritym.

Inductive Step: n > 1. For j ≤ n, let T j,m denote the recursively constructed trees for And j ◦ Paritym. Take the
tree T which is T1,m on variables xn, j, j ∈ [m]. Attach the tree Tn−1,m on variables xi, j for i ∈ [n − 1], j ∈ [m], to all the
1-leaves of T , to obtain Tn,m. It is straightforward to see that this tree computes Andn ◦ Paritym.

By induction, Rank(Tn−1,m) ≤ (n − 1)(m − 1) + 1 ≥ 1. Since we do not attach anything to the 0-leaves of T1,m (or
equivalently, we attach a rank-0 tree to these leaves), and since T1,m is a complete binary tree, the second statement in
Proposition 4.2 yields Rank(Tn,m) = Rank(T1,m) + Rank(Tn−1,m) − 1. Hence Rank(Tn,m) ≤ n(m − 1) + 1, as claimed.

Lemma 4.7. For every n,m1,m2, . . . ,mn ≥ 1, and functions g1, g2, . . . , gn each in {Paritym,¬Paritym}, Rank(Andn ◦

(g1, g2, ..., gn)) ≥ (
∑n

i=1(mi − 1)) + 1.
In particular, Rank(Andn ◦ Paritym) ≥ n(m − 1) + 1.

Proof. We proceed by induction on n. Let h be the function Andn ◦ (g1, g2, ..., gn).
Base Case: n = 1. h = g1. Note that for all functions f , Rank(f) = Rank(¬ f). So Rank(h) = Rank(Paritym1) =

m1. Inductive Step: n > 1. We proceed by induction on M =
∑n

i=1 mi.

1. Base Case: M = n. Each mi is equal to 1. So h is the conjunction of n literals on distinct variables. (A literal is
a variable or its negation.) Hence Rank(h) = Rank(Andn) = 1.

2. Inductive Step: M > n > 1. Consider any decision tree Q computing h. Without loss of generality (by renaming
variables if necessary), let x1,1 be the variable queried at the root node. Let Q0 and Q1 be the left and the right
subtrees of Q. For b ∈ {0, 1}, let g1b denote the function g1 restricted to x1,1 = b. Then Qb computes the function
Andn ◦ (g1b, g2, . . . , gn) on appropriate variables.
If m1 = 1, then the functions g10, g11 are constant functions, one 0 and the other 1. So one of Q0,Q1 is a 0-leaf,
and the other subtree computes Andn−1 ◦ (g2, ..., gn). Using induction on n, we conclude

Rank(Q) ≥ Rank(Andn−1 ◦ (g2, ..., gn)) ≥

 n∑
i=2

(mi − 1)

 + 1 =

 n∑
i=1

(mi − 1)

 + 1.

For m1 ≥ 2, {g10, g11} = {Paritym1−1,¬Paritym1−1}. So one of Q0,Q1 computes Andn ◦ (Paritym1−1, g2, ..., gn),
and the other computes Andn ◦ (¬Paritym1−1, g2, ..., gn). Using induction on M, we obtain

Rank(Q) ≥ 1 + min
b

Rank(Qb) ≥ 1 + (m1 − 2) +

 n∑
i=2

(mi − 1)

 + 1 =

 n∑
i=1

(mi − 1)

 + 1.

Since this holds for every decision tree Q for h, the induction step is proved.

5. Relation between Rank and other measures

5.1. Relating Rank to Depth and Sparsity

From Propositions 2.5 and 2.7, we know that Depth(f) is at least Rank(f). In the other direction, the And function
with rank 1 and depth n shows that Depth(f) cannot be bounded from above by any function of Rank(f) alone.
Similarly, we know from Proposition 2.3 that Depth(f) is bounded from below by log spar(f)/2, and yet, as witnessed
by the Parity function with depth n and sparsity 2 (and spar(Parity) = 1), it cannot be bounded from above by any
function of log spar(f) alone. We show in this section that a combination of these two measures does bound Depth(f)
from above. Thus, in analogy to Propositions 2.3 and 2.7, we see where Depth(f) is sandwiched:

max{Rank(f), log spar(f)/2} ≤ Depth(f) ≤ Rank(f)(1 + log spar(f))

To establish the upper bound, we first observe that subcube kill number is bounded above by rank.

Lemma 5.1. For every Boolean function f , K(f) ≤ Rank(f).

10

Proof. Observe the following property of rank, which follows from the definition: For every internal node v in a tree,
at least one of its children has rank strictly less than the rank of v. Now, let T be a rank-optimal tree for f , of rank r.
Starting from the root in T , traverse down the tree in the direction of smaller rank until a leaf is reached. Using the
above property, we see that we reach a leaf node in T at depth at most r. The variables queried on the path leading to
the leaf node, and their settings consistent with the path, give a subcube of co-dimension at most r. On this subcube,
since a decision tree leaf is reached, f becomes constant, proving the claim.

Combining the Lemma 5.1 and Theorem 2.4, we show the following.

Theorem 5.2. For every Boolean function f : {0, 1}n −→ {0, 1},

Depth(f) ≤ Rank(f)(1 + log(spar(f))) ≤ Rank(f)(1 + log(spar(f))).

The first inequality is tight as witnessed by Parity function.

Proof. Recall that spar(f) refers to the number of non-zero Fourier coefficients in the expansion of f apart from f̂ (∅).
The second inequality thus follows by definition. We prove the first inequality by induction on spar(f).

When spar(f) < 1, f is a constant function with Depth(f) = Rank(f) = 0, and the inequality holds.
Now assume that spar(f) ≥ 1. We give a recursive construction of a decision tree for f .
Choose a subcube J = (S , ρ) of minimum co-dimension |S | = K(f) on which f becomes constant. By Lemma 5.1,

|S | ≤ Rank(f). Start by querying all the variables indexed in S in any order. When the outcome of all these queries
matches ρ, the function becomes a constant and the tree terminates at this leaf. On any other outcome ρ′, the function
is restricted to the subcube J′ = (S , ρ′). Proceed recursively to build the decision tree of f�J′ which is then attached to
this leaf.

On any outcome ρ′ , ρ, we have spar(f�J′) ≤ spar(f)/2 by Theorem 2.4, and K(f�J) ≤ Rank(f�J) ≤ Rank(f)
by Lemma 5.1 and monotonicity of rank (Proposition 2.6). Thus each stage in the recursion makes at most Rank(f)
queries and halves sparsity spar. After at most 1 + log spar(f) stages, the sparsity of the restricted function drops to
below 1 and the function becomes a constant. Thus the overall depth of the entire tree is bounded by Rank(f) · (1 +

log spar(f)).

5.2. Relation between Rank and Certificate Complexity
The certificate complexity and decision tree complexity are known to be related as follows.

Proposition 5.3 ([6],[12],[25], see also Theorem 14.3 in [13]). For every boolean function f : {0, 1}n −→ {0, 1},

C(f) ≤ Depth(f) ≤ C0(f)C1(f)

Both these inequalities are tight; the first for the Or and And functions, and the second for the Tribesn,m and Tribesdn,m
functions. (For Tribesdn,m, C0(Tribesdn,m) = m, C1(Tribesdn,m) = n and Depth(Tribesdn,m) = nm, see e.g. Exercise 14.1 in
[13].)

Since Rank ≤ Depth, the same upper bound also holds for Rank as well. But it is far from tight for the Tribesn,m
function. In fact, the upper bound can be improved in general. Adapting the construction given in the proof of
Proposition 5.3 slightly, we show the following.

Lemma 5.4. For every Boolean function f : {0, 1}n −→ {0, 1},

Rank(f) ≤ (C0(f) − 1)(C1(f) − 1) + 1

Moreover, the inequality is tight as witnessed by And and Or functions.

Proof. The inequality holds trivially for constant functions since for such functions, Rank = C0 = C1 = 0. So assume
f is not constant. The proof is by induction on C1(f).

Base Case: C1(f) = 1. Let S ⊆ [n] be the set of indices that are 1-certificates for some a ∈ f −1(1). We construct
a decision tree by querying all the variables indexed in S . For each such query, one outcome immediately leads
to a 1-leaf (by definition of certificate), and we continue along the other outcome. If all variables indexed in S are

11

queried without reaching a 1-leaf, the restricted function is 0 everywhere and so we create a 0-leaf. This gives a rank-1
decision tree computing f .

For the inductive step, assume Rank(g) ≤ (C0(g) − 1)(C1(g) − 1) + 1 is true for all g with C1(g) ≤ k. Let f satisfy
C1(f) = k + 1. Pick an a ∈ f −1(0) and a mimimum-size 0-certificate S for a. Without loss of generality, assume that
S = {x1, x2, . . . , x`} for some ` = |S | ≤ C0(f). Now, take a complete decision tree T0 of depth l on these l variables.
Each of its leaves corresponds to the unique input c = (c1, c2, ..., cl) ∈ {0, 1}l reaching this leaf. At each such leaf,
attach a minimal rank decision tree Tc for the subfunction fc , f (c1, c2, ..., cl, xl+1, ..., xn). This gives a decision tree
T for f . We now analyse its rank.

For at least one input c, we know that fc is the constant function 0. For all leaves where fc is not 0, C0(fc) ≤ C0(f)
since certificate size cannot increase by assigning some variables. Further, C1(fc) ≤ C1(f) − 1; this is because
of the well-known fact (see e.g. [13]) that every pair of a 0-certificate and a 1-certificate for f have at least one
common variable, and T0 has queried all variables from a 0-certificate. Hence, by induction, for each c with fc , 0,
Rank(Tc) ≤ (C0(fc)−1)(k−1)+1 ≤ (C0(f)−1)(k−1)+1. Thus T is obtained from a rank-` tree T0 (with ` ≤ C0(f)) by
attaching a tree of rank 0 to at least one leaf, and attaching trees of rank at most (C0(f)−1)(k−1)+1 to all leaves. From
Proposition 4.2, we conclude that Rank(f) ≤ Rank(T) ≤ ((C0(f)−1)(k−1) + 1) + (l−1) ≤ (C0(f)−1)(C1(f)−1) + 1.

From Theorem 4.1, we see that the lower bound on Depth in Proposition 5.3 does not hold for Rank; for m > n,
Rank(Tribesdn,m) = n < m = C(Tribesdn,m). However, min{C0(Tribesdn,m),C1(Tribesdn,m)} = n = Rank(Tribesdn,m).
Further, for all the functions listed in Table 1, Rank(f) is at least as large as min{C0(f),C1(f)}. However, even this is
not a lower bound in general.

Lemma 5.5. min{C0(f),C1(f)} is not a lower bound on Rank(f); for the symmetric function f = Majn ∨ Parityn,
when n > 4, Rank(f) < min{C0(f),C1(f)}.

Proof. Let f be the function Majn ∨ Parityn, for n > 4. Then f (0n) = 0 and C0(f , 0n) = n, and f (10n−1) = 1 and
C1(f , 10n−1) = n. Also, f is symmetric, with Gap(f) = n/2, so by Proposition 2.8, Rank(f) = n/2.

The average certificate complexity is also not directly related to rank.

Lemma 5.6. Average certificate complexity is neither an upper bound nor a lower bound on the rank of a function;
there exist functions f and g, such that Rank(f) < Cavg(f) and Cavg(g) < Rank(g).

Proof. Let f be the Andn function for n ≥ 2; we know that Rank(f) = 1. Since the 1-certificate has length n and
all minimal 0-certificates have length 0, the average certificate complexity of f is Cavg(f) = 2−n.n + (1 − 2−n).1 =

1 + 2−n(n − 1).
Consider g = Tribesdn,2 for n > 2. By Theorem 4.1, Rank(g) = n. Since |g−1(1)| = 3n and each minimal 1-certificate

has length n, and since |g−1(0)| = 4n − 3n and each minimal 0-certificate has length 2, we see that

Cavg(g) =

(
3
4

)n

· n +

[
1 −

(
3
4

)n]
· 2 < n = Rank(g).

For a larger gap between Rank and Cavg, consider the function h = Andn ◦Parityn. From Theorem 4.1, Rank(h) =

n(n − 1) + 1. There are 2(n−1)n 1-inputs, and all the 1-certificates have length n2. Also, all minimal 0-certificates have
length n. Hence Cavg(h) = 2−nn2 + (1 − 2−n)n = n + o(1).

What can be shown in terms of certificate complexity and rank is the following:

Lemma 5.7. For every Boolean function f , Cmin(f) ≤ Rank(f). This is tight for Orn.

Proof. Let T be a rank-optimal decision tree for f . Since the variables queried in any root-to-leaf path in T form
a 0 or 1-certificate for f , we know that the depth of each leaf in T must be at least Cmin(f). By Proposition 2.5(3),
Rank(f) = Rank(T) ≥ Cmin(f).

Lemma 5.4 and Lemma 5.7 give these bounds sandwiching Rank(f):

12

Theorem 5.8. Cmin(f) ≤ Rank(f) ≤ (C0(f) − 1)(C1(f) − 1) + 1 ≤ (C(f) − 1)2 + 1.

As mentioned in Proposition 2.8, for symmetric functions the rank is completely characterised in terms of Gap
of f . How does Gap relate to certificate complexity for such functions? It turns out that certificate complexity is
characterized not by Gap but by Gapmin. Using this relation, the upper bound on Rank(f) from Lemma 5.4 can be
improved for symmetric functions to C(f).

Lemma 5.9. For every symmetric Boolean function f on n variables, C(f) = n − Gapmin(f) and n − C(f) + 1 ≤
Rank(f) ≤ C(f). Both the inequalities on rank are tight for Maj2k+1.

Proof. We first show C(f) = n − Gapmin(f). Consider any interval [a, b] such that fa−1 , fa = fa+1 = ... = fb , fb+1.
Let x be any input with Hamming weight in the interval [a, b]. We show that C(f , x) = n − (b − a).

1. Pick any S ⊆ [n] containing exactly a bit positions where x is 1, and exactly n − b bit positions where x is 0.
Any y agreeing with x on S has Hamming weight in [a, b], and hence f (y) = f (x). Thus S is a certificate for x.
Hence C(f , x) ≤ n − (b − a).

2. Let S ⊆ [n] be any certificate for x. Suppose S contains fewer than a bit positions where x is 1. Then there is an
input y that agrees with x on S and has Hamming weight exactly a − 1. (Flip some of the 1s from x that are not
indexed in S .) So f (y) , f (x), contradicting the fact that S is a certificate for x. Similarly, if S contains fewer
than n − b bit positions where x is 0, then there is an input z that agrees with x on S and has Hamming weight
exactly b + 1. So f (z) , f (x), contradicting the fact that S is a certificate for x.
Thus any certificate for x must have at least a + (n − b) positions; hence C(f , x) ≥ n − (b − a).

Since the argument above works for any interval [a, b] where f is constant, we conclude that C(f) = n − Gapmin(f).
Next, observe that Gap(f) + Gapmin(f) ≤ n − 1. Hence,

n − C(f) + 1 = Gapmin(f) + 1 ≤ n −Gap(f) = Rank(f) ≤ n − Gapmin(f) = C(f).

As seen from Table 1, these bounds on Rank are tight for Maj2k+1.

Even for the (non-symmetric) functions in Theorem 4.1, Rank(f) ≤ C(f). However, this is not true in general.

Lemma 5.10. Certificate Complexity does not always bound Rank from above; for k ≥ 1 and n = 4k the function
f = (And2 ◦ Or2)⊗k on n variables has Rank(f) = Ω(C(f)2).

This lemma shows that the relation between rank and certificate complexity (from Lemma 5.4) is optimal upto constant
factors. The proof of the lemma is deferred to the end of Section 7.1, before which we develop techniques to bound
the rank of composed functions.

6. Rank of Composed and Iterated Composed functions

In this section, we study the rank for composed functions. For composed functions, f ◦g, decision tree complexity
Depth is known to behave very nicely.

Proposition 6.1 ([21]). For Boolean functions f , g, Depth(f ◦ g) = Depth(f)Depth(g).

We want to explore how far something similar can be deduced about Rank(f ◦g). The first thing to note is that a direct
analogue in terms of Rank alone is ruled out.

Lemma 6.2. For general Boolean functions f and g, Rank(f ◦ g) cannot be bounded by any function of Rank(f) and
Rank(g) alone.

Proof. Let f = Andn and g = Orn. Then Rank(f) = Rank(g) = 1. But Rank(f ◦ g) = Rank(Tribesdn) = n, as seen in
Theorem 4.1.

13

For f ◦ g, let T f , Tg be decision trees for f , g respectively. One way to construct a decision tree for f ◦ g is to
start with T f , inflate each internal node u of T f into a copy of Tg on the appropriate inputs, and attach the left and the
right subtree of u as appropriate at the leaves of this copy of Tg. By Proposition 6.1, the decision tree thus obtained
for f ◦ g is optimal for Depth if one start with depth-optimal trees T f and Tg for f and g respectively. In terms of
rank, we can also show that the rank of the decision tree so constructed is bounded above by Depth(T f)Rank(Tg) =

Depthw(f , [r, r, . . . , r]), where r = Rank(Tg). (This is the construction used in the proofs of Lemmas 4.3 and 4.6,
where further properties of the Parity function are used to show that the resulting tree’s rank is even smaller than
Depth(f)Rank(g).) In fact, we show below (Theorem 6.3) that this holds more generally, when different functions are
used in the composition. While this is a relatively straightforward generalisation here, it is necessary to consider such
compositions for the lower bound we establish further on in this section.

Theorem 6.3. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for n-variate non-constant
boolean function f ,

Rank(f ◦ (g1, g2, ..., gn)) ≤ Depthw(f , [r1, r2, ..., rn]).

Proof. Let h denote the function f ◦ (g1, g2, ..., gn). For i ∈ [n], let mi be the arity of gi. We call xi,1, xi,2, . . . , xi,mi the
ith block of variables of h; gi is evaluated on this block. Let T f be any decision tree for f . For each i ∈ [n], let Tgi be
a rank-optimal tree for gi. Consider the following recursive construction of a decision tree Th for h.

1. Base Case: Depth(T f) = 0. Then f and h are the same constant function, so set Th = T f .
2. Recursion Step: Depth(T f) ≥ 1. Let xi be the variable queried at the root node of T f , and let T0 and T1 be the

left and the right subtree of T f , computing functions f0, f1 respectively. For notational convenience, we still
view f0, f1 as functions on n variables, although they do not depend on their ith variable. Recursively construct,
for b ∈ {0, 1}, the trees T ′b computing fb ◦ (g1, . . . , gi−1, b, gi+1, . . . , gn) on the variables xk,` for k , i. Starting
with the tree Tgi on the ith block of variables, attach tree T ′b to each leaf labelled b to obtain the tree Th.

From the construction, it is obvious that Th is a decision tree for f ◦ (g1, . . . , gn). It remains to analyse the rank of Th.
Proceeding by induction on Depth(T f), we show that Rank(Th) ≤ Dw(T f , [r1, r2, ..., rn]).

1. Base Case: Depth(T f) = 0. Then Th = T f , so Rank(Th) = Dw(T f , [r1, r2, ..., rn]) = 0.
2. Induction: Depth(T f) ≥ 1.

Rank(Th) ≤ Rank(Tgi) + max{Rank(T ′0),Rank(T ′1)} (by Proposition 4.2)
= ri + max

b∈{0,1}
{Rank(T ′b)}

≤ ri + max
b∈{0,1}

{Dw(Tb, [r1, r2, ..., rn])} (by induction)

= Dw(T f , [r1, r2, ..., rn]) by definition of Dw

Picking T f to be a tree for f that is optimal with respect to weights [r1, r2, ..., rn] , we obtain Rank(h) ≤ Rank(Th) ≤
Dw(T f , [r1, r2, ..., rn]) = Dw(f , [r1, r2, ..., rn]).

The really interesting question, however, is whether we can show a good lower bound for the rank of a composed
function. This will help us understand how good is the upper bound in Theorem 6.3. To begin with, note that for non-
constant Boolean functions f , g, both f and g are sub-functions of f ◦ g. Hence Proposition 2.6 implies the following.

Proposition 6.4. For non-constant boolean functions f , g,

Rank(f ◦ g) ≥ max{Rank(f),Rank(g)}.

A better lower bound in terms of weighted depth complexity of f is given below. This generalises the lower
bounds from Lemmas 4.5 and 4.7. The proofs of those lemmas crucially used nice symmetry properties of the inner
function, whereas the bound below applies for any non-constant inner function. It is significantly weaker than the
bound from Lemma 4.5 but matches that from Lemma 4.7.

14

Theorem 6.5. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for n-variate non-constant
boolean function f ,

Rank(f ◦ (g1, g2, ..., gn)) ≥ Depthw(f , [r1 − 1, r2 − 1, ..., rn − 1]) + 1
≥ Depthw(f , [r1, r2, ..., rn]) − (n − 1).

Proof. The second inequality above is straightforward: let T be a decision tree for f that is optimal with respect to
weights r1−1, . . . , rn−1. Since T can be assumed to be reduced, repeated application of Fact 2.1 shows that the depth
of T with respect to weights r1, . . . , rn increases by at most n. Thus Depthw(f , [r1, . . . , rn]) ≤ Depthw(T, [r1, . . . , rn]) ≤
Depthw(T, [r1 − 1, . . . , rn − 1]) + n = Depthw(f , [r1 − 1, . . . , rn − 1]) + n, giving the claimed inequality.

We now turn our attention to the first inequality, which is not so straightforward. We prove it by induction on n.
Let h denote the function f ◦ (g1, g2, ..., gn). For i ∈ [n], let mi be the arity of gi. We call xi,1, xi,2, . . . , xi,mi the ith block
of variables of h; gi is evaluated on this block.

In the base case, n = 1. Since f is non-constant, f can either be x or ¬x; accordingly, h is either g1 or ¬g1. So
Dw(f , [r1 − 1]) = r1 − 1 and Rank(h) = Rank(g1) = r1, and the inequality holds.

For the inductive step, when n > 1, we proceed by induction on M =
∑n

i=1 mi.
In the base case, M = n, and each mi is equal to 1. Since all gi’s are non-constant, ri = 1 for all i. So Dw(f , [r1 −

1, r2 − 1, ..., rn − 1]) + 1 = Dw(f , [0, 0, ..., 0]) + 1 = 1. Since all ri’s are 1, each gi’s is either xi,1 or ¬xi,1, Thus h is the
same as f upto renaming of the literals. Hence Rank(h) = Rank(f) ≥ 1.

For the inductive step, M > n > 1. Take a rank-optimal decision tree Th for h. We want to show that Depthw(f , [r1−

1, . . . , rn − 1]) ≤ Rank(Th) − 1. Without loss of generality, let x1,1 be the variable queried at the root. Let T0 and T1
be the left and the right subtree of Th. For b ∈ {0, 1}, let gb

1 be the subfunction of g1 when x1,1 is set to b. Note
that Tb computes hb , f ◦ (gb

1, g2, ..., gn), a function on M − 1 variables. We would like to use induction to deduce
information about Rank(Tb). However, gb

1 may be a constant function, and then induction does not apply. So we do
a case analysis on whether or not g0

1 and g1
1 are constant functions; this case analysis is lengthy and tedious but most

cases are straightforward.

• Case 1: Both g0
1 and g1

1 are constant functions. Since g1 is non-constant, g0
1 , g1

1, and r1 = Rank(g1) = 1.
Assume that g0

1 = 0 and g1
1 = 1; the argument for the other case is identical. For b ∈ {0, 1}, let fb be the function

f (b, x2, . . . , xn); then hb = fb ◦ (g2, . . . , gn). View fb as functions on n − 1 variables.

– Case 1a: Both f0 and f1 are constant functions. Then f is either x1 or ¬x1, so Depthw(f , [r1 − 1, r2 −

1, ..., rn − 1]) = Depthw(f , [0, r2 − 1, ..., rn − 1]) = 0. Also, in this case, h is either x1,1 or ¬x1,1, so
Rank(h) = 1. Hence the inequality holds.

– Case 1b: Exactly one of f0 and f1 is a constant function; without loss of generality, let f0 be a constant
function. First, observe that for any weights w2, . . . ,wn, Dw(f , [0,w2, ...,wn]) ≤ Dw(f1, [w2, ...,wn]): we
can obtain a decision tree for f witnessing this by first querying x1, making the x1 = 0 child a leaf labeled
f0, and attaching the optimal tree for f1 on the x1 = 1 branch. Second, note that since f1 and all gi are
non-constant, so is h1. Now

Rank(h) = Rank(h1) since Rank(h0) = 0
≥ Dw(f1, [r2 − 1, ..., rn − 1]) + 1 by induction hypothesis on n

≥ Dw(f , [0, r2 − 1, ..., rn − 1]) + 1 by first observation above
= Dw(f , [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since r1 = 1

– Case 1c: Both f0 and f1 are non-constant functions.

Rank(h) ≥ max(Rank(h0),Rank(h1))
≥ max

b∈{0,1}
{Dw(fb, [r2 − 1, ..., rn − 1])} + 1 by induction hypothesis on n

≥ Dw(f , [0, r2 − 1, ..., rn − 1]) + 1 by def. of weighted depth
of a tree querying x1 first

= Dw(f , [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since r1 = 1

15

• Case 2: One of g0
1 and g1

1 is a constant function; assume without loss of generality that g0
1 be constant. In this

case, we can conclude that Rank(g1) = Rank(g1
1): Rank(g1

1) ≤ Rank(g1) by Proposition 2.6, and Rank(g1) ≤
Rank(g1

1) as witnessed by a decision tree for g1 that queries x1,1 first, sets the x1,1 = 0 branch to a leaf labeled
g0

1, and attaches an optimal tree for g1
1 on the other branch. Now

Rank(h) ≥ Rank(h1)

≥ Dw(f , [Rank(g1
1) − 1, r2 − 1, ..., rn − 1]) + 1 by induction on M

= Dw(f , [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since Rank(g1
1) = Rank(g1)

• Case 3: Both g0
1 and g1

1 are non-constant functions. Let rb
1 = Rank(gb

1) ≥ 1. A decision tree for g1 that queries
x1,1 first and then uses optimal trees for g0

1 and g1
1 has rank R ≥ r1 and witnesses that 1 + max{r0

1, r
1
1} ≥ R ≥ r1.

(Note that R may be more than r1, since a rank-optimal tree for g1 may not query x1,1 first.)

– Case 3a: maxb{rb
1} = r1 − 1. Then R = 1 + max{r0

1, r
1
1}, which can only happen if r0

1 = r1
1, and hence

r0
1 = r1

1 = r1 − 1. We can further conclude that r1 ≥ 2. Indeed, if r1 = 1, then r1 − 1 = r0
1 = r1

1 = 0,
contradicting the fact that we are in Case 3. For b ∈ {0, 1},

Rank(hb) = Rank(f ◦ (gb
1, g2, . . . , gn))

≥ Depthw(f , [rb
1 − 1, r2 − 1, . . . , rn − 1]) + 1 by induction on M

= Depthw(f , [r1 − 2, r2 − 1, . . . , rn − 1]) + 1 since r1 − 1 = rb
1.

Hence Rank(h) ≥ 1 + min
b

Rank(hb)

≥ Depthw(f , [r1 − 2, r2 − 1, . . . , rn − 1]) + 2 derivation above
≥ Depthw(f , [r1 − 1, r2 − 1, . . . , rn − 1]) + 1 by Fact 2.1

– Case 3b: maxb{rb
1} > r1 − 1. So maxb{rb

1} ≥ r1.

Rank(h) ≥ max
b

Rank(hb)

≥ max
b

Depthw(f , [rb
1 − 1, r2 − 1, . . . , rn − 1]) + 1 by induction on M

≥ Depthw(f , [r1 − 1, r2 − 1, . . . , rn − 1]) + 1 since max
b
{rb

1} ≥ r1

This completes the inductive step for M > n > 1 and completes the entire proof.

From Theorems 4.1, 6.3 and 6.5, we obtain the following:

Theorem 6.6. For non-constant boolean functions f , g,

Depth(f)(Rank(g) − 1) + 1 ≤ Rank(f ◦ g) ≤ Depth(f)Rank(g).

Both inequalities are tight; the first for Andn ◦ Paritym and the second for Tribesn and Tribesdn.

It is worth noting that in the above bounds, the role of Rank and Depth cannot be exchanged. With f = Andn

and g = Parityn, Rank(f)Depth(g) = n < n(n − 1) + 1 ≤ Rank(f ◦ g), and Rank(g ◦ f) ≤ n < n(n − 1) + 1 =

Rank(g)(Depth(f) − 1) + 1 = Depth(f)(Rank(g) − 1) + 1.
Since any non-constant symmetric function is evasive (Proposition 2.2), from Theorems 6.3 and 6.5, we obtain

the following:

Corollary 6.7. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for n-variate symmetric non-
constant booolean function f , ∑

i

ri − (n − 1) ≤ Rank(f ◦ (g1, g2, ..., gn)) ≤
∑

i

ri.

16

For iterated composed functions, we obtain the following corollary.

Corollary 6.8. For k ≥ 1 and non-constant boolean functions f ,

Depth(f)k−1(Rank(f) − 1) + 1 ≤ Rank(f ⊗k) ≤ Depth(f)k−1Rank(f).

Proof. The result follows from Theorem 6.6 and application of induction on k. The base case, k = 1, is straightfor-
ward. For the induction step, k > 1, applying the recursive definition of iterated composed functions, we have

Rank(f ⊗k) = Rank(f ◦ f ⊗(k−1))

≥ Depth(f)(Rank(f ⊗(k−1)) − 1) + 1 by Theorem 6.6

≥ Depth(f)(Depth(f)k−2(Rank(f) − 1)) + 1 by induction on k

= Depth(f)k−1(Rank(f) − 1) + 1.

Rank(f ⊗k) = Rank(f ◦ f ⊗(k−1))

≤ Depth(f)Rank(f ⊗(k−1)) by Theorem 6.6

≤ Depth(f)(Depth(f)k−2(Rank(f)) by induction on k

= Depth(f)k−1Rank(f).

7. Applications

In this section, we give some applications of our results and methods. We first show how to obtain tight lower
bounds on log DTSize for composed functions using the rank lower bound from Theorem 6.6. Next, we relate rank
to query complexity in more general decision trees, namely Conj decision trees, and show that rank (for ordinary
decision trees) characterizes query complexity in this model up to log n factors.

7.1. Tight lower bounds for log DTSize for Composed functions

It was shown in [9] that every boolean function f in n variables has a decision tree of size at most exp(O(log n log2 N(f)),
where N(f) is the total number of monomials in the minimal DNF for f and ¬ f . Later, in [14], this relation was proved
to be optimal up to log n factor in the exponent. To prove this, the authors of [14] showed that iterated And2 ◦ Or2
and iterated Maj3 on n = 4k and n = 3k variables require decision trees of size exp(Ω(loglog2 3 N)) and exp(Ω(log2 N))
respectively. It is easy to show that N((And2 ◦ Or2)⊗k) and N(Maj⊗k

3) is exp(O(n1/ log2 3)) and exp(O(n1/2)) respec-
tively. So showing optimality essentially boiled down to showing that the decision tree size of iterated And2 ◦ Or2
and iterated Maj3 on n variables is exponential exp(Ω(n)). This was established in [14] using spectral methods. We
recover these size lower bounds using our rank lower bound for composed functions.

Corollary 7.1. For k ≥ 1 and n = 3k,

log DTSize(Maj⊗k
3) ≥ Rank(Maj⊗k

3) ≥ n/3 + 1.

For k ≥ 1 and n = 4k,

log DTSize((And2 ◦ Or2)⊗k) ≥ Rank((And2 ◦ Or2)⊗k) ≥ n/4 + 1.

Proof. The Maj3 function has depth 3 and rank 2. Applying Corollary 6.8, we see that Rank(Maj⊗k
3) ≥ 3k−1 + 1 =

n/3 + 1. Since rank is a lower bound on log DTSize (Proposition 2.7), we get the desired size lower bound for iterated
Maj3.

The And2 ◦ Or2 function has depth 4 and rank 2. Again applying Corollary 6.8, we get log DTSize((And2 ◦

Or2)⊗k) ≥ Rank((And2 ◦ Or2)⊗k) ≥ 4k−1 + 1 = n/4 + 1, giving the size lower bound for iterated And2 ◦ Or2.

17

The size lower bound for iterated And2 ◦ Or2 on n variables from [14], in conjunction with the rank-size relation
from Proposition 2.7, implies that the rank of the iterated function is Ω(n). Corollary 7.1 demonstrates that these tight
rank and size lower bounds can be recovered simultaneously using Corollary 6.8.

Recently (after the preliminary version of our work appeared), in [7], the rank of the iterated And2 ◦Or2 function
on n variables was revisited, in the context of separating rank from randomised rank. Using the Prover-Delayer game-
based characterisation of rank from Theorem 3.1, it was shown there that this function has rank exactly (n + 2)/3.
While an Ω(n) bound is now easy to obtain as in Corollary 7.1, getting the exact constants required significantly more
work.

The arguments given in [14] and [7] are tailored to the specific functions being considered, and do not work
in general. On the other hand, our rank lower bound from Theorem 6.6 implies size lower bounds for composed
functions in general. For completeness, we state our rank lower bound of Theorem 6.6 in terms of size.

Corollary 7.2. For k ≥ 1 and non-constant boolean functions f and g,

log DTSize(f ◦ g) ≥ Depth(f)(Rank(g) − 1) + 1.

log DTSize(f ⊗k) ≥ Depth(f)k−1(Rank(f) − 1) + 1.

Using Corollary 7.1, we can now complete the proof of Lemma 5.10.

Proof. (of Lemma 5.10) From Corollary 7.1, we know that Rank((And2 ◦ Or2)⊗k) ≥ n/4 + 1.
It is easy to see that C0((And2◦Or2)) = C1((And2◦Or2)) = 2, and that for k > 1, C0((And2◦Or2)⊗k) = 2C0((And2◦

Or2)⊗k−1) and C1((And2◦Or2)⊗k) = 2C1((And2◦Or2)⊗k−1). Thus C0((And2◦Or2)⊗k) = C1((And2◦Or2)⊗k) = 2k =
√

n.
Hence, for f = (And2 ◦ Or2)⊗k, Rank(f) ≥ C0

2
C1
2 + 1 = C(f)2/4 + 1.

7.2. Conj decision trees
In this section, we consider a generalization of the ordinary decision tree model, namely Conj decision trees. In

the Conj decision tree model, each query is a conjunction of literals, where a literal is a variable or its negation. (In
[15], such a tree where each conjunction involves at most k literals is called a k-decision tree; thus in that notation
these are n-decision trees. A 1-decision tree is a simple decision tree.) A model essentially equivalent to Conj decision
trees, (And,Or)-decision trees, was investigated in [2] for determining the complexity of Thrk

n functions. (And,Or)-
decision trees query either an And of a subset of variables or an Or of a subset of variables. It was noted in [2] that
the (And,Or) query model is related to the computation using Ethernet channels, and a tight query lower bound was
shown in this model for Thrk

n functions for all k ≥ 1. It is easy to see that the (And,Or)-query model is equivalent to
the Conj query model upto a factor of 2. Let Depth∧̄ and Depth∧,∨(f) denote the query complexity of function f in
Conj and (And,Or) query model respectively. Then

Proposition 7.3. For every boolean functions f ,

Depth∧̄(f) ≤ Depth∧,∨(f) ≤ 2Depth∧̄(f).

Such a connection is not obvious for the rank of Conj and (And,Or) decision trees.
Recently, in [17], a monotone version of Conj decision trees called And decision trees is studied, where queries

are restricted to And of variables, not literals. To emphasize the difference, we refer to these trees as monotone And
trees. Understanding monotone And decision trees in [17] led to the resolution of the log-rank conjecture for the
class of And functions (any function composed with the 2-bit And function), up to a log n factor. As remarked in
[16], understanding these more general decision tree models has shed new light on central topics in communication
complexity, including restricted cases of the log-rank conjecture and the query-to-communication lifting methodology.

In this section, we show that simple decision tree rank characterizes the query complexity in the Conj decision
tree model, up to a log n factor. Formally,

Theorem 7.4. For every boolean functions f ,

Rank(f) ≤ Depth∧̄(f) ≤ 4 log DTSize(f) ≤ 4Rank(f) log
(

en
Rank(f)

)
.

Consequently, if Rank(f) = Θ(n), then so is Depth∧̄(f).

18

Proof. First, we show that Rank(f) ≤ Depth∧̄(f). This is the straightforward construction and its analysis. Let T f be
a depth-optimal Conj decision tree for f of depth d. We give a recursive construction of an ordinary decision tree T
for f of rank at most d. In the base case, when Depth(T f) = 0, set T = T f . In the recursion Step, Depth(T f) ≥ 1.
Let Q be the literal-conjunction queried at the root node of T f , and let T0 and T1 be the left and right subtree of T f ,
computing f0 and f1 respectively. Recursively construct ordinary decision trees T ′0 and T ′1 for f0 and f1. Let TQ be
the ordinary decision tree obtained by querying the variables in Q one by one to evaluate the query Q. Note that TQ

evaluates the And function on literals in Q; hence it has rank 1, and has exactly one leaf labelled 1 . Attach T ′0 to each
leaf labelled 0 in TQ, and T ′1 to the unique leaf labelled 1 in TQ, to obtain T ′. Since f0 can depend non-trivially on the
variables in Q, the tree T ′0 may query these variables. However, these queries are redundant at the leaves of TQ. So
process T ′ to remove any double queries, obtaining the reduced decision tree T .

From the construction, it is clear that T evaluates f . To analyse the rank of T , proceed by induction on Depth(T f).

1. Base Case: Depth(T f) = 0. Trivially true as T = T f with rank 0.
2. Induction: Depth(T f) ≥ 1.

Rank(T) ≤ Rank(TQ) + max{Rank(T ′0),Rank(T ′1)} (by Proposition 4.2)
= 1 + max

b∈{0,1}
{Rank(T ′b)}

≤ 1 + max
b∈{0,1}

{Depth∧̄(fb)} (by induction)

≤ 1 + (Depth(T f) − 1) = Depth(T f).

Next, we show that Depth∧̄(f) ≤ log DTSize(f). The main idea is that an ordinary decision tree of size s can be
balanced using Conj queries into a Conj decision tree of depth 4 log s.

Let T f be a size-optimal simple tree for f of size s. Associate with each node v of T f a subcube Jv containing
all the inputs that reach node v. The root node has the whole subcube {0, 1}n. For a node v, Jv is defined by the
variables queried on the path leading to the node v. The recursive construction of a Conj decision tree T of depth at
most 2 log3/2 s proceeds as follows. If s = 1, set T = T f . Otherwise, in the recursion step, s > 1. Obtain a node
v in T f such that number of leaves in the subtree rooted at v, denoted by Tv, in the range (s/3, 2s/3]. (Such a node
necessarily exists, and can be found by starting at the root and traversing down to the child node with more leaves
until the number of leaves in the subtree rooted at the current node satisfies the condition.) Let Jv = (S , ρ) be the
subcube associated with v, and let Q be the Conj query testing membership in Jv; Q = (

∧
i∈S :ρ(i)=1 xi)(

∧
i∈S :ρ(i)=0 ¬xi).

Note that v cannot be the root node of T f . Let u be the sibling of v in T f , and let Tu be the subtree rooted at u. Let
w be the parent of v and u in T f . Let T ′f be the tree obtained from T f by removing the entire subtree Tv, removing the
query at w, and attaching subtree Tu at w. For all inputs not in Jv, T ′f and T f compute the same value.

T starts by querying Q. If Q evaluates to 1, proceed by recursively constructing the Conj decision tree for Tv. If
Q evaluates to 0, proceed by recursively constructing the Conj decision tree for T ′f .

The correctness of T is obvious. It remains to estimate the depth of T . Let D(s) be the number of queries made by
the constructed Conj decision tree. By construction, we have D(s) ≤ 1+ D(2s/3) giving us D(s) ≤ 2 log3/2 s ≤ 4 log s,
thereby proving our claim.

The last inequality about size and rank, log DTSize(f) ≤ Rank(f) log
(

en
Rank(f)

)
, comes from Proposition 2.7.

8. Tightness of Rank and Size relation for Tribes

In Proposition 2.7, we saw a relation between rank and size. The relationship is essentially tight. As remarked
there, whenever Rank(f) = Ω(n), the relation is tight. The function f = Parityn is one such function that witnesses
the tightness of both inequalities. Since Rank(Parity) = n, Proposition 2.7 tells us that log DTSize(Parity) lies in the
range [n, n log e], and we know that log DTSize(Parity) = n.

For the Tribesn function, which has N = n2 variables, we know from Theorem 4.1 that Rank(Tribesn) = n ∈ o(N).
Thus Proposition 2.7 tells us that log DTSize(Tribesn) lies in the range [n, n log(en)]. (See also Exercise 14.9 [13]
for a direct argument showing n ≤ log DTSize(Tribesn)). But that still leaves a (log(en))-factor gap between the two
quantities. We show that the true value is closer to the upper end. To do this, we establish a stronger size lower bound
for decision trees computing Tribesdn.

19

Lemma 8.1. For every n,m ≥ 1, every decision tree for Tribesdn,m has at least mn 1-leaves and n 0-leaves.

Proof. Recall that Tribesdn,m =
∧

i∈[n]
∨

j∈[m] xi, j. We call xi,1, xi,2, . . . , xi,m the ith block of variables. We consider two
special kinds of input assignments: 1-inputs of minimum Hamming weight, call this set S 1, and 0-inputs of maximum
Hamming weight, call this set S 0. Each a ∈ S 1 has exactly one 1 in each block; hence |S 1| = mn. Each b ∈ S 0 has
exactly m zeroes, all in a single block; hence |S 0| = n. We show that in any decision tree T for Tribesdn,m, all the inputs
in S = S 1 ∪ S 0 go to pairwise distinct leaves. Since all inputs in S 1 must go to 1-leaves of T , and all inputs of S 0
must go to 0-leaves, this will prove the claimed statement.

Let a, b be distinct inputs in S 1. Then there is some block i ∈ [n], where they differ. In particular there is a unique
j ∈ [m] where ai, j = 1, and at this position, bi, j = 0. The decision tree T must query variable xi, j on the path followed
by a, since otherwise it will reach the same 1-leaf on input a′ that differs from a at only this position, contradicting
the fact that Tribesdn,m(a′) = 0. Since bi, j = 0, the path followed in T along b will diverge from a at this query, if it has
not already diverged before that. So a, b reach different 1-leaves.

Let a, b be distinct inputs in S 0. Let i be the unique block where a has all zeroes; b has all 1s in this block. On the
path followed by a, T must query all variables from this block, since otherwise it will reach the same 0-leaf on input
a′′ that differs from a only at an unqueried position in block i, contradicting Tribesdn,m(a′′) = 1. Since a and b differ
everywhere on this block, b does not follow the same path as a, so they go to different leaves of T .

We thus conclude that the second inequality in Proposition 2.7 is also asymptotically tight for the Tribesdn function.
The size lower bound from Lemma 8.1 can also be obtained by specifying a good Delayer strategy in the asym-

metric Prover-Delayer game and invoking Proposition 3.4.; see Section 9.

9. Proofs using Prover-Delayer Games

In this section, we give Prover-Delayer Game based proofs of our results.

Prover strategy for Tribesdn,m, proving Lemma 4.3. We give a Prover strategy which restricts the Delayer to n points,
proving the upper bound on Rank(Tribesdn,m).

Whenever the Delayer defers a decision, the Prover chooses 1 for the queried variable.
The Prover queries variables xi, j in row-major order. In each row of variables, the Prover queries variables until

some variable is set to 1 (either by the Delayer or by the Prover). Once a variable is set to 1, the Prover moves to the
next row of variables.

This Prover strategy allows the Delayer to defer a decision for at most one variable per row; hence the Delayer’s
score at the end is at most n.

Delayer strategy for Tribesdn,m, proving Lemma 4.5. We give a Delayer strategy which always scores at least n points,
proving the lower bound.

On a query xi, j, the Delayer defers the decision to the Prover unless all other variables in row i have already been
queried. In that case, Delayer responds with a 1.

Note that with this strategy, the Delayer ensures that the game ends with a function value 1. (No row has all
variables set to 0.) Observe that to certify a 1-input of the function, the Prover must query at least one variable in each
row. Since m ≥ 2, the Delayer gets to score at least one point per row, and thus has a score of at least n at the end of
the game.

Prover strategy for Andn ◦ Paritym, proving Lemma 4.6. We give a Prover strategy which restricts Delayer to n(m −
1) + 1 points. The Prover queries variables in row-major order. If on query xi, j the Delayer defers a decision to the
Prover, the Prover chooses arbitrarily unless j = m. If j = m, then the Prover chooses a value which makes the parity
of the variables in row i evaluate to 0.

Let j be the first row such that the Delayer defers the decision on x j,m to the Prover. (If there is no such row, set
j = n.) With the strategy above, the Prover will set x j,m in such a way that the parity of the variables in j-th row
evaluates to 0, making f evaluate to 0 and ending the game. The Delayer scores at most m− 1 points per row for rows
before this row j, and at most m points in row j. Hence the Delayer’s score is at most (j− 1)(m− 1) + m points. Since
j ≤ n, the Delayer is restricted to n(m − 1) + 1 points at the end of the game.

20

Delayer strategy for Andn ◦ Paritym, proving Lemma 4.7. We give a Delayer strategy which always scores at least
n(m − 1) + 1 points.

On query xi, j, if this is the last un-queried variable, or if there is some un-queried variable in the same i-th row, the
Delayer defers the decision to the Prover. Otherwise, the Delayer responds with a value that makes the parity of the
variables in row i evaluate to 1.

This strategy forces the Prover to query all variables to decide the function. The Delayer picks up m− 1 points per
row, and an additional point on the last query, giving a total score of n(m − 1) + 1 points.

Prover strategy in terms of certificate complexity, proving Lemma 5.4. We give a Prover strategy which restricts the
Delayer to (C0(f) − 1)(C1(f) − 1) + 1 points. Let f̃ be the function obtained by assigning values to the variables
queried so far. As long as C1(f̃) > 1, Prover picks an a ∈ f̃ −1(0) and its 0-certificate S , and queries all the variables
in S one by one. If at any point the Delayer defers a decision to the Prover, the Prover chooses the value according to
a. When C1(f̃) becomes 1, the Prover picks an a ∈ f̃ −1(1) and its 1-certificate {i} and queries the variable xi. If the
Delayer defers the decision, the Prover chooses ai.

The above strategy restricts the Delayer to (C0(f) − 1)(C1(f) − 1) + 1 points; the proof is essentially the same as
Lemma 5.4.

Prover and Delayer strategies for composed functions, proving Theorem 6.6. For showing the upper bound, the
Prover strategy is as follows: the Prover chooses a depth-optimal tree T f for f and moves down this tree. Let Xi

denote the ith block of variables; i.e. the set of variables xi,1, xi,2, . . . , xi,m. The Prover queries variables blockwise,
choosing to query variables from a particular block according to T f . If xi is the variable queried at the current node
of T f , the Prover queries variables from Xi following the optimal Prover strategy for the function g, until the value of
g(Xi) becomes known. At this point, the Prover moves to the corresponding subtree in T f .

For the lower bound, the Delayer strategy is as follows: When variable yk is queried, the Delayer responds with
b ∈ {0, 1} if Rank(hk,b) > Rank(hk,1−b), and otherwise defers. Here hk,b is the sub-function of h when yk is set to b.

The proof that the above strategies give the claimed bounds is essentially what constitutes the proof of Theo-
rem 6.6.

Delayer strategy in asymmetric game in Tribesdn, proving Lemma 8.1. We give a Delayer strategy in an asymmetric
Prover-Delayer game which scores at least n log n. On query xi j, Delayer responds with (p0, p1) = (1 − 1

k ,
1
k), where k

is the number of free variables in row i at the time of the query.
We show that the strategy above scores at least n log n points. The game can end in two possible ways:

1. Case 1: The Prover concludes with function value 0. In this case, the Prover must have queried all variables in
some row, say the i-th row, and chosen 0 for all of them. For the last variable queried in the i-th row, the Delayer
would have responded with (p0, p1) = (0, 1), and hence scored∞ points in the round and the game.

2. Case 2: The Prover concludes with function value 1. In this case, the Prover must have set a variable to 1 in
each row. We show that the Delayer scores at least log n points per row. Pick a row arbitrarily, and let k be the
number of free variables in the row when the first variable in that row is set to 1. The Prover sets n− k variables
in this row to 0 before he sets the first variable to 1. For b ∈ {0, 1}, let pb, j represents the pb response of the
Delayer when there are j free variables in the row. That is, p0, j = 1 − 1

j =
j−1

j and p1, j = 1
j . The contribution of

this row to the overall score is at least

log
1

p0,n
+ log

1
p0,n−1

+ . . . + log
1

p0,k+1
+ log

1
p1,k

= log
(

1
p0,n

1
p0,n−1

...
1

p0,k+1

1
p1,k

)
= log n.

Since each row contributes at least log n points, the Delayer scores at least n log n points at the end of the game.

10. Conclusion

The main thesis of this paper is that the minimal rank of a decision tree computing a Boolean function is an
interesting measure for the complexity of the function, since it is not related to other well-studied measures in a
dimensionless way. Whether bounds on this measure can be further exploited in algorithmic settings like learning or
sampling remains to be seen.

21

Acknowledgments

The authors thank Anna Gál and Srikanth Srinivasan for interesting discussions about rank at the Dagstuhl seminar
22371.

References

[1] James Aspnes, Eric Blais, Murat Demirbas, Ryan O’Donnell, Atri Rudra, and Steve Uurtamo. k + decision trees - (extended ab-
stract). In 6th International Workshop on Algorithms for Sensor Systems, Wireless Ad Hoc Networks, and Autonomous Mobile Entities,
ALGOSENSORS, volume 6451 of Lecture Notes in Computer Science, pages 74–88. Springer, 2010. full version on author’s webpage,
http://www.cs.cmu.edu/ odonnell/papers/k-plus-dts.pdf.

[2] Yosi Ben-Asher and Ilan Newman. Decision trees with boolean threshold queries. Journal of Computer and System Sciences, 51(3):495–502,
1995.

[3] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like and general resolution. Combinatorica,
24(4):585–603, 2004.

[4] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of tree-like resolution size. Information Processing Letters,
113(18):666–671, 2013.

[5] Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing Letters, 42(4):183–185, 1992.
[6] Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes. In 28th Annual Symposium on Foundations of Computer Science

(FOCS), pages 118–126. IEEE, 1987.
[7] Arjan Cornelissen, Nikhil S Mande, and Subhasree Patro. Improved quantum query upper bounds based on classical decision trees. arXiv

preprint arXiv:2203.02968, 2022.
[8] Yogesh Dahiya and Meena Mahajan. On (Simple) Decision Tree Rank. In 41st IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS 2021), volume 213 of LIPIcs, pages 15:1–15:16, 2021.
[9] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples. Information and Computation, 82(3):231 – 246,

1989.
[10] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief history of Strahler numbers. In Language and Automata Theory and

Applications - 8th International Conference LATA, volume 8370 of Lecture Notes in Computer Science, pages 1–13. Springer, 2014.
[11] Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike resolution space. Information Processing Letters,

87(6):295–300, 2003.
[12] Juris Hartmanis and Lane A Hemachandra. One-way functions and the nonisomorphism of NP-complete sets. Theoretical Computer Science,

81(1):155–163, 1991.
[13] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms and Combinatorics. Springer, 2012.
[14] Stasys Jukna, A Razborov, Petr Savicky, and Ingo Wegener. On p versus np ∩ co-np for decision trees and read-once branching programs.

Computational Complexity, 8(4):357–370, 1999.

[15] Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2õ(n1/3). J. Comput. Syst. Sci., 68(2):303–318, 2004.
[16] Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Guest column: Models of computation between decision trees and

communication. ACM SIGACT News, 52(2):46–70, 2021.
[17] Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for and-functions. In Proceedings of the 53rd

Annual ACM SIGACT Symposium on Theory of Computing, pages 197–208, 2021.
[18] Oliver Kullmann. Investigating a general hierarchy of polynomially decidable classes of CNF’s based on short tree-like resolution proofs.

Electron. Colloquium Comput. Complex., (41), 1999.
[19] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, 1997.
[20] Nikhil S. Mande and Swagato Sanyal. On parity decision trees for fourier-sparse boolean functions. In Nitin Saxena and Sunil Simon, editors,

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2020, December 14-18,
2020, BITS Pilani, K K Birla Goa Campus, Goa, India (Virtual Conference), volume 182 of LIPIcs, pages 29:1–29:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[21] Ashley Montanaro. A composition theorem for decision tree complexity. Chicago Journal of Theoretical Computer Science, 2014(6), July
2014.

[22] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
[23] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-SAT (preliminary version). In Proceedings of the eleventh

annual ACM-SIAM Symposium on Discrete Algorithms SODA, pages 128–136, 2000.
[24] Amir Shpilka, Avishay Tal, and Ben lee Volk. On the structure of boolean functions with small spectral norm. Comput. Complex., 26(1):229–

273, 2017.
[25] Gábor Tardos. Query complexity, or why is it difficult to separate NPA∩coNPA from PA by random oracles A? Combinatorica, 9(4):385–392,

1989.
[26] György Turán and Farrokh Vatan. Linear decision lists and partitioning algorithms for the construction of neural networks. In Foundations

of Computational Mathematics, pages 414–423, Berlin, Heidelberg, 1997. Springer.
[27] Kei Uchizawa and Eiji Takimoto. Lower bounds for linear decision trees with bounded weights. In 41st International Conference on Current

Trends in Theory and Practice of Computer Science SOFSEM, volume 8939 of LNCS, pages 412–422. Springer, 2015.
[28] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

22

Appendix A. Proof of theorem 2.4

Theorem 2.4. [24, 20] Let f be any Boolean function f : {0, 1}n −→ {0, 1}. Fix any S ⊆ [n], S , ∅. If f�(S ,ρ) is a
constant, then for every ρ′ : S −→ {0, 1}, spar(f�(S ,ρ′)) ≤ spar(f)/2.

Proof. Let J denote the subcube (S , ρ), and let S̄ denote the set [n] \ S .
Partition the Fourier support of f (sets W for which f̂ (W) , 0) into buckets, one for each T ⊆ S̄ , as follows:

Bucket for T , BT = {W ⊆ [n] : W ∩ S̄ = T ; f̂ (W) , 0}.

Note that spar(f) = |B∅ \ {∅}| +
∑

T⊆S̄ ;T,∅ |BT |.
In the Fourier expansion of f , group together terms with the same signature outside S . That is,

f (x) =
∑
T⊆S̄

∑
R⊆S

f̂ (T ∪ R)χT∪R(x)

 =
∑
T⊆S̄

∑
R⊆S

f̂ (T ∪ R)χR(x)

︸ ︷︷ ︸
cT (x)

χT (x) =
∑
T⊆S̄

cT (x)χT (x)

Inside any subcube of the form J′ = (S , ρ′), the functions cT (x) are independent of x, since χR�J′ (x) = (−1)
∑

i∈R ρ
′(i).

In particular, for the subcube J, f�J is a constant, say c. Considering the Fourier expansion of g = f�J , we see that

c = g =
∑
T⊆S̄

(cT�J)(x)χT (x).

Since the Fourier representation of a function is unique, it follows that c∅�J = c, and cT�J = 0 for all non-empty T .
Fix any non-empty T . Then, by definition of cT and BT ,

(cT�J)(x) =
∑
R⊆S

f̂ (T ∪ R)(χR�J) =
∑

W∈BT

f̂ (W)(χR�J).

Since cT�J = 0, it must have none or at least two non-zero terms to achieve a cancellation. Thus for each non-empty
T , if BT , ∅, then |BT | ≥ 2.

Now we can bound the sparsity of f�J′ for any subcube (S , ρ′). Since f�J′ (x) =
∑

T⊆S̄ (cT�J′)χT (x), we see that
spar(f�J′) is at most the number of non-empty buckets BT for non-empty T . Hence

spar(f�J′) = number of non-empty T with non-empty bucket BT

=
1
2

∑
T⊆S̄ ,T,∅,BT,∅

2

≤
1
2

∑
T⊆S̄ ,T,∅,BT,∅

|BT |

≤
1
2

spar(f).

23

	Introduction
	Preliminaries
	Game Characterisation for Rank
	The Rank of some natural functions
	Relation between Rank and other measures
	Relating Rank to Depth and Sparsity
	Relation between Rank and Certificate Complexity

	Rank of Composed and Iterated Composed functions
	Applications
	Tight lower bounds for logDTSize for Composed functions
	Conj decision trees

	Tightness of Rank and Size relation for Tribes
	Proofs using Prover-Delayer Games
	Conclusion
	Proof of thm:rest-sparsity

