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Abstract

We show that for any class of bipartite graphs which is closed under edge deletion and where
the number of perfect matchings can be counted in NC, there is a deterministic NC algorithm
for finding a perfect matching. In particular, a perfect matching can be found in NC for planar
bipartite graphs and K3,3-free bipartite graphs via this approach. A crucial ingredient is part of
an interior-point algorithm due to Goldberg, Plotkin, Shmoys and Tardos. An easy observation
allows this approach to handle regular bipartite graphs as well.

We show, by a careful analysis of the polynomial time algorithm due to Galluccio and Loebl,
that the number of perfect matchings in a graph of small (O(log n)) genus can be counted in
NC. So perfect matchings in small genus bipartite graphs can also be found via this approach.

We then present a different algorithm for finding a perfect matching in a planar bipartite
graph. This algorithm is substantially different from the algorithm described above, and also
from the algorithm of Miller and Naor, which predates the approach of Goldberg et al. and
tackles the same problem. Our new algorithm extends to small genus bipartite graphs, but not
to K3,3-free bipartite graphs. We next show that a non-trivial extension of this algorithm allows
us to compute a vertex of the fractional perfect matching polytope (such a vertex is either a
perfect matching or a half-integral matching) in NC, provided the graph is planar or small genus
but not necessarily bipartite, and has a perfect matching to begin with. This extension rekindles
the hope for an NC-algorithm to find a perfect matching in a non-bipartite planar graph.

∗Most results in this paper were originally announced in papers in Proc. 32nd ACM Symposium on Theory of
Computing (2000) [26] and Proc. 12th European Symposium on Algorithms (2004) [19].

†Parts of this work were done when this author was at the Chennai Mathematical Institute, and while visiting
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‡Part of this work was done when this author was supported by the NSF grant CCR-9734918 on a visit to Rutgers
University, USA.

§Parts of this work were done when this author was at DIMACS, Rutgers University, USA and then at the Tata
Institute of Fundamental Research, Mumbai, India.
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1 Introduction

The perfect matching problem is of fundamental interest in combinatorics, algorithms and com-
plexity theory for a variety of reasons. In particular, the problems of deciding if a graph has a
perfect matching, and finding such a matching if one exists, have received considerable attention in
the field of parallel algorithms. (See for instance [36, 15].) Both these problems are in randomized
NC [22, 14, 29] but are not known to be in deterministic NC. For special classes of graphs, however,
there are deterministic NC algorithms.

The outstanding open problem here is to give a deterministic NC algorithm for detecting/searching
for a perfect matching in a given graph. Some progress in this direction was achieved with two
sublinear time parallel algorithms for bipartite matching: O(n2/3 log3 n) due to Goldberg, Plotkin
and Vaidya [10], and O(m1/2 log3 n) due to Goldberg, Plotkin, Shmoys and Tardos [9]. NC algo-
rithms have been obtained for some special classes of graphs; for instance, dense graphs (minimum
degree at least n/2) [3], regular bipartite graphs [20], strongly chordal graphs [4], graphs with poly-
nomially bounded number of perfect matchings [11], P4-tidy graphs[30], convex bipartite graphs
[6], incomparability graphs [17], claw-free graphs [2], and planar bipartite graphs [27].

The problem of counting perfect matchings in a given graph is #P-hard [34], and a polynomial
time algorithm is therefore unlikely for it. Again, for special classes of graphs, counting is easy; for
instance, planar graphs, K3,3-free graphs (graphs that do not contain a subgraph homeomorphic
to K3,3; this class of graphs includes all planar graphs), regular bipartite graphs. The category
we are specifically interested in is planar graphs. A combination of results due to Kasteleyn [16],
Little [21] and Vazirani [35] establishes that for planar graphs, counting perfect matchings can
be done in P and even in NC. The technique is to establish that every planar graph has what
is called a pfaffian orientation, one in which every perfect matching gets the same sign under a
suitable signing convention. The signed sum of all perfect matchings is easy to compute; thus given
a pfaffian orientation the number of perfect matchings can be obtained. Recently, Galluccio and
Loebl [8] extended the results of Kasteleyn to the case of graphs of small genus. They proved that
the generating function of the perfect matchings of a graph of genus g may be obtained as a linear
combination of 4g pfaffians. This means that one can count perfect matchings by first finding 4g

orientations, and then taking a linear combination of 4g corresponding determinants. This gives a
polynomial time algorithm for any n-vertex graph graph with O(log n) genus.

Surprisingly, an NC algorithm for finding a perfect matching in a planar graph has proved quite
elusive. This situation is rather intriguing, as it contradicts our intuition that search should be
easier than counting. For the case of bipartite planar graphs, Miller and Naor [27] succeeded in
giving an NC algorithm to find a perfect matching. Their method reduces this problem to that of
finding a circulation in the planar graph, which then corresponds to computing shortest paths in
its planar dual.

We expect the search problem to be easier for classes of bipartite graphs rather than gen-
eral graphs because of a fundamental property of these graphs: the fractional perfect matching
polytope FPM(G) (see Section 2 for definitions) for bipartite graphs coincides with the perfect
matching polytope PM(G). This breaks down in general graphs; PM(G) could even be empty
while FPM(G) is non-trivial. Thus, for instance, we see no way of extending the algorithm of [27],
or even the algorithm of [9], to planar non-bipartite graphs.

Our contributions are as follows:

1. We show in Section 3 that for bipartite graphs, search is not harder than counting. For any
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class of bipartite graphs where counting perfect matchings is in NC (and the class is closed
under edge deletion), finding a perfect matching is also in NC. This result is established using
the second part of the algorithm of [9], and it applies to bipartite graphs that are K3,3-free or
regular. To the best of our knowledge, this connection between counting and the applicability
of [9] has not been made before.

2. We show that the number of perfect matchings in a graph of genus O(log |V |) can be computed
in NC. This is established by extending the algorithm of Galluccio and Loebl [8], and using
the algorithm of [25] to compute the pfaffian with its sign in NC. This result is established
in Section 4.

3. We give, in Section 5, a new NC algorithm for finding a perfect matching in a planar bipartite
graph. This algorithm is essentially different from that of Section 3, as well as from that of
[27]. It extends to small genus bipartite graphs as well, though not to K3,3-free bipartite
graphs.

4. Using the algorithm of Section 5 as a starting point, we devise in Section 6 an NC algorithm to
find a vertex of the fractional perfect matching polytope FPM(G) of a planar, not necessarily
bipartite, graph. As in the the algorithm of Section 5, this algorithm is also an interior-point
algorithm; it stays within FPM(G) while navigating towards a vertex. Using the result of
Section 4, it extends to small-genus graphs as well. This is one of the first results of this flavor
- finding the optimum of a linear program instance in NC when the corresponding integer
program is solvable in P. This algorithm also rekindles the hope of obtaining an NC algorithm
for finding a perfect matching in a planar graph.

2 Preliminaries

2.1 Matching polytopes

Let G be a graph with m edges. Consider the polytope FPM(G) in m-dimensional space, defined
by the following constraints.

xe ≥ 0 ∀ e ∈ E
∑

e incident on v

xe = 1 ∀ v ∈ V (1)

This polytope is called the fractional perfect matching polytope. Clearly, every perfect matching of
G (i.e. the corresponding point in Qm) lies in FPM(G). Standard matching theory (see for instance
[23]) tells us that every perfect matching of G is a vertex of FPM(G). (A perfect matching is an
integral solution to Equations 1). In the case of bipartite graphs, the perfect matchings are in fact
the only vertices of FPM(G); FPM(G) = PM(G). Thus for a bipartite graph it suffices to find
a vertex of FPM(G) to get a perfect matching. Furthermore, for general graphs, all vertices of
FPM(G) are always half-integral (in the set {0, 1/2, 1}m). For any vertex w of FPM(G), if we
pick those edges of G having non-zero weight in w, we get a subgraph which is a disjoint union of
a partial matching and some odd cycles.

For instance, Figure 1 shows a graph where PM(G) is empty, while FPM(G) has one point
shown by the weighted graph alongside. Figure 2 shows a graph where PM(G) is non-empty;
furthermore, the weighted graph in Figure 2(b) is a vertex of FPM(G) not in PM(G).
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Figure 1: An Example Graph with
empty PM(G), and a point in
FPM(G)

G

1/2

1/2

1/2

0 1/2

1/2

1/2

A vertex of FPM(G)
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Figure 2: An Example Graph with non-empty
PM(G), and a point in FPM(G) − PM(G)

The matching polytope M(G) for a graph G is the convex hull of all matchings (not necessarily
perfect) in G. All maximal matchings are vertices of M(G). If G is bipartite, then the polytope
M(G) is also defined by the following equations.

xe ≥ 0 ∀ e ∈ E
∑

e incident on v

xe ≤ 1 ∀ v ∈ V (2)

That is, for bipartite graphs, all vertices of the polytope defined by Equations 2 are integral and
hence correspond to matchings in G. Thus for bipartite graphs, PM(G) = FPM(G) ⊆ M(G).

2.2 Embeddings

A planar embedded graph G partitions the plane into connected regions called faces. Let F denote
the set of faces of G. Let G∗ = (F,E∗) be the dual graph of G. Its vertex set is the set F of
faces of G. There is a one-to-one correspondence between its edge set E∗ and E as follows: for
each edge e ∈ E, there is a corresponding edge e∗ ∈ E∗ connecting the two faces in G that border
e. Note that G∗ may have loops and multi-edges even when G does not. However, G∗ is always
a connected graph, irrespective of whether or not G is. We sometimes refer to G as the primal
graph. We further denote by G∗∗ the graph obtained from G∗ by deleting self-loops and replacing
multiple edges by a single edge. Let n, m and f (respectively n∗,m∗, f∗, and n∗∗,m∗∗, f∗∗) denote
the number of vertices, edges and faces in G (respectively G∗ and G∗∗), and let c be the number of
components in G. Then e∗∗ ≤ e∗ = e, f∗∗ ≤ f∗ = n − c + 1, and n∗∗ = n∗ = f . Also, f ∈ O(e).

Euler’s formula states that a planar graph with c components satisfies e + c + 1 = n + f .
Furthermore, if the graph has no self-loops or multiple edges, it also satisfies e ≤ 3n − 6c.

These definitions generalize naturally if the graph G is embedded on an orientable surface of
higher genus. Throughout this paper, surface will mean orientable surface. The genus of a graph
G, denoted γ(G), is the minimum g for which G can be embedded on a surface Sg of genus g. If
the graph is connected and has no self-loops or multiple edges, it satisfies e ≤ 3n + 6(γ(G) − 1).

Given an embedding of a graph G on a surface Sg, an edge is said to be a separating edge if the
two faces of the embedding incident on e are distinct from each other. A cycle C in G is said to be
a separating cycle if some edge e of C is a separating edge. In a planar embedding, every cycle is
separating, but this may not be the case for higher genus embeddings.
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A combinatorial embedding is a scheme that specifies, for each vertex v, a cyclic permutation of
the neighbors of v. For connected graphs, combinatorial embeddings are in one-to-one correspon-
dence with embeddings on surfaces of appropriately calculated genus.

For a full treatment of this topic, see for instance [33, 38].

2.3 The computation model

Most algorithms in this paper are presented using the concurrent-read concurrent-write (CRCW)
parallel random-access machine PRAM model, see for instance [13]. To show that a problem is in
NC, we describe a parallel algorithm that, for inputs of size n, uses nO(1) processors and runs in
logO(1) n parallel time. These processors access a global shared memory consisting of nO(1) memory
locations.

For the reduction in Section 3, we need the notion of oracle access within NC. For this result
alone, we use the equivalent formulation of NC as problems decided by circuit families {Cn}n>0,
where Cn is a Boolean circuit with nO(1) AND, OR and NOT gates, depth logO(1) n, and decides
instances of length n. Further, given 1n as input, a description of Cn can be obtained using log n
space. A circuit family relative to an oracle B (a decision problem) is also allowed to have query
gates, with each such gate having m inputs for some m ∈ nO(1). A query gate outputs a 1 if the
word formed by the settings to its input wires is in the oracle language B, and outputs 0 otherwise.
See, for instance, [37] for more details. A problem A is said to NC-reduce to a decision problem B,
denoted A ∈ NC(B), if A is decided by an NC circuit family relative to oracle B.

3 Bipartite graphs: Search reduces to counting

The main result of this section is that for any subclass of bipartite graphs closed under deletion,
searching for a perfect matching NC-reduces to counting perfect matchings. Formally, Let F be
any class of bipartite graphs closed under edge deletion. Define the problems

search-PMF : On input G ∈ F , output a perfect matching M in G, if one exists.

count-PMF : On input G ∈ F , output the number of perfect matchings in G.

bit-count-PMF . This is the decision problem

{〈G, i, b〉 the ith bit of count-PMF (G) is b }

Theorem 1 For any class F of bipartite graphs closed under edge deletion,

search-PMF ∈ NC(bit-count-PMF )

A major tool in proving this result is the technique developed in [9], where Goldberg et al.
describe a parallel algorithm to construct a maximum weight matching in a weighted bipartite
graph. The algorithm has two major stages. In the first stage, a feasible solution (an interior point
of M(G)) and a corresponding dual solution with a small duality gap are obtained. This interior
point is in fact near-optimal; the weight of the feasible solution is less than the weight of an optimal
solution by at most 1/2. In the second stage, the fractional values of the near-optimal point are
carefully rounded to obtain an optimal integral solution. The first stage needs O(

√
m log2 n log nC)
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parallel time while the second stage needs O(log n log nC) parallel time, both using polynomially
many processors. Here, C is the maximum absolute value of the weights of edges in G.

We are concerned here with the specialization of the above algorithm to unweighted bipartite
graphs (all edges have weight 1), and with the problem of perfect matchings. Suppose the given
graph G, on 2n vertices, has a perfect matching. Then we have

Proposition 2 (Section 3 of [9]) Let G be a bipartite graph on 2n vertices with at least one
perfect matching. An interior point of M(G) with total weight at least n − 1/2 can be found in
parallel time O(

√
m log3 n) using polynomially many processors.

Note that this point is not in the interior of PM(G) = FPM(G) unless it is already optimal in
the weighted sense.

Proposition 3 (Section 4 of [9]) Let G be a bipartite graph on 2n vertices with at least one
perfect matching. From any interior point of M(G) with total weight at least n − 1/2, a perfect
matching of G can be obtained in NC (parallel time O(log2 n)).

Since Proposition 3 already gives an NC bound for navigating from a near-optimal interior point
to a vertex of M(G), we can hope to obtain an NC algorithm for finding a perfect matching if
the task of Proposition 2 can also be performed in NC. We observe below that for a large class of
graphs, this is indeed the case. The crucial observation is the following:

Fact 4 Every interior point of FPM(G) has total weight n and is thus optimal in the sense of [9].

Lemma 1 Let F be any class of graphs closed under edge deletion. For any graph G ∈ F , an
interior point of PM(G) ⊆ FPM(G), if one exists, can be obtained in NC with oracle access to
bit-count-PM(F).

Proof: For each edge e ∈ G, set xe to be the ratio of the number of perfect matchings in which e
participates to the total number of perfect matchings. To compute the values xe, we use the oracle
bit-count-PM(F) as follows.

Compute M = the number of perfect matchings in G.
If M = 0, then report “PM(G) = ∅” and exit.
For each e ∈ E, pardo:

Compute Me = the number of perfect matchings in G − {e}.
xe = 1 − (Me/M).
Endif

It is clear that this point satisfies Equations 1 and hence is inside FPM(G). It is inside PM(G)
as well, since it is simply the centroid of all perfect matchings and thus is inside their convex hull.

Note that the above result does not even require G to be bipartite.
Using Fact 4 and Lemma 1, we see that Proposition 2 can be partially tightened as follows:
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Proposition 5 Let F be any class of graphs closed under edge deletion. For any G in F , if PM(G)
is non-empty, then an interior point of PM(G) with total weight n can be found in NC with oracle
access to bit-count-PM(F).

Since FPM(G) = PM(G) ⊆ M(G) for bipartite graphs, putting Proposition 5 and Proposi-
tion 3 together establishes Theorem 1.

For K3,3-free graphs, it turns out that bit-count-PM is in NC:

Lemma 2 ([35]) The number of perfect matchings in K3,3-free graphs can be computed in NC.

Proof: Given a K3,3-free graph G, [35] shows how to obtain a pfaffian orientation of G, and [25]
shows how to compute the pfaffian. The absolute value of this pfaffian is the number of perfect
matchings in G. (Note: the absolute value of the pfaffian can also be computed by computing the
square root of the determinant. [25] directly computes the pfaffian, with its sign, in NC.)

Hence, using Theorem 1, we can conclude:

Corollary 1 There is an NC algorithm that, given a K3,3-free bipartite graph G, finds a perfect
matching in G (or reports that none exists).

For regular bipartite graphs, interior points are even easier to compute. Let d be the degree of
every vertex; simply set xe = 1/d for every edge e. Clearly, this assignment satisfies Equations 1.

Proposition 6 If G is a regular bipartite graph, then an interior point of FPM(G) ⊆ M(G) can
be obtained in NC.

Using Fact 4, Proposition 6, and Proposition 3, we have the following corollary.

Corollary 2 There is an NC algorithm that, given a regular bipartite graph G, finds a perfect
matching in G (or reports that none exists).

4 Counting perfect matchings in small genus graphs in NC

In this section we show that the number of perfect matchings in a graph of genus g ∈ O(log n) can
be computed in NC.

4.1 Input and basic operations

We first describe the polygonal representation of an oriented surface Sg of genus g. We follow
the notation of [8]. Informally, Sg is a sphere with g handles, and its polygonal representation is
obtained by cutting the g handles of its space model. The polygonal representation consists of a
convex 4g-gon B0 whose vertices a1, . . . , a4g are numbered clockwise. For 0 ≤ i ≤ g − 1, the edge
[a4i+1, a4i+2] is identified with the edge [a4i+4, a4i+3] via a bridge Bi

1, and the edge [a4i+2, a4i+3]
is identified with the edge [a4i+5, a4i+4] via a bridge Bi

2. (The vertex a4g+1 is, by convention, the
vertex a1.) The bridges Bi

1 and Bi
2 together constitute the ith handle of the sphere. We will use

[a, b] to denote an edge of the convex polygon B0 as opposed to an edge of the graph. We will refer
to two edges of B0 that are identified as partners.

Thus a graph G embedded on Sg, when translated to the polygonal representation, has its
vertices inside B0. An edge of G might “cross over” from an edge of B0 to its partner using a

7



bridge. Our algorithm assumes some combinatorial representation of the embedding of G within
B0 (any scheme for representing planar graphs suffices), plus some additional information that
identifies points on an edge of G when it crosses over from an edge of B0 to its partner. Given such
an embedding, we can easily modify existing NC-algorithms for planar graphs to perform standard
operations like extracting the edges bounding each face of G, or constructing the graph G∗ dual to
G.

For more details concerning embeddings onto non-planar surfaces, see for instance [33, 38, 8].

4.2 Counting perfect matchings in P: the Galluccio-Loebl algorithm

We briefly describe the polynomial time algorithm of Galluccio and Loebl [8] for counting perfect
matchings in G.

Galluccio and Loebl actually consider the following generalization of the counting problem. Let
xe be a distinct variable associated with each edge e of the graph G. The monomial corresponding
to a perfect matching M is x(M) =

∏
e∈M xe, the product of the variables corresponding to edges

in M . Define P (G,x) to be the sum of x(M) over of all perfect matchings in the graph; this is
called the generating function of perfect matchings of G. When all the variables are set to one,
P (G,x) evaluates to the number of perfect matchings in G.

Theorem 7 (Theorem 3.10 of [8]) Let G be a graph embeddable on an orientable surface of
genus g. Then P (G,x) may be expressed as a linear combination of 4g Pfaffians of matrices A(D)
where each D is an orientation of G.

To prove this theorem, the notion of a proper g-graph is defined.

Definition 8 (Definition 2.2 of [8]) A graph G is called a proper g-graph if it may be embedded
on Sg satisfying the following conditions:

1. All vertices are embedded in B0.

2. Each edge uses at most one of the 2g bridges.

3. Vertices on the boundary of B0 form a cycle embedded on the boundary.

4. Endpoints of an edge that uses a bridge are embedded on the boundary of B0, one vertex on
each partner.

5. Each vertex has at most one incident edge not in G0.

6. G0 has a perfect matching M0.

Also, the proof uses the following convention. In some situations we want xe to be hardwired to
some number ae for certain edges e. In this case, we instantiate xe to ae in the original polynomial,
and we call the resulting polynomial the generating polynomial for the hardwired graph.

The proof of Theorem 7 involves three stages:

1. Obtain from G another graph G′ such that P (G,x) = P (G′, x′) and G′ is a proper g-graph:

(a) Start with any embedding of G on Sg. Without loss of generality, all vertices can be
assumed to be in the interior of B0.
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(b) If an edge e uses multiple bridges, subdivide it at each point where it crosses the boundary
of B0. This creates an odd-length path e1, . . . , e2k+1. This ensures that an edge uses
a bridge at most once (with endpoints on partner edges), and that a vertex on the
boundary of B0 has at most one incident edge that uses a bridge. Let x′

e1
= xe, and

x′
ej

= 1 for j > 1.

(c) Fix a perfect matching M in G. (If none exists, then P (G,x) is the zero polynomial.)
After the above subdivisions, it yields a perfect matching M0 within B0.

(d) Add edges to form a cycle on the boundary of B0. Let x′
e = 0 for such an edge e.

2. Express P (G′, x′) as a linear combination of 4g terms, each being the Pfaffian of a matrix
A(D′), where D′ is an orientation of G′.
This is established in Theorem 3.8 of [8]. The relevant orientations D′ of G′ are obtained
as follows: find any basic Pfaffian orientation D′

0 of the (planar) subgraph G0 that is G′

restricted to B0. Also, find Pfaffian orientations D′
i of each (planar) subgraph Gi that is G′

restricted to B0 and the ith bridge, for i = 1, . . . , 2g. Let −D′
i be the orientation obtained by

reversing the orientation D′
i. The relevant orientations of G′ are those that equal D′

0 in B0,
and for each i = i, . . . 2g, equal either D′

i or −D′
i on the ith bridge (Definitions 2.4, 2.5, 2.6

of [8]). Clearly there are 22g such orientations D′, each with a signature r(D′) ∈ {−1,+1}2g .
The coefficient for the Pfaffian of D′ in the linear combination is computed from the signature
r(D′) by a simple expression; see Definition 3.4 of [8].

3. Obtain for each relevant orientation D′ of G′ an orientation D of G with the same Pfaffian.
To recover an orientation D of G, throw away edges with x′

e = 0. For an edge e of G that
was subdivided into an odd path in G′, orient it in the direction in which an odd number of
edges of the subdivision are oriented in D′.

4.3 Counting perfect matchings

By modifying the algorithm of Galluccio and Loebl [8] described above, we obtain a parallel algo-
rithm to count perfect matchings given a polygonal embedding of the graph G. Stage 2 and Stage
3 above are easily parallelizable. In particular, once the embedding is available, we can in parallel
run 4g algorithms, one for each possible signature r(D). Each such algorithm computes the relevant
orientation with a given signature, and its Pfaffian. By using the results from [35] and [25] (as in
Lemma 2), each such computation is in NC. Combining the results into the linear combination is
just one more parallel step. The only non-trivial work we have to do is in stage 1, and even there,
step (c) is the bottleneck; all the other steps are easily seen to be in NC.

Stage 1 step (c) requires the computation of a perfect matching in the original graph G, which
can be done in P. That is, perfect matchings can be counted provided we have our hands on one
such matching. However, unlike [8], our ultimate goal is to search for a perfect matching (counting
perfect matchings is a step toward this); we do not already know how to find one. One way around
this would be as follows: “Add” a perfect matching to G0 without violating planarity of G0. To
ensure that the generating function of perfect matchings does not change as a result, set x′

e = 0 for
these newly added edges.

However, even such an addition is not exactly trivial. Let M be a pairing of the vertices of the
graph and suppose that M is embedded within B0 so that the embeddings of any pair of edges
in M do not intersect. Note that an edge e in M may still intersect edges of G0. However, we
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may assume that each such intersection is a single point. Let e1, . . . en/2 denote the edges in M .

We construct a sequence of graphs G0, G1, . . . , Gn/2, where G0 = G and Gi is obtained from Gi−1

essentially by adding ei and introducing vertices at the points where ei crosses edges in Gi−1.
More precisely, suppose that the edge ei = (a, b) is not an edge of Gi−1 and crosses edges

fj = (uj , vj) of Gi−1, for 1 ≤ j ≤ k, in that order. (If ei is already an edge in Gi−1, we simply
set Gi = Gi−1.) We split each fj into three edges fj1 = (uj , xj), fj2 = (xj , yj) and fj3 = (yj, vj),
by adding vertices xj and yj. We set x′

fj1
= xfj

, and x′
fj2

= x′
fj3

= 1. Further, we add the edges

(a, x1), (yj , xj+1) for 1 ≤ j ≤ k − 1, and (yk, b), and set x′
e = 0 for these edges. Figure 3 illustrates

the setting when the xe variables carry specific (fractional) values. Let us call these 0 weight edges
the edges corresponding to ei. Note that there is a monomial-preserving one-to-one correspondence
between perfect matchings in Gi−1 and perfect matchings in Gi that do not include any of the
0 weight edges corresponding to ei. Indeed, from a perfect matching N in Gi−1, we obtain the
corresponding perfect matching N ′ in Gi as follows: if (uj , vj) is present in N , we replace it by
the edges (uj , xj) and (xj , vj); if (uj , vj) is not present in N , we add the edge (xj , yj) to N ′. The
existence of this correspondence shows that the generating functions of perfect matchings of Gi−1

and Gi are the same.

b

a

0.1

0.3

0.2
b

a

0.1

0.3

0.2

0

0

0

1
1

1
1

1
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Figure 3: Adding edge (a, b) to transform Gi−1 to Gi.

We conclude that Gn/2 has the same generating function as G. It also satisfies property 6 of
Definition 8 – indeed the edges corresponding to edges in M form a perfect matching that lies
within B0. Finally, we note that although our definition of Gn/2 was sequential in that we “add”
edges of M one after another, the construction can be easily parallelized because the edges of M
do not intersect each other.

The only remaining point to address is obtaining the pairing M in NC. If a plane drawing of
G were available, this would be trivial: sort all vertices by, say, x-coordinate (and break ties by
y-coordinate), and pair up vertices in this ordering to obtain a non-crossing matching. What we
actually have, however, is a planar combinatorial embedding, not a plane embedding, of G0. Using
the techniques of [31] (Theorems 5.3 and 5.4), we can retrieve, in NC, a plane drawing of G0 if
G0 is biconnected. If G0 is not biconnected, we can make it biconnected as follows: identify the
cut-vertices of G0. For each cut-vertex v, let its neighbors in cyclic order be w1, w2, . . . , wk. (If v is
on the boundary, then assume that w1 and wk are the neighbors on the boundary.) Now introduce
edges forming a path w1w2 . . . wk that connects all the neighbors, and set x′

e = 0 for these edges.
This ensures that v is no longer a cut-vertex, while preserving planarity and the generating function
of matchings.

Thus all stages of the algorithm of [8] can be parallelized, and we can conclude
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Theorem 9 Let G be a graph embedded on Sg given by its polygonal embedding as above. We
can count perfect matchings of G in parallel time O(g) + (log n)O(1), using 4gnO(1) processors. In
particular, when g ∈ O(log n), the procedure is in NC.

Using this in conjunction with Theorem 1, we have

Theorem 10 Perfect matchings in bipartite graphs of logarithmic genus, given with a suitable
embedding, can be found in NC.
More generally, let G be a bipartite graph embedded on Sg given by its polygonal embedding as above.
We can obtain a perfect matching of G (or report that none exists) in parallel time O(g)+(log n)O(1),
using 4gnO(1) processors.

5 A different search technique in small-genus bipartite graphs

In this section, we present a different algorithm for finding a perfect matching in a logarithmic
genus bipartite graph. We first present the algorithm for planar bipartite graphs, then discuss the
essential points of difference between this and the algorithm of Section 3, and then present the
extension to small genus graphs.

We are given an embedding of a planar bipartite graph G = (V,E), where V is the vertex set
and E is the edge set. We assume that G has no loops or multi-edges.

We assume that the graph G is given to us as an embedding in some standard form.

5.1 The Algorithm for planar bipartite graphs

The algorithm is shown in Figure 4. We first compute a rational “flow” or “weight” xe ∈ [0, 1]
on each edge e ∈ E satisfying the following conservation constraint: for each vertex v ∈ V , the
demand at v, defined to be the sum of the weights of edges incident to v, equals one. To do this, we
simply set xe to be the ratio of the number of perfect matchings in which e participates to the total
number of perfect matchings. It is clear that this assignment satisfies the conservation constraint.
As described in the summary, we can compute this assignment by using the counting algorithm as
a subroutine.

Next, we manipulate the weight on the edges, always maintaining the conservation constraint,
till we obtain an integral assignment of weights which corresponds to a perfect matching. In what
follows, G will always denote the subgraph consisting of the edges with non-zero weights. When
the weight on some edge becomes zero, it is deleted from G.

The manipulation of the weights is accomplished by the while loop. Using the algorithm in
Lemma 4, we pick a subset of faces in G such that no two faces share an edge. The number of faces
in this subset is a constant fraction of the total number of faces in G. For each face in parallel, we
extract a simple cycle C from the edges bounding the face. (Note that such a simple cycle always
exists.) Since G is bipartite, C has an even number of edges. Let e denote the edge on C with
the smallest weight, and let x denote this weight. We decrease the weights of all edges of C at an
even distance from e by x, and increase the weights of all edges of C at an odd distance from e by
x. (Since C is an even cycle, “odd distance” (resp. “even distance”) from e is well-defined.) We
delete from G the edge e and any other edges of C whose weight becomes zero.

In the above step, we can operate on each cycle in parallel because the cycles are edge-disjoint.
It is straightforward to check that at the end of the step the weight of any edge is in the range
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Compute M = the number of perfect matchings in G.
If M = 0, exit.
For each e ∈ E, pardo:

Compute Me = the number of perfect matchings in G − {e}.
If Me = M Then delete edge e

Else Assign weight 1 − (Me/M) to (a, b).
Endif

while G has a cycle do
Find a set S of edge-disjoint cycles in G.
For each cycle C ∈ S, pardo:

Find the smallest edge weight, say x on edge e.
Decrease weight of all edges at even distance from e on C by x.
Increase weight of all edges at odd distance from e on C by x.
Delete all edges on C whose weight is zero.

endwhile

Figure 4: Algorithm A for finding a perfect matching in a planar bipartite graph

(0, 1], and that the conservation constraint continues to hold. This completes the description of an
iteration of the while loop, and also the algorithm.

The correctness of the algorithm is established below.

Lemma 3 When the algorithm terminates, the edges of G form a perfect matching.

Proof: It is clear that the algorithm terminates with an acyclic graph (i.e. forest, since the graph
is undirected) G and a weight xe ∈ (0, 1] on edge e of G satisfying the conservation constraint. Let
G′ be any connected component of G. Due to the conservation constraint, G′ is not an isolated
vertex. Since G is acyclic, G′ is a tree. Let v be any pendant vertex of G′, and let (u, v) be the
unique edge incident on v. Because the demand at v equals one, the weight of (u, v) must equal
one. But since the demand at u does not exceed one, (u, v) is the only edge incident on u as well.
Thus, G′ consists of just the edge (u, v). It follows that the edge set of G forms a perfect matching.

We now show that the procedure is indeed implementable in NC.

Lemma 4 In a planar graph G with f faces, a set of Ω(f) edge-disjoint faces and Ω(f) edge-disjoint
simple cycles can be found in NC.

Proof: A planar graph G as well as its dual G∗ and pruned dual G∗∗ are sparse graphs. So they
do not have too many high degree vertices. In G∗∗, call a vertex high-degree if it has 12 or more
neighbors. Since e∗∗ ≤ 3n∗∗ − 6 = 3f − 6, there are less than f/2 high-degree vertices; the rest
are all of low degree. Now consider the subgraph of G∗∗ induced by these low degree vertices, and
construct any maximal independent set S. For each vertex that we put in S, at most 11 others stay
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out. So 1 out of every 12 low-degree vertices must be in S; i.e. S ≥ f/24. And each independent
set in G∗∗ gives a set of edge-disjoint of faces in G.

To find the set of faces, use any NC algorithm for finding maximal independent sets in G∗∗ (see
[24] for general graphs, or [12] for planar graphs). If G∗∗ has fewer than 24 faces, use a singleton
set corresponding to any face as the independent set.

For each face F in the above set, consider the graph with only those edges that bound F . A
spanning tree in this graph and a fundamental cycle with respect to it can be found in NC. And
since the faces are edge-disjoint, so are these cycles. (If the edges bounding a face do not contain a
cycle (i.e. they form a forest), then it must be the case that the entire graph has only one face.)

Lemma 5 In O(log n) iterations of the while loop, G becomes acyclic.

Proof: We argue that the number of iterations of the while loop is log |F |, where F is the initial
set of faces. It follows that the number of iterations is O(log n).

Since any simple cycle divides the plane into two faces, a one-face planar graph is acyclic. Thus
it suffices to prove that after each iteration of the while loop, the number of faces in G falls by a
constant fraction. This follows from the following two observations. At the beginning of the loop
we pick a subset of edge-disjoint faces which constitute a constant fraction of the set of all faces.
And at the end of the loop, we delete one edge from each picked face, thus destroying the face.

Theorem 11 Given a planar bipartite graph G on n vertices, algorithm A (from Figure 4 either
produces a perfect matching M in G, or reports that G has no perfect matching. A runs in time
(log n)O(1) using nO(1) processors.

Proof: The initial assignment of weights satisfying the conservation constraint can be found in
NC (use Lemma 2). Each iteration of the while loop can be implemented in NC. (Use Lemma 4 to
find the set of faces. Killing each face is straightforward.) By Lemma 5, the number of iterations
of the while loop is O(log n).

5.2 Comparison with other algorithms

In the preceding subsection, we described an NC algorithm to construct a perfect matching in
a planar bipartite graph. There are three other algorithms for this problem: (1) the algorithm
of Miller and Naor [27], (2) the algorithm from Section 3, where the part from Proposition 3 is
implemented using Gabow’s edge coloring algorithm [7], and (3) the algorithm from Section 3,
where the part from Proposition 3 is implemented using the processor-efficient version of [9]. We
comparing our algorithm with each of these.

It has been known for quite some time that computing an s− t max-flow or min-cut in a planar
graph is in NC. All algorithms for these problems use the correspondence between cuts in the graph
and cycles in the dual graph. This is also true of the Miller-Naor algorithm for planar bipartite
matching, where bipartite matching is viewed as the problem of computing a flow with multiple
sources and sinks. (Note that the standard reduction of bipartite matching to s − t max-flow does
not maintain planarity.) This correspondence between cuts and cycles in the dual graph breaks
down in graphs of higher genus. We are not aware of any NC algorithm for max-flow or min-cut
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in such graphs. Our algorithm for planar bipartite matching conceptually quite different from the
algorithm of Miller and Naor because it does not use this correspondence, and is thus amenable to
higher-genus graphs as well.

In comparing our algorithm with (2) and (3) above, one notable difference that is immedi-
ately visible is the following: Our algorithm maintains the invariant that at each stage, we are
within the perfect matching polytope PM(G). This is not true for the algorithms based on Propo-
sition 3. These algorithms first round down the fractional matching ~x to integral multiples of
α = 1/2⌈log m⌉+1. This process could take one outside PM(G), since the equality constraint is no
longer satisfied at each vertex unless the initial point already had all edge weights multiples of α.
Thus for the perfect matching case, these are not truly interior-point algorithms.

The crucial observation used in (2), (3) is that though outside PM(G), the rounded point is
within M(G) and in fact “close to” PM(G). The algorithm of (2) considers the rounded weights ye,
and constructs a multigraph G′ by replacing each edge e with ∆ye parallel edges, where ∆ = 1/α.
Then G′ has maximum degree ∆, and can be edge-colored with ∆ colors. The closeness of ~y to
PM(G) guarantees that at least one color class is a perfect matching. This is completely different
from what we do with the interior point.

The algorithm of (3) is closest in spirit to our algorithm. It manipulates edge weights while
monotonically increasing closeness to PM(G). On the other hand, we manipulate edge weights
while maintaining membership in PM(G), but monotonically decrease the complexity of the graph
itself (Lemma 5). Also, the algorithm of (3) uses global weight information (the distribution of
weights in an Euler trail) to decide how to manipulate the weights. Our algorithm uses global
weight-independent information to find a maximal set of disjoint cycles, but subsequently each
cycle is manipulated using weight information local to the cycle.

5.3 Extension to small genus graphs

Let G be a bipartite graph embedded on an orientable surface Sg of genus g. In this section, we
describe how the algorithm of the previous section can be extended to find a perfect matching in
G. The overall scheme is quite similar to the algorithm of Figure 4.

We are left with an acyclic graph with weights satisfying the conservation constraint. By
the argument in Lemma 3, this must be a perfect matching. In the rest of this section, we briefly
describe the NC implementations of each of the above steps when the graph genus is logarithmically
bounded.

In each iteration in Step 2 of the algorithm, we find a subset of edge-disjoint faces of G. A
subset whose cardinality is a constant fraction of the total number of faces of G can be found using
the algorithm of the following lemma.

Lemma 6 Let G be a graph embedded on Sg given by its polygonal embedding. We can find a subset
of Ω(f) edge-disjoint faces in G in NC, where f is the number of faces in G, provided f ≥ 4g.

Proof: We construct the dual G∗ of G, and delete from G∗ any self-loops and multiple copies of
any edge to get G∗∗. Let n∗∗ = f , e∗∗, and f∗∗ denote, respectively, the number of vertices, edges,
and faces in G∗∗. Recall that G∗∗ is a connected graph of genus at most g, and e∗∗ ≤ 3n∗∗+6(g−1).

Now, as in Lemma 4, we can argue that at least n∗∗/2− g vertices of G∗∗ have small (less than
12) degree, and so a maximal independent set has size at least n∗∗/24− g/12. Since n∗∗ = f ≥ 4g,
this set has size at least f/48. And this independent set corresponds to a subset of edge-disjoint
faces in G.
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1. Using the counting algorithm as a subroutine, find a convex combination of perfect
matchings of G, i.e. a weight on each edge so that the conservation constraint is
satisfied at each vertex of G.

2. As long as the graph G has more than one face remaining, repeat the following. Find
a subset of faces in G such that no two faces share an edge. For each picked face
f in parallel, find a simple separating cycle C from the edges bounding the face.
Manipulate the weight on the edges in C as before, and delete from G the edges with
zero weight.

3. The graph G now has only one face, but since it is an embedding on a surface of
higher genus, it might still have cycles. Repeat the following until the graph becomes
acyclic. Pick any cycle in G, and manipulate the weights on the edges of the cycle
until some edge-weight becomes zero. Delete the edges of C with zero weight from
the graph.

Figure 5: Algorithm B for finding a perfect matching in a genus g bipartite graph

For each face in the subset, we find an appropriate cycle bounding part of the face using the
following algorithm.

Lemma 7 Let graph G be embedded on Sg, with more than one face, and let f be a face of the
embedding. There exists a simple cycle C using edges incident to f with the following property:
every edge of C is a separating edge. That is, if we delete any edge in C from G, the face f merges
with some adjacent face different from f . Further, such a cycle can be found in NC.

Proof: We look at the edges incident to f and throw away any edge that has f on both sides of
it. It is easy to see that the remaining set of edges forms a union of simple cycles, and deleting any
of these edges causes f to merge with some adjacent face. We pick any one of these cycles.

Lemma 8 In O(g + log n) iterations of the while loop, G is reduced to a single face graph.

Proof: The while loop has two phases: first, when there are at least 4g faces in the graph, and
second, when the reduced graph has fewer than 4g faces.

In the first phase, we select, at the beginning of each iteration, a subset of edge-disjoint faces
which constitute a constant fraction of the set of all faces. In the second phase, we pick any one
face at the beginning of each iteration.

In either phase, at the end of the loop, we delete one edge from each picked face, such that the
picked face then merges with an adjacent face (that was not picked).

We now argue that the number of iterations of the while loop is O(log |F | + g), where F is
the initial set of faces. (|F | ∈ O(n2).) After each iteration of the while loop in the first phase,
the number of faces in G falls by a constant fraction; clearly, there are at most O(log |F |) such
iterations. And the second phase has no more than 4g iterations, since a face is destroyed in each
iteration.
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Lemma 9 The number of iterations in Step 3 of the algorithm is at most 2g.

Proof: The analogue of Jordan’s Curve Theorem on the plane states that if a surface has genus g,
then any set of 2g+1 closed curves will make the surface disconnected. (See for instance [1].)

At the beginning of step 3, the graph G is embedded onto Sg and the embedding has a single
face. Since any cycle in G will embed on to a closed curve on Sg, it follows that G has at most 2g
cycles. And each iteration of step 3 destroys at least one cycle.

Theorem 12 Given a bipartite graph G on n vertices along with its embedding on a polygonal
representation of an oriented surface of genus g, algorithm B either produces a perfect matching M
in G, or reports that G has no perfect matching.

B runs in time (log n)O(1)g using 4gnO(1) processors.
In particular, if g ∈ O(log n), then B is an NC algorithm.

Proof: The bounds for step 1 are stated in Theorem 9. Lemma 6 and Lemma 7 show that each
iteration of step 2 and of step 3 is in NC. Lemma 8 and Lemma 9 bound the number of iterations
for steps 2 and 3 respectively.

6 Finding a half-integral solution in a small-genus graph in NC

In this section we make partial progress towards finding a perfect matching in a planar graph in
NC. Recall that PM(G) ⊆ FPM(G), and that once the bipartiteness condition is relaxed, we no
longer have PM(G) = FPM(G). Our eventual goal is to find a vertex of PM(G). Here we show
that we can find a vertex of FPM(G) in NC. Namely, we establish the following theorem.

Theorem 13 For graphs of logarithmic genus, a vertex of the fractional matching polytope FPM(G)
(i.e. a half-integral solution to the equations defining FPM(G), with no even cycles) can be found
in NC, provided that the perfect matching polytope M(G) is non-empty.

As in Section 5, we present the algorithm for the planar case. The extension to small genus is
exactly as in Section 5.3.

Our starting point is the same interior point p computed in the previous section; namely, the
arithmetic mean of all perfect matchings of G. Starting from p, we attempt to move towards a
vertex. The basic strategy is to find a large set S of edge-disjoint faces. Each such face contains
a simple cycle, which we try to destroy. Difficulties arise if the edges bounding the faces in S do
not contain even length simple cycles, since the method of the previous section works only for even
cycles. We describe mechanisms to be used successively in such cases.

6.1 Basic Building Blocks

We first describe some basic building blocks, and then describe how to put them together.
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Building block 1: Simplify, or Standardize, the graph G.
Let G be the current graph, let x : E −→ Q be the current assignment of weights to edges, and

let y be the partial assignment finalized so far. The final assignment is y : E −→ {0, 1/2, 1}.

Step 1.1 For each e = (u, v) ∈ E(G), if xe = 0, then set ye = 0 and delete e from G.

Step 1.2 For each e = (u, v) ∈ E(G), if xe = 1, then set ye = 1 and delete u and v from G.

(This step ensures that all vertices of G have degree at least 2.)

Step 1.3 Obtain connected components of G.

If a component is an odd cycle C, then every edge on C must have weight 1/2. For each
e ∈ C, set ye = 1/2. Delete all the edges and vertices of C from G.

If a component is an even cycle C, then for some 0 < a < 1, the edges on C alternately have
weights a and 1 − a. For each e ∈ C, if xe = a then set ye = 1 and if xe = 1 − a then set
ye = 0. Delete all the edges and vertices of C from G.

Step 1.4 Let V ′ be the set of vertices of degree 2 in G. Consider the subgraph of G induced by
V ′; this is a disjoint collection of paths. Collapse each such even path to a path of length
2 and each such odd path to a path of length 1, reassigning weights as shown in Figure 6.
Again, we stay within the polytope of the new graph, and from any assignment here, a point
in FPM(G) can be recovered in a straightforward way.

This step ensures that no degree 2 vertex has a degree 2 neighbor.

x

y

a x
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a s

tt

b a s

x
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a ab b s

t t
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Figure 6: Transformation assuring that no two consecutive vertices are of degree 2

Step 1.5 For each v ∈ V (G), if v has degree more than 3, then introduce some new vertices
and edges, rearrange the edges touching v, and assign weights as shown in Figure 7. This
assignment in the new graph is in the corresponding polytope of the new graph, and from
any assignment here, a point in FPM(G) can be recovered in a straightforward way. (This
gadget construction was in fact first used in [5].)

This step ensures that all vertices have degree 2 or 3.
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Figure 7: Transformation to remove vertices of degree greater than 3

Note that Steps 1.4 and 1.5 above change the underlying graph. To recover the point in
FPM(G) from a point in the new graph’s polytope, we can initially allocate one processor per
edge. This processor will keep track of which edge in the modified graph dictates the assignment
to this edge. Whenever any transformation is done on the graph, these processors update their
respective data, so that recovery at the end is possible.

We will call a graph on which the transformations of building block 1 have been done a stan-
dardized graph.

Building Block 2: Process an even cycle. This is as in Section 5.

Building Block 3: Process an odd cycle connected to itself by a path. Let C be such an odd
cycle, with path P connecting C to itself. We first consider the case when P is a single edge, i.e.
a chord. The chord (u, v) cuts the cycle into paths P1, P2. Let Ci denote the cycle formed by Pi

along with the chord (u, v). Exactly one of C1, C2 is even; process it as in Building Block 2.
If instead of a chord, there is some path Pu,v connecting u and v on C, the same reasoning holds

and so this step can still be performed.

Building Block 4: Process a pair of edge-disjoint odd cycles connected by a path.
Let C1 and C2 be the odd cycles and P the path connecting them. Note that if G is standardized,

then P cannot be of length 0. Let P connect to C1 at u and to C2 at v. Then the traversal of
C1 beginning at u, followed by path P going from u to v, then the traversal of C2 beginning at v,
followed by the path P going from v to u, is a closed walk of even length. We make two copies of P ,
one for each direction of traversal. For edge e on P , assign weight xe/2 to each copy. Now treating
the two copies as separate, we have an even cycle which can be processed according to building
Block 2. For each edge e ∈ P , its two copies are at even distance from each other, so either both
increase or both decrease in weight. It can be seen that after this adjustment, the weights of the
copies still adds up to something between 0 and 1.

This step is illustrated in Figure 8. The edge on the path has weight a is split into two copies
with weight a/2 each. The dotted edge is the minimum weight edge; thus w ≤ a/2.

6.2 The Algorithm

The idea is to repeatedly identify large sets of edge-disjoint faces, and then manipulate them, in the
process destroying them. The faces are identified as in Section 5, and a simple cycle is extracted
from each face. Even cycles are processed using Building Block 2. By the building blocks 3 and
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Figure 8: Manipulating a closed walk of even length

4, odd cycles can also be processed provided we identify paths connecting the cycles to themselves
or other cycles. However, to achieve polylogarithmic time, we need to process several odd cycles
simultaneously, and this requires that the odd cycles and the connecting paths be edge-disjoint.

We use the following definition: A path P is said to be a 3-bounded path if the number of
internal vertices of P with degree 3 is at most 1. Note that in a standardized graph, a 3-bounded
path can have at most 3 internal vertices.

The algorithm can be described as follows:

1. Find a point p ∈ M(G) and initialize xe accordingly.

2. Standardize G (Building block 1; this builds a partial solution represented in y).

3. While G is not empty, repeat the following steps, working in parallel on each connected
component of G:

(a) Find a collection S of edge-disjoint faces in G, including at least 1/24 of the faces from
each component. Extract a simple cycle from the edges bounding each face of S, to
obtain a collection of simple cycles T .

(b) Process all even cycles (Building block 2). Remove these cycles from T . Re-standardize.

(c) Define each surviving cycle in T to be a cluster. (At later stages, a cluster will be a set
of vertices and the subgraph induced by this subset.)

While T is non-empty, repeat the following steps:

i. Construct an auxiliary graph H with clusters as vertices. H has an edge between
clusters D1 and D2 if there is a 3-bounded path between some vertex of D1 and
some vertex of D2 in G.

ii. Process all clusters having a self-loop in H. (Building Block 3). Remove these
clusters from T . Re-standardize.

iii. Recompute H. In H, find a maximal matching. Each matched edge pairs two
clusters, between which there is a 3-bounded path in G. In parallel, process all
these pairs along with the connecting path using Building Block 4. Remove the
processed clusters from T and re-standardize.
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iv. “Grow” each cluster: if D is the set of vertices in a cluster, then first add to D all
degree-2 neighbors of D, then add to D all degree-3 neighbors of D.

4. Return the edge weights stored in y.

6.3 Correctness

The correctness of the algorithm follows from the following series of lemmas:

Lemma 10 The clusters and 3-bounded paths processed in Step 3(c) are vertex-disjoint.

Proof: Each iteration of the while loop in Step 3(c) operates on different parts of G. We show
that these parts are edge-disjoint, and in fact even vertex-disjoint. Clearly, this is true when we
enter Step 3(c); the cycles are edge-disjoint by our choice in Step 3(a), and since G has maximum
degree 3, no vertex can be on two edge-disjoint cycles. Changes happen only in steps 3(c)(ii) and
3(c)(iii); we analyze these separately.

Consider Step 3(c)(ii). If two clusters D1 and D2 have self-loops, then there are 3-bounded paths
ρi from Di to Di, i = 1, 2. If these paths share a vertex v, it can only be an internal vertex of ρ1

and ρ2, since the clusters were vertex-disjoint before this step. In particular, v cannot be a degree-2
vertex. But since G is standardized, deg(v) is then 3, which does not allow it to participate in two
such paths. So ρ1 and ρ2 must be vertex-disjoint. Thus processing them in parallel via building
block 4 is valid. Processing clusters with self-loops merely removes them from T ; thus the clusters
surviving after Step 3(c)(ii) continue to be vertex-disjoint.

Now consider Step 3(c)(iii). Suppose cluster D1 is matched to D2 via 3-bounded path ρ, D3 to
D4 via 3-bounded path η. Note that Di 6= Dj for i 6= j, since we are considering a matching in H.
Thus, by the same argument as above, the paths ρ and η must be vertex-disjoint. Thus processing
them in parallel via building block 4 is valid. Processing matched clusters removes them from T ;
the remaining clusters continue to be vertex-disjoint.

Since Step 3(c)(iii) considers a maximal matching, the clusters surviving are not only vertex-
disjoint but also not connected to each other by any 3-bounded path.

Lemma 11 Each invocation of the while loop inside Step 3(c) terminates in finite time.

Proof: To establish this statement, we will show that clusters which survive Steps 3(c)(ii) and
3(c)(iii) grow appreciably in size. In particular, they double in each iteration of the while loop.
Clearly, clusters cannot double indefinitely while remaining vertex-disjoint, so the statement follows.
In fact, our proof establishes that the while loop in Step 3(c) executes O(log n) times on each
invocation.

Let G denote the graph at the beginning of Step 3(c). Consider a cluster at this point. Let D0

be the set of vertices in the cluster. Consider the induced subgraph G[D0] on D0. Notice that each
such G[D0] contains exactly one cycle, which is an odd cycle extracted in Step 3(a).

We trace the progress of cluster D0. Let Di denote the cluster (or the associated vertex set; we
use this notation interchangeably to mean both) resulting from D0 after i iterations of the while
loop of Step 3(c). If D0 does not survive i iterations, then Di is empty.

For any cluster D, let 3-size(D) denote the number of vertices in D whose degree in G is 3. Let
D′ denote the vertices of D whose degree in G is 3 but degree in D is 1.

We establish the following claim:
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Claim 14 For a cluster D0 surviving i+1 iterations of the while loop of Step 3(c), G[Di] contains
exactly one cycle, and furthermore,

|Di
′| ≥ ⌊2i−1⌋

3-size(Di) ≥ 2i

Proof of Claim: As mentioned earlier, G[D0] contains exactly one cycle. Thus 3-size(D′
0) = 0.

In fact, each G[Dj ], j ≤ i contains just this one cycle, because if any other cycle were present in
G[Dj ], then a self-loop would be found at the (j + 1)th stage and the cluster would have been
processed and deleted from T in Step 3(c)(ii); it would not grow (i + 1) times.

It remains to establish the claims on the sizes of Di and D′
i. We establish these claims explicitly

for i ≤ 1, and by induction for i > 1.
Consider i = 0. Clearly, 3-size(D0) ≥ 20 = 1, and ⌊2−1⌋ = 0.
Now consider i = 1. We know that D0 has gone through two “Grow” phases, and that G[D1]

has only one cycle. Notice that each degree 3 vertex in D0 contributes one vertex outside D0; if its
third non-cycle neighbor were also on the cycle, then the cycle has a chord detected in Step 3(c)(ii)
and D0 does not grow even once. In fact, since D0 grows twice, the neighbors are not only outside
the cycle but are distinct from each other. Thus for each vertex contributing to 3-size(D0), one
degree-3 vertex is added to D1 and these vertices are distinct. Thus all these vertices are in D′

1

giving |D′
1| = 3-size(D0) ≥ 1, and 3-size(D1) = 3-size(D0) + |D′

1| ≥ 2.
To complete the induction, assume that the claim holds for i − 1, where i > 1. In this case,

⌊2i−2⌋ = 2i−2. Thus 3-size(Di−1) ≥ 2i−1, and |D′
i−1| ≥ 2i−2.

Each u ∈ D′
i−1 has two neighbors, u1 and u2, not in Di−1. These vertices contributed by each

member of D′
i−1 must be disjoint, since otherwise Di−1 would have a 3-bounded path to itself and

would be processed at the ith stage; it would not grow the ith time. Furthermore, if ul is of degree
2, let u′

l denote its degree-3 neighbor other than u; otherwise let u′
l = ul. By the same reasoning,

the vertices u′
1, u

′
2 contributed by each u ∈ D′

i−1 must also be disjoint. So 2|D′
i−1| vertices are

added to Di−1 in obtaining Di. All these new vertices must be in D′
i as well, since otherwise Di

would have a 3-bounded path to itself and would be processed at the (i + 1)th stage; it would not
grow the (i + 1)th time. Hence |D′

i| = 2|D′
i−1| ≥ 2 · 2i−2 = 2i−1.

Every degree-3 vertex of Di−1 continues to be in Di and contributes to 3-size(Di). Further-
more, all the vertices of D′

i are not in Di−1 and also contribute to 3-size(Di). Thus 3-size(Di) =
3-size(Di−1)+ |D′

i| ≥ 2i−1 +2i−1 = 2i. Now that the Claim has been proved, its geometric growth

implies Lemma 11, and in fact implies that the ”while” loop in Step 3(c) executes O(log n) times
in each invocation.

Lemma 12 The while loop of Step 3 terminates in finite time.

Proof: Suppose some iteration of the while loop in Step 3 does not delete any edge. This means
that Step 3(b) does nothing, so S has no even cycles, and Step 3(c) deletes nothing, so the clusters
keep growing. But by the preceding claim, the clusters can grow at most O(log n) times; beyond
that, either Step 3(c)(ii) or Step 3(c)(iii) must get executed.

Thus each iteration of the while loop of Step 3 deletes at least one edge from G, so the while
loop terminates in finite time.
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Lemma 13 After step 2, and after each iteration of the while loop of Step 3, we have a point inside
FPM(G).

Proof: It is easy to see that all the building blocks described in Section 6.1 preserve membership
in FPM(G). Hence the point obtained after Step 2 is clearly inside FPM(G). During Step 3,
various edges are deleted by processing even closed walks. By our choice of S, the even cycles
processed simultaneously in Step 3(b) are edge-disjoint. By Lemma 10, the even closed walks
processed simultaneously in Steps 3(c)(ii) and 3(c)(iii) are edge-disjoint. Now all the processing
involves applying one of the building blocks, and these blocks preserve membership in FPM(G)
even if applied simultaneously to edge-disjoint even closed walks. The statement follows.

Lemma 14 When the algorithm terminates, we have a vertex of FPM(G).

Proof: When G is empty, all edges of the original graph have edge weights in the set {0, 1/2, 1}.
Consider the graph H induced by the non-zero edge weights ye. From the description of Building
Block 1, it follows that H is a disjoint union of a partial matching (with edge weights 1) and odd
cycles (with edge weights 1/2). Such a graph must be a vertex of FPM(G) (see, for instance, [23]).

6.4 Analysis

It is clear that each of the basic steps of the algorithm runs in NC. The proof of Lemma 11 establishes
that the while loop inside Step 3(c) runs O(log n) times. To show that the overall algorithm is in
NC, it thus suffices to establish the following:

Lemma 15 The while loop of Step 3 runs O(log n) times.

Proof: Let F be the maximum number of faces per component of G at the beginning of step 3. We
show that F decreases by a constant fraction after each iteration of the while loop of step 3. Since
F = O(n) for planar graphs, it will follow that the while loop executes at most O(log n) times.

At the start of Step 3, the connected components of G are obtained, and they are all handled in
parallel. Let us concentrate on any one component. Within each component, unless the component
size (and hence the number of faces f in the embedding of this component) is very small, O(1), a set
of Ω(f) edge-disjoint faces (in fact, f/24 faces) and Ω(f) edge-disjoint simple cycles can be found
in NC. This is established in Lemma 3 of [26], which basically shows that a maximal independent
set amongst the low-degree vertices of the dual is the required set of faces.

So let T be the set of edge-disjoint faces obtained at the beginning of step 3. If |T | ≤ f/24,
then the component is very small, and it can be processed sequentially in O(1) time. Otherwise,
note that after one iteration of the while loop of Step 3, T is emptied out, so all the clusters
in T get processed. A single processing step handles either one cluster (cluster with self-loop)
or two (clusters matched in H), so at least |T |/2 processing steps are executed (not necessarily
sequentially).

Each processing step deletes at least one edge. Let the number of edges deleted be k ≥ |T |/2.
Of these, k1 are not bridges at the time when they are deleted and k2 = k − k1 are bridges when
they are deleted. Each deletion of a non-bridge merges two faces in the graph. Thus if k1 ≥ |T |/4,
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then at least |T |/4 ≥ f/96 faces are deleted; the number of faces decreases by a constant fraction.
If k2 > |T |/4, consider the effect of these deletions. Each bridge deleted is on a path joining two
clusters. Deleting it separates these two clusters into two different components. Thus after k2 such
deletions, we have at least k2 pairs of separated clusters. Any connected component in the resulting
graph has at most one cluster from each pair, and hence does not have at least k2 clusters. Since
each cluster contains an odd cycle and hence a face, the number of faces in the new component is at
most f − k2 ≤ f − |T |/4 ≤ f − f/96. Hence, either way, the new F is at most 95F/96, establishing
the lemma.

7 Conclusions

This paper presents an interior-point method based on counting to solve the search problem for
perfect matchings in NC. The method works for those subclasses of bipartite graphs for which
counting is in NC. A somewhat different and simpler method works for small genus bipartite
graphs. In recent work [18], our approach has been extended to cubic and polylog degree bipartite
graphs. For these graphs, too, searching for a perfect matching was already known to be in NC.
But the algorithm of [18] is completely different from earlier algorithms and much closer in spirit
to that of Section 5. This suggests that the essence of the algorithm does not hinge on topological
constraints (small genus) but on interior-point manipulations.

The obvious question is how to extend this approach to non-bipartite graphs. We believe that
counting is a harder problem than search; hence for graphs where counting perfect matchings is in
NC, finding one also ought to be in NC. Our attempt at obtaining this generalization has worked
only partially, and only for small genus graphs; here we can find a half-integral perfect matching
(a vertex of FPM(G)) in NC, provided there is at least one perfect matching to begin with.
Unfortunately, we still do not know any way of navigating from a vertex of FPM(G) to a vertex
of PM(G) in general. Proving this at least for planar graphs would be an important first step.

Note that for planar non-bipartite graphs, a sublinear time (O(n1/2+ǫ)) algorithm can be easily
devised using separators: find a separator S, match vertices of S sequentially to some unmatched
neighbor, then recursively process the unmatched components.

Another open problem is to find embeddings of graphs onto surfaces of small genus in NC, or
even to test whether such embeddings exist. No NC algorithms are known for testing or embedding
onto surfaces of genus greater than 0. While testing whether a graph has genus at most k is an
NP-complete problem [32], for a fixed k the problem is known to be in P and even in linear time
[28].

A combinatorially interesting, though not necessarily practical, question is whether for planar
graphs (or for that matter, any class of graphs where counting perfect matchings is in NC), one
can count half-integral perfect matchings (vertices of FPM(G)) in NC.
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