
Membership Testing: Removing Extra Stacks
from Multi-stack Pushdown Automata

Nutan Limaye and Meena Mahajan

The Institute of Mathematical Sciences, Chennai 600 113, India.
{nutan,meena}@imsc.res.in

Abstract. We show that fixed membership testing for many interesting
subclasses of multi-pushdown machines is no harder than for pushdowns
with single stack. The models we consider are MVPA, OVPA and MPDA,
which have all been defined and studied in the past.
Multi-stack pushdown automata, MPDA, have ordered stacks with pop
access restricted to the stack-top of the first non-empty stack. The mem-
bership for MPDAs is known to be in NSPACE(n) and in P. We show
that the P-time algorithm can be implemented in the complexity class
LogCFL; thus membership for MPDAs is LogCFL-complete.
It follows that membership testing for ordered visibly pushdown au-
tomata OVPA is also in LogCFL.
The membership problem for multi-stack visibly pushdown automata,
MVPA, is known to be NP-complete. However, many applications focus
on MVPA with O(1) phases. We show that for MVPA with O(1) phases,
membership reduces to that in MPDAs, and so is in LogCFL.

1 Introduction

Pushdown machines are the machines having a finite control and access to a
stack. The languages accepted by such machines are called context-free lan-
guages, CFLs. For a fixed machine M , given a string w, the membership problem
asks whether w ∈ L(M). It is of interest due to its implications for parsing and
model checking problems. The first polynomial time algorithm for the mem-
bership problem for CFLs was given by Cocke, Kasami, and Younger (see for
instance [1]).

Let us denote the membership problem for the class of languages L by
MEM(L). If A is a class of automata accepting the language class L, then we
use MEM(L) and MEM(A) interchangeably.

The problems log-space many-one reducible to MEM(CFL) define a complex-
ity class called LogCFL [2]. LogCFL is a subclass of P and is also known to be
contained in NC, i.e. efficiently parallelizable.

The membership problem for many subclasses of CFLs has been studied rigor-
ously. The set of languages log-space many-one reducible to MEM(DCFL), where
DCFL denotes deterministic context-free languages, define the complexity class
LogDCFL which is a subclass of LogCFL [2]. It is also known that the membership
problems for linear and deterministic linear context-free languages, MEM(LIN)

2 N. Limaye and M. Mahajan

and MEM(DLIN), are complete for the complexity classes nondeterministic and
deterministic log-space, NL and Log respectively [3, 4]. Another interesting sub-
class of CFLs is visibly pushdown languages, VPLs ([5, 6]). These are the lan-
guages accepted by visibly pushdown automata (VPA) which are ǫ-moves-free
pushdown automata whose stack behaviour is dictated solely by the input letter
under consideration. They are also referred to as input-driven PDA. MEM(VPL)
is known to be complete for the class NC1 [7] of languages accepted by families
of polynomial-size log-depth bounded fan-in circuits.

A natural generalisation of pushdown machines is pushdown machines with
more than one stack. This generalisation, unfortunately, is not smooth in terms
of the power of these machines: A pushdown automaton with two or more stacks
is known to recognise all recursively enumerable languages. The model in its full
generality is thus intractable. However, for certain model checking applications,
pushdown automata with two or more stacks are useful. Hence, some restrictions
of multi-stack machines have been considered in the literature.

One possible restriction is a 2-stack VPA. One can consider various models
depending on whether to allow simultaneous stack changes or depending on the
order of accessing the stacks. Such models indeed have been considered recently
(see e.g. [8, 9]). A language-theoretic study, as well as the membership problem
complexity for these models, are important.

Here we focus on the membership problem for three different models which
have been defined and studied in the literature.

The first model is one recently considered by La Torre et al. [9]: a pushdown
machine equipped with two stacks where the access to both the stacks is com-
pletely dictated by the input alphabet. This is a natural generalisation of VPLs
and a proper restriction of general pushdown automaton having more than one
stack. They call such machines multi-stack visibly pushdown machines, MVPA.
In their definition, these machines cannot simultaneously access both stacks. On
reading any input letter, the MVPA either pushes on one of the stacks or pops
from one of the stacks. A phase of the input string is a substring such that while
reading it, all the pop moves of the machine are on the same stack. In [9], it is
shown that MEM(MVPL), where MVPL denotes the class of languages accepted
by MVPA, is NP-complete. The proof of NP hardness is a reduction from an in-
stance of SAT. For a fixed MVPA M , a string w is constructed from an n-variable
formula such that it has n phases. That the number of phases depends on the
input formula is important for the proof of hardness.

In this paper, we consider a restriction of the above problem, where the
number of phases is a constant. We define another version of the membership
problem, MEM(MVPLk). For a fixed MVPA M and fixed positive integer k, the
problem MEM(MVPLk) is to decide whether a given w ∈ Σ∗ is in Lk(M), where
Lk(M) denotes the language {w ∈ Σ∗ | w is accepted by M with ≤ k phases }.

This restriction of MVPA, where the number of phases is bounded, is also
useful for many applications and has been defined and considered in [9]. The
class is known to generalise VPLs and is properly contained in context-sensitive
languages. In this paper, we show that the problem MEM(MVPLk) is in LogCFL.

Membership Testing: Removing Extra Stacks from Multi-stack PDA 3

In order to show this, we need another model of multi-pushdown machines
defined by Cherubini et al. [10]. They define a restriction of multi-pushdown
machines wherein there is an order given to the stacks of the machine. The
machine is allowed to push on any stack. However, pop moves are allowed only
on the first non-empty stack. We denote such machines by PDn, where n is the
number of stacks in the machine. We denote the class of languages accepted by
these as LPDn

. A restriction of PDn, namely PD2, was studied in [11], where

it was shown that MEM(PD2) is in P. Later, in [12], a P-time upper bound
for MEM(PDn) was established. We give a reduction from MEM(MVPLk) to
MEM(PDk).

We then prove a LogCFL upper bound for MEM(PDk). This improves the P-
time upper bound of [12]. Also, combined with our previous reduction, this gives
a LogCFL upper bound for the problem MEM(MVPLk). The languages accepted
by MVPA within two phases are a proper subclass of context sensitive languages,
a proper generalisation of VPLs, and are incomparable with CFLs. Hence, this
implies the same upper bound as for CFLs for an incomparable class. However,
we do not know if MEM(MVPAk) for any fixed k is hard for LogCFL.

Recently, Carotenuto et al. [8] defined another class of two-stack pushdown
machines, 2-OVPA. Like MVPAs, these machines have a visible access to their
stacks, i.e. the stack movement is completely dictated by the input alphabet.
There is also an order among the stacks and the second stack is popped only if
the first is empty. This model is interesting because emptiness and inclusion are
decidable, and languages accepted by such machines form a Boolean algebra [8].
The generalisation where the number of stacks is k, k-OVPA, is also considered in
[8]. The language class accepted is contained in LPDk

. Thus, the LogCFL upper
bound we prove also applies to this language class.

The main results of our paper can be summarised as follows:

Theorem 1. For every fixed k ≥ 1, MEM(MVPLk) ≤ MEM(PDk).

Theorem 2. For every fixed k ≥ 1, MEM(PDk) is in LogCFL.

Corollary 1. ∀k ≥ 1, MEM(MVPLk) and MEM(k-OVPA) are in LogCFL.

2 Preliminaries

Circuits and Complexity A Boolean circuit Cn on n inputs is a directed
acyclic graph, with a designated sink (out-degree zero vertex) called the output
gate. All the vertices except sources (in-degree zero vertices) are labelled by ∨
and ∧. Sources are labelled by {0, 1} or by predicates of the form [xi, a, 1, 0]
where i ∈ [n]. Such a predicate takes the value 1 if xi = a and 0 otherwise1.

A Boolean circuit C can be unwound into a tree TC (by duplicating nodes).
A proof tree T ′ of C on input w is a subtree of TC with the following properties:

1 This convention of labelling leaves with predicates is used, for e.g. , in [13], to deal
with languages over non-binary alphabets.

4 N. Limaye and M. Mahajan

(1) The output gate is in T ′. (2) For every ∨-gate in T ′, one of its children is in
T ′. (3) For every ∧-gate in T ′, all its children are in T ′. (4) All the nodes in T ′

evaluate to 1 on input w.
A proof tree exists if and only if Cn accepts w. In general the proof tree could

be of size exponential in n. C is said to have poly-proof-tree-size if whenever a
string w is accepted by C, there is a proof tree on w of size poly(|w|).

The complexity class LogCFL is the class of languages log-space many-one
reducible to some CFL, and is known to be equivalent to the class of languages
accepted by circuits having polynomial sized proof trees. See e.g. [2, 14, 15].

Visible two stack machines ([9]). An MVPA M is a pushdown machine
having two stacks, where the access to the stacks is restricted in the following
way: The input alphabet Σ is partitioned into 5 sets. A letter from Σj

c causes a
push move on stack j, that from Σj

r forces a pop move on stack j, and both the
stacks are left unchanged on letters from Σi. (The subscripts c, r, i denote call,
return and internal respectively.) Formally, an MVPA M = (Q,Σ, Γ, δ, q0, F) is
a two-stack nondeterministic pushdown machine where Q is a set of finite states,
Σ is the finite alphabet which is a union of 5 disjoint sets Σ0

c , Σ0
r , Σ1

c , Σ1
r , Σi, q0

is the initial state, F ⊆ Q is a set of final states, Γ is the finite stack alphabet
containing a special bottom-of-stack symbol ⊥ that is never pushed or popped,
and δ has the following structure: δi ⊆ Q × Σi × Q, and for j ∈ {0, 1}, δj

c ⊆
Q × Σj

c × Q × Γ \ {⊥} and δj
r ⊆ Q × Σj

r × Γ × Q.
The machine is allowed to pop on an empty stack; that is, on reading a letter

from Σj
r and seeing ⊥ on the jth stack top, the machine can proceed with a

state change leaving the ⊥ untouched.
A phase is a substring of the input string w ∈ Σ∗ during which pop moves

happen only on one of the stacks. Define the set

PHASEk = {w | w ∈ Σ∗, number of phases in w ≤ k}

Clearly, for any fixed partition of Σ, PHASEk is a regular set.
Let M be a fixed MVPA M and k a fixed positive integer. Its k-phase language

Lk(M) is defined as Lk(M) = L(M) ∩ PHASEk. By taking a direct product of
a finite state automaton accepting PHASEk with MVPA M , we can obtain an
MVPA M ′ = 〈M,k〉 such that L(M ′) = Lk(M ′) = Lk(M). In Section 3, we
assume that the given MVPA M satisfies L(M) = Lk(M).

Ordered multi-stack machines and grammars ([10–12]).
A PDk M = (Q,Σ, Γ, δ, q0, Z0, F) is a k-stack pushdown machine where

Q,Σ, q0, Z0, F are as usual, and the transition function δ is of the form δ ⊆
Q × (Σ ∪ ǫ) × Γ × Q × (Γ ∗)k.

A configuration is a (k + 2)-tuple, 〈q, w, γ1, . . . , γk〉 where q ∈ Q, w ∈ Σ∗,
and γi ∈ Γ ∗ for each i represents the contents of the ith stack. The initial
configuration on word x is 〈q0, x, Z0, ǫ, . . . , ǫ〉. A configuration is called a final
configuration if q ∈ F .

If there is a transition (q′, α1, . . . , αk) ∈ δ(q, a,A), the machine in state
q can read a letter a from the input tape, pop A from the first non-empty
stack, push αi on stack i for each i ∈ [k], and move to state q′. Formally,
〈q, aw, ǫ, . . . , ǫ, Aγi, . . . , γk〉 ⊢ 〈q′, w, α1, . . . , αi−1, αiγi, . . . , αkγk〉.

Membership Testing: Removing Extra Stacks from Multi-stack PDA 5

If (q′, α1, . . . , αk) ∈ δ(q, ǫ, A) then 〈q, w, ǫ, . . . , ǫ, Aγi, . . . , γk〉 ⊢
〈q′, w, α1, . . . , αi−1, αiγi, . . . , αkγk〉.

The PDk M accepts a string w if it can move from 〈q0, w, Z0, ǫ, . . . , ǫ〉 to
some 〈q, ǫ, γ1, . . . , γk〉 where q ∈ F . The set of all the strings accepted by M is
the language accepted by M , denoted L(M).

Theorem 3. ([12]) For a fixed PDk, given an input string w ∈ Σ∗, checking if
w ∈ L(M) is in P. i.e. MEM(PDk) ∈ P.

In [11], PDk are characterized by grammars. We describe the D2-grammars
that correspond to languages accepted by PD2. A D2-grammar G is a 4-tuple
G = (N,Σ,P, S) where N,Σ, S are as usual, and P has productions of the form:
A → w(α)(β) where A ∈ N , w ∈ Σ∗ and α, β ∈ N∗.

Sentential forms in a derivation are of the form x(α)(β) where x ∈ Σ∗,
α, β ∈ N∗. The initial sentential form is (S)(ǫ). If A → w(α)(β) is a production
rule, then w′(Aα′)(β′) ⇒ w′w(αα′)(ββ′) and w′(ǫ)(Aβ′) ⇒ w′w(α)(ββ′) are the
only valid derivations using this rule. Note that only leftmost derivations are
allowed. We say that A ⇒∗ w(α)(β) if (A)(ǫ) ⇒∗ w(α)(β) and that A ⇒∗ w if
(A)(ǫ) ⇒∗ w(ǫ)(ǫ). The language generated is the set L(G) = {w | S ⇒∗ w}.

Theorem 4. ([11]) Every D2-grammar G has an equivalent normal form D2-
grammar G′ where each production is of one of the following types:

– A → (BC)(ǫ);A,B,C ∈ N (branching production)
– A → (ǫ)(B);A,B ∈ N (chain production)
– A → a;A ∈ N, a ∈ Σ. (terminal production).

A derivation in such a grammar is said to be a normal form derivation if when-
ever a non-terminal A is rewritten by a chain production, say A → (ǫ)(B), then
that occurrence of B is eventually rewritten by either a branch production or
a terminal production. That is, no variable participates in two chain rules. For
every derivation, there is an equivalent normal form derivation [11].

A typical derivation in this grammar arising from the use of a branching
production produces non-contiguous substrings. Say A → (BC)(ǫ) ∈ P . Also
say B ⇒∗ β1(ǫ)(β) ⇒∗ β1β2(ǫ)(ǫ) and C ⇒∗ γ1(ǫ)(γ) ⇒∗ γ1γ2(ǫ)(ǫ). Then A ⇒
(BC)(ǫ) ⇒∗ β1(C)(β) ⇒∗ β1γ1(ǫ)(γβ) ⇒∗ β1γ1γ2(ǫ)(β) ⇒∗ β1γ1γ2β2(ǫ)(ǫ).
Thus, we say that in the string β1γ1γ2β2, the substring β1β2 is produced by B

with a gap, and the gap is filled by C with the substring γ1γ2.
A chain production does not explicitly give rise to a gap in the string.

However, the application of a chain production swaps the order of substrings
being produced by the non-terminals in the first list. Say A → (ǫ)(B) and
B ⇒∗ β; i.e. A produces a string β via a chain rule. Also say C ⇒∗ γ.
Consider a sentential form w(AC)(δ). The string β produced by A appears
in the final string after the string γ that is produced by C. That is, we get
w(AC)(δ) ⇒ w(C)(Bδ) ⇒∗ wγ(ǫ)(Bδ) ⇒∗ wγβ(ǫ)(δ). Hence when A produces
a string via a chain production, we assume that β has a gap (of length 0) at the
beginning (before β). Thus, a chain rule always results in a gap at the beginning.

6 N. Limaye and M. Mahajan

Consider a terminal rule A → a. Say A appears in some list in a sentential
form. The terminal a produced by A appears before all the strings produced by
all the non-terminals that follow A in its list. Consider sentential form w(AC)(δ).
Then we get w(AC)(δ) ⇒ wa(C)(δ) ⇒∗ waγ where C ⇒∗ γ. Thus, a terminal
production produces a gap (of length 0) at the end (i.e. after the terminal).

Ordered, visible two stacks machines ([8]). 2-OVPA are pushdown ma-
chines with two stacks, access to both of which is dictated by the input alphabet.
The input alphabet Σ is a union of 8 disjoint finite sets: except for simultaneous
pops on both stacks, all other combinations are allowed. Also the stacks are ac-
cessed in an ordered manner i.e. a pop is allowed on the second stack only if the
first stack is empty. k-stack versions, k-OVPA, are defined similarly [8]. k-OVPA

are essentially restrictions of PDk, with the exception that they can also make
moves when their stacks are empty. See [8] for formal definitions.

3 Reduction from MEM(MVPLk) to MEM(PDk)

In this section, we consider the problem MEM(MVPLk) and establish Theorem 1.
The simplest case is when k = 1; for all fixed MVPA M , L1(M) ∈ VPL. Since
VPLs are known to be in NC1 [7], for which membership in a fixed regular
language is complete [16], MEM(MVPL1) reduces to MEM(NFA), where NFA are
nondeterministic finite-state automata. But a PD0 is precisely an NFA. Hence
MEM(MVPL1) reduces to MEM(PD0).

For k > 1, we reduce this problem to MEM(PDk). As described in Section 2,
we assume that Lk(M) = L(M). We convert M into a multi-pushdown machine
N having k stacks, called Maini for 1 ≤ i ≤ k, and show that L(M) reduces to
L(N) (via logspace many-one reductions).

Consider a phase i in which stack-j (j ∈ {0, 1}) of machine M is being
popped. The PD works in two stages – mimic stage and buffer stage. (Exception:
phase k has only a mimic stage.)

In the Mimic stage, Maini and Maini+1 contain the contents of stack j and
1 − j respectively and mimic the moves of machine M on these two stacks.
The rest of the stacks are empty. (In particular for all l < i, Mainl are empty.)
In the Buffer stage, Maini+1 is marked with a special symbol. The contents of
Maini are popped and are pushed onto top of the special symbol (in reversed
order), and then popped and pushed into Maini+2. Thus, the contents of Maini

are transferred into Maini+2 in the same order. Note that, the contents of Maink

need not be popped at all since there is no subsequent phase, and hence k stacks
suffice in N .

To carry out these phases, the input string is padded with some new extra
letters by a function f . On reading these letters, N does the necessary transfers.
As the next phase expects to pop stack Maini+1, after such a transfer all the
stacks are ready for next processing step. More formally,

Lemma 1. Fix a MVPA M and an integer k. There exist a PD2k+2 N and a
function f ∈ Log, such that ∀w ∈ Σ∗, w ∈ Lk(M) ⇔ f(w) ∈ L(N).

Membership Testing: Removing Extra Stacks from Multi-stack PDA 7

A small technical difficulty is that MVPAs are allowed pop operations on
empty stacks, but PDs cannot make any move if all stacks are empty. If a prefix
of an input string has unmatched pop letters (pops on empty stack), then during
the mimic phase the simulating machine N may get stuck. To prevent this, we
pad the input string with a suffiently long prefix that causes push moves on both
the stacks. This boosts the heights of the stacks and ensures that the resulting
string has no unmatched pop move. Formally, we show the following:

Lemma 2. Fix a MVPA M . There exists another MVPA M ′ and a function
g ∈ Log such that for every string w ∈ Σ∗, w ∈ L(M) ⇔ g(w) ∈ L(M ′), M

on w and M ′ on g(w) have the same number of phases, and M ′ never pops or
pushes on empty stack.

We will call strings obtained by reduction g as extended strings and ma-
chine M ′ thus obtained a good MVPA. By Lemma 2, we assume that we have a
good MVPA M that never uncovers the bottom-of-stack marker (except at the
beginning) on either stack on the inputs that it receives.

For an extended string w, let htj(w) denote the height of stack-j of a good
MVPA M after having processed the string w. Here, j ∈ {0, 1}. To compute the
function f in Lemma 1, we need the values htj(x) for each prefix x of w. These
values are easy to compute:

Proposition 1. For any extended input string w, computation of htj(w) and
demarcation of the string into its first k phases can be done in Log.

Suppose we have the extended string w = w1w2...wk (on the extended alpha-
bet Σ) already marked with the phases. That is, wi is the string processed in the
ith phase, and the individual strings w1, w2, . . . , wk are known. Let ki denote
the height of the stack that was popped in phase i, after having processed the
ith phase. We have ensured that ki ≥ 1 for all i. Let U, V,W,Z,# be new letters
not in Σ. Then f is defined as below. (No padding is needed after wk.) f(w) =
Zw1#Uk1+1V k1+1#Ww2#Uk2+1V k2+1#W . . . wi#Uki+1V ki+1#W . . . wk

For the PDk N = (Q′, Σ′, Γ ′, δ′, q′0, F
′), Q′ consists of 3k copies of the states

of M , 3 copies for each phase. The first copy is used during the mimic stage and
the second and third copies are used for the first and the second steps in the
buffer stage respectively. The padding symbol # is used in order to mark the
stack Maini+1 with a special marker before the buffer-stage begins and then to
pop the marker after the contents on top of it are moved into Maini+2. Also Γ ′

consists of k copies of Γ , with the i-th copy used as the stack alphabet for Maini.
Formally, the invariant maintained with respect to M can be stated as follows:

Lemma 3. Machine M on input w has a non-deterministic path ρ in which for
each i ∈ [k], after phase i (where phase i pops stack j) βi is on stack j, αi is on
stack 1−j and M is in state q if and only if machine N has a non-deterministic
path ρ′ along which for each i ∈ [k], after reading the prefix up to and including
wi in f(w), (1) βiZ0 is on Maini, (2) αiZ0 is on Maini+1, (3) all the other stacks
are empty, and (4) the state reached is [q(1), i].

That is, the runs of machines M and N are in one-to-one correspondence.

It follows that, M accepts w if and only if N accepts f(w); hence Lemma 1.

8 N. Limaye and M. Mahajan

4 The LogCFL upper bound for MEM(PDk)

In this section, we show that membership testing for a fixed PDk is in LogCFL.
The main structure of our LogCFL algorithm closely follows that of the P-

time algorithm for membership testing for PD2 as given in [11]. So we first
describe it in some detail (Section 4.1), following the presentation from [17]. We
then give (Section 4.2) a different implementation of the same algorithm and
improve the upper bound to LogCFL, thus establishing Theorem 2 for k = 2.
A P-time algorithm for MEM(PDk) is given in [12]. It is very similar to the
algorithm from [11]. In Section 4.3, we discuss the changes needed to be made
in our implementation for the LogCFL bound to hold for all fixed k, thereby
establishing Theorem 2.

4.1 Outline of the P-time algorithm of [11, 17]

The P-time algorithm uses the characterization of PD2 via D2 grammars in
normal form, and normal-form derivations, as described in Section 2. Given
an input w ∈ Σ∗, the algorithm needs to keep track of substrings of w being
produced with gaps. This is done as follows: A table T in constructed such that
any entry in the table is indexed by four indices, T (i, j, r, s). The algorithm fills
entries in the table with subsets of N . A non-terminal A is in T (i, j, r, s) if and
only if A generates the string wi+1 . . . wj with a gap of length s at position
i + 1 + r. Here r is the offset from i + 1 where the gap begins. The table entry
T (i, j, r, s) deals with the interval inv = [i + 1, j] modulo the gap interval gap =
[i + r + 1, i + r + s]. Let l = j − i denote the total length of the interval and
l′ = j − i − s denote the actual length of the interval under consideration i.e.
length of the interval without the gap. The table is filled starting from smaller
values of l. Further, the table entries with intervals of the same length l are filled
starting from l′ = 1 going up to l′ = l. All entries are first initialized to contain
the empty set.

For fixed values of l and l′, we call a tuple 〈i, j, r, s〉 valid for l and l′ if and
only if j = i + l, s = l − l′ and i + r + s ≤ j (i.e. r ≤ l′).

For l = 1 all the entries are filled by the following two rules, using information
from the input and the fixed grammar.

1. T (i, i + 1, 1, 0) = {A | A → wi+1}
2. T (i, i + 1, 0, 0) = {A | A → (ǫ)(B), B → wi+1}

In the first (second) rule, the table entries correspond to intervals of size 1, where
the zero-length gap is at the end (beginning, respectively). It contains the non-
terminals that produce the terminal wi+1 using a terminal (chain, respectively)
production.

As the value of l increases, depending on the position and size of the gap,
various rules are used to fill up the table. For l > 1, the following rules are
applied to fill the table entries corresponding to valid tuples:

Membership Testing: Removing Extra Stacks from Multi-stack PDA 9

Rule 1: This rule is applied provided the interval size is at least 2, and values
of r′, s′ satisfy r′ < r, s < s′ < j − i = l.

T (i, j, r, s) = T (i, j, r, s) ∪

A

A → (BC)(ǫ),
B ∈ T (i, j, r′, s′),
C ∈ T (i + r′, i + r′ + s′, r − r′, s)

For this update, the algorithm uses values from T (i, j, r′, s′) and T (i+ r′, i+
r′ + s′, r − r′, s). These values are already available. To see this, note that for
T (i, j, r′, s′), the actual interval length is j − i − s′ which is strictly less than l′

as s′ > s, and for T (i + r′, i + r′ + s′, r − r′, s), the interval length is s′ where
s′ < l.

Rule 2: T (i, j, 0, s) = T (i, j, 0, s) ∪ {A | A ∈ T (i + s, j, 0, 0)}. This rule is
applied when the offset r is zero, i.e. when the gap is on the left. Note that this
rule makes no update when the length s of the gap is zero.

For this update, the algorithm uses values from T (i + s, j, 0, 0) (for which
length of the interval j − i − s < l). This value is already available.

Rule 3: T (i, j, r, s) = T (i, j, r, s) ∪ {A | A ∈ T (i, j − s, r, 0)}. This rule is
applied when the gap of length s is on the right. This happens when the gap
stretches all the way till j, i.e. i+r = j−s. Note that this rule makes no update
when the length s of the gap is zero.

For this update, the algorithm uses values from T (i, j − s, r, 0) (for which
length of the interval is j − s − i < l). These values are already available.

Rule 4: T (i, j, 0, 0) = T (i, j, 0, 0) ∪ {A | A → (ǫ)(B), B ∈ T (i, j, r′, 0)}. This
rule is applied when s and r are both zero. And 0 ≤ r′ ≤ j − i.

For this update, the algorithm uses values from T (i, j, r′, 0) checking if A →
(ǫ)(B) and B ∈ T (i, j, r′, 0) for some 0 ≤ r′ ≤ j − i. Now for T (i, j, r′, 0), the
l and l′ values are the same as that for T (i, j, 0, 0). So we cannot immediately
conclude that the required values are already available. However, for fixed l, l′,
the P-time algorithm performs steps 1, 2, 3 before the step 4. Steps 2, 3 leave
entries unchanged if s = 0. It is sufficient to argue that step 1 in fact puts
B in T (i, j, r′, 0), which is then used in step 4. Suppose not. i.e. suppose B is
written in T (i, j, r′, 0) by rule 4. Let r′ = 0, as rule 4 cannot have been applied
if r′ 6= 0. Also as B is written in T (i, j, r′, 0) by rule 4, there exists a C ∈ N

and a rule B → (ǫ)(C) such that B ⇒ (ǫ)(C) ⇒∗ wi+1 . . . wj . But then the
complete derivation is A ⇒ (ǫ)(B) ⇒ (ǫ)(C) ⇒∗ wi+1 . . . wj . This contradicts
the assumption that we have a normal form derivation. Hence, the required
values are already available even for this step.

After a systematic looping through these indices, finally the entry of interest
T (0, n, 0, 0) is filled. If S ∈ T (0, n, 0, 0), then the algorithm returns ‘yes’, else it
returns ‘no’. The time complexity of the algorithm is O(n6).

4.2 The LogCFL algorithm (k = 2)

We now give a top-down algorithm to fill up the table T . We will see that it can
be implemented by a poly sized circuit having ∧ and ∨ gates and having poly
sized proof trees. From [14, 2] it follows that this algorithm is in LogCFL.

10 N. Limaye and M. Mahajan

The polynomial time algorithm that fills up the table can be viewed as a
polynomial sized circuit. However, this circuit need not have polynomial size
proof trees. In particular, the index computations may blow up the proof-tree
size. We note that these index computations are independent of the input, and
give a way to build a circuit with small proof-trees.

For each l′ ≤ l ≤ n, for all valid tuples corresponding to these values of
l, l′, and for each A ∈ N , we introduce 5 gates: an OR gate 〈A, i, j, r, s〉 called
a main gate, and 4 intermediate gates X1

A,i,j,r,s, X2
A,i,j,r,s, X3

A,i,j,r,s, X4
A,i,j,r,s

called auxiliary gates. We design the circuit in such a way that 〈A, i, j, r, s〉 = 1
if and only if A ∈ T (i, j, r, s). The root of the circuit is labelled 〈S, 0, n, 0, 0〉.
The circuit connections are as follows:

〈A, i, j, r, s〉 =
∨

k∈[4]

Xk
A,i,j,r,s

X1
A,i,j,r,s =

∨

r′ < r

s < s′ < j − i − r + 1
{B,C| A → (BC)(ǫ)}

(

〈B, i, j, r′, s′〉
∧

〈C, i + r′, i + r′ + s′, r − r′, s〉

)

X2
A,i,j,r,s =

{

〈A, i + s, j, 0, 0〉 if r = 0
0 otherwise

X3
A,i,j,r,s =

{

〈A, i, j − s, r, 0〉 if i + r = j − s

0 otherwise

X4
A,i,j,r,s =

{∨

0≤r′≤j−i,{B| A→(ǫ)(B)} X1
B,i,j,r′,0 if r, s = 0

0 otherwise

This finishes the description of all the non-leaf gates. The input gates are
predicates and their values are propagated via the following depth-1 circuit.

〈A, i, i + 1, 1, 0〉 =
∨

{a| (A→a∈P)}

[i, a, 1, 0]

〈A, i, i + 1, 0, 0〉 =
∨

{a| ∃B(B→a∈P)∧(A→(ǫ)(B)∈P)}

[i, a, 1, 0]

Note that the above connections give an acyclic digraph of depth O(n2).

It is now easy to see the following claim, and hence the correctness of the
above circuit follows from the correctness of P-time algorithm.

Lemma 4. 〈A, i, j, r, s〉 = 1 if and only if A ∈ T (i, j, r, s).

The LogCFL bound for MEM(PD2) now follows from the following claim:

Claim. The circuit constructed above has polynomial-size proof-trees.

Membership Testing: Removing Extra Stacks from Multi-stack PDA 11

4.3 The LogCFL algorithm for MEM(PDk)

The grammars [10] corresponding to PDk have rules with a single non-terminal
belonging to one of the k lists on the left hand side and at most k lists of non-
terminals on the right hand side. The normal form of the grammar is as follows:

– (A)h → (BC)1; k ≥ h ≥ 1 (branch production; always expands into list 1)
– (A)h → (B)g; k ≥ g > h ≥ 1 (chain production; from list h to a later list g)
– (A)h → a; a ∈ T ; k ≥ h ≥ 1 (terminal production)

Now, any typical string derived by a non-terminal can have as many as 2k−1

gaps; see [12]. If (A)h → (BC)1 is a branch rule, and B,C derive strings γ and δ

respectively, then the string derived from A is a systematic merge of γ and δ. In
the case when k = 2, only one gap was possible, whereas here we need to keep
track of 2k−1 gaps to interleave γ and δ properly. Arrays r̃ and s̃, of length 2k−1

each, keep track of the off-sets and the lengths of the gaps.
Each table entry is indexed by i, j, r̃, s̃, as in the case k = 2. But now the

tables are 2k + 2 dimensional (as each r̃ and s̃ are 2k−1 length arrays). The
table entries contain non-terminals and they are filled in such a way that a non-
terminal A belongs to a certain entry Ti,j,r̃,s̃ if and only if the string wi . . . wj with
gap off-sets as in r̃ and gap sizes as in s̃ can be obtained from A. The rules for
filling up the table are slightly more complicated. However, they simply involve
some index manipulations. These can be implemented as we did for k = 2. Once
these rules are established, the order of filling up the entries and hence the rest
of the algorithm is exactly the same. Thus, we obtain Theorem 2.

4.4 Bounds for MVPA and OVPA

From Theorems 1 and 2, it follows that MEM(MVPAk) is in LogCFL.
To see this bound for MEM(k-OVPA), Theorem 2 should suffice, since as

claimed in [8], k-OVPA are a special case of PDk. However, there is a slight
subtlety here. k-OVPA are allowed to “pop” on an empty stack: if all stacks
are empty (they contain only the special letter ⊥), then the k-OVPA can still
proceed with its computation even on a return letter. However, a PDk in a
similar configuration is stuck and cannot make any move. So it is technically not
completely correct to say that k-OVPA are PDk. However, we can handle this
exactly as we did for MVPA in Lemma 2, reducing MEM(k-OVPA) to MEM(PDk).

5 Discussion

Our results show that adding more stacks to a PDA does not make the fixed
membership problem harder than that for ordinary pushdown automata if stack
access is restricted to visible behaviour with O(1) phases, or if the the stacks are
ordered and the stack pop access is restricted to the first non-empty stack,

Some interesting questions remain unanswered: What complexity classes are
characterized by MEM(MVPAk) and MEM(OVPA)? These problems lie some-
where between NC1 and LogCFL. And what is the complexity of the general

12 N. Limaye and M. Mahajan

membership problem for these models, where the machine and the word are
both part of the input?

Acknowledgments: The authors are grateful to the referees for presentation-
related comments, and for noting that Theorem 1 needs only k stacks, not 2k−2.

References

1. Hopcroft, A., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley (2001)

2. Sudborough, I.H.: On the tape complexity of deterministic context-free language.
Journal of Association of Computing Machinery 25(3) (1978) 405–414

3. Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-
free languages. Journal of Association of Computing Machinery 22 (1975) 499–500

4. Holzer, M., Lange, K.J.: On the complexities of linear LL(1) and LR(1) grammars.
In: 9th International Symposium on Fundamentals of Computation Theory FCT,
London, UK, Springer (1993) 299–308

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th ACM Symposium
on Theory of Computing (STOC 2004). (2004) 202–211

6. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL recogni-
tion. In: 7th International Colloquium on Automata, Languages and Programming.
(1980) 422–432

7. Dymond, P.W.: Input-driven languages are in log n depth. Information Processing
Letters 26 (1988) 247–250

8. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In: 11th
Developments in Language Theory Conference. (2007) 132–144

9. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: 22nd Symposium on Logic in Computer Science. (2007) 161–170

10. Cherubini, A., Breveglieri, L., Citrini, C., Crespi Reghizzi, S.: Multipushdown lan-
guages and grammars. International Journal of Foundations of Computer Science
7(3) (1996) 253–292

11. Cherubini, A., Pietro, P.S.: A polynomial-time parsing algorithm for a class of
non-deterministic two-stack automata. In: 4th Italian Conference on Theoretical
Computer Science. (1992) 150–164

12. Cherubini, A., Pietro, P.S.: A polynomial-time parsing algorithm for k-depth lan-
guages. Journal of Computer and System Sciences 52(1) (1996) 61–79

13. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic cir-
cuits: depth reduction and size lower bounds. Theoretical Computer Science 209
(1998) 47–86

14. Ruzzo, W.: Tree-size bounded alternation. Journal of Computer and System
Sciences 21 (1980) 218–235

15. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag New York Inc. (1999)

16. Barrington, D.: Bounded-width polynomial size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences 38
(1989) 150–164

17. Pietro, P.S.: Two-stack automata. Rapporto Interno n. 92-073, Dipartimento
Di Elettronica e Informazione, Politecnico di Milano, Milano. (October 1992)
http://home.dei.polimi.it/sanpietr/pubs/twostack92.ZIP.

