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Abstract. The class of polynomials computable by polynomial size log
depth arithmetic circuits (VNC1) is known to be computable by constant
width polynomial degree circuits (VsSC0), but whether the converse con-
tainment holds is an open problem. As a partial answer to this ques-
tion, we give a construction which shows that syntactically multilinear
circuits of constant width and polynomial degree can be depth-reduced,
which in our notation shows that sm-VsSC0 ⊆ sm-VNC1. We further
strengthen this inclusion, by giving a separate construction that provides
a width-efficient simulation for constant width syntactically multilinear
circuits by constant width syntactically multilinear algebraic branching
programs (In our notation: sm-VsSC0 ⊆ sm-VBWBP).
We then focus on polynomial-size syntactically multilinear circuits, and
study relationships between classes of functions obtained by imposing
various resource (width, depth, degree) restrictions on these circuits.
Along the way we also observe a characterisation of the class NC1 in
terms of a restricted class of planar branching programs of polynomial
size. Finally, in contrast to the general case, we report closure and
stability of coefficient functions for the syntactically multilinear classes
studied in this paper.

Keywords. Arithmetic Circuits, Valiant’s Classes, Syntactic Multilin-
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1. Introduction

The class NC1 is defined to be the class of Boolean functions computed by
logarithmic depth polynomial size circuits. It has several equivalent charac-
terisations: it coincides with the classes of functions computed by polyno-
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Figure 1.1: Boolean complexity classes around NC1. Arrow (→) indicates
containment.

mial size bounded width branching programs (BWBP), by polynomial size for-
mulas (F), and by bounded width circuits of polynomial size (SC0). Thus
NC1 = BWBP = F = SC0. Its subclass AC0, consisting of Boolean functions
computed by polynomial size constant depth unbounded fan-in circuits, has
also been characterised via restricted branching programs (see Allender et al.

(1999)). See Figure 1.1. However, the counting and arithmetic versions of
those classes which are equivalent to NC1 seem to represent different classes
of functions. In Caussinus et al. (1998), it was shown that if inputs take
the values from {0, 1}, then the class of functions represented as the total
weights of paths in a constant width branching program with edge weights from
{x1, . . . , xn,−1, 0, 1} coincides with the class of functions computable by poly-
nomial size and log-depth arithmetic circuits over {+,×,−1, 0, 1, x1, . . . , xn},
i.e. GapBWBP = GapNC1. In Limaye et al. (2010), this study was extended to
bounded width circuits of small (polynomial) degree and size, i.e. sSC0, show-
ing that GapNC1 ⊆ GapsSC0, but it is not known whether this containment is
strict or not.

In the Boolean world, bounded and polylog width polynomial size circuits
accept the language class SC, corresponding to languages accepted in simulta-
neous polynomial time and polylog space by a sequential machine (see Cook
(1979); Johnson (1990)). Similarly, polylog depth polynomial size circuits (NC)
correspond to languages accepted in parallel polylog time using polynomially
many processors (see Johnson (1990); Vollmer (1999)). Translations between
small width and small depth thus reveal connections between efficient small-
space algorithms and efficient parallel algorithms. Similar connections hold in
arithmetic settings as well.

The question GapsSC0
?

⊆ GapNC1 can be seen as a depth reduction problem
for bounded width arithmetic circuits. In the algebraic model introduced by
Valiant (see Bürgisser (2000); Valiant (1982)), where arbitrary constants from
the underlying ring or field are allowed, the analogous question is to ask: is
the class of constant width polynomial size arithmetic circuits of polynomial
syntactic degree (VsSC0) contained in the class of polynomial size arithmetic
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formulas? In other words, is VsSC0 ⊆ VNC1 ? An ideal result would be a
bounded width version of the depth reduction given in Valiant et al. (1983),
where a circuit with size s degree d is depth-reduced to one of depth log d, with
+ gates having fan-in s (× gates have fan-in 2). In a bounded-width version,
we would need the resulting circuit to have the + fan-in bounded by a function
of the width of the original circuit. But it is not clear how this can be achieved.
So, one of the natural ways to proceed is to look for restrictions on the circuits
where this can be achieved. The main focus of this paper is the restriction
of syntactic multilinearity on the arithmetic circuits and branching programs.
We show that the classes VsSC0, VNC1 and VBWBP behave very differently in
the syntactically multilinear world. The latter class corresponds to polynomial
size algebraic branching programs of constant bounded width (See Section 2).

A multilinear arithmetic circuit is the one where every gate computes a
multilinear polynomial. Syntactic multilinearity (sm for short) is a further
restriction on the syntactic structure of a multilinear arithmetic circuit. In
a syntactically multilinear circuit, every multiplication gate operates on dis-
joint sets of variables. (A formal definition is given in Section 2.) Clearly,
this implies multilinearity, although the converse is not necessarily true. How-
ever in the case of formulas, it is easy to see that every multilinear formula
has an equivalent syntactically multilinear formula of the same size (Proposi-
tion 2.1 in Raz (2009)). So multilinear and syntactically multilinear formulas
coincide. By this, and exploiting the structure provided by syntactic mul-
tilinearity, Raz (2009) proved super-polynomial lower bounds for multilinear
arithmetic formula computing the permanent or determinant. Later in Raz
(2006), it was shown that the multilinear versions of the classes VNC1 and
VNC2 are different. In Raz & Yehudayoff (2008), the depth reduction tech-
nique of Valiant et al. (1983) was shown to preserve the property of syntactic
multilinearity. In Raz et al. (2008) an explicit polynomial is shown to require a
size of Ω(n4/3/ log2 n) for any syntactic multilinear arithmetic circuit computing

it. Motivated by this recent progress, we explore the question VsSC0
?

⊆ VNC1

through the lens of syntactic multilinearity.

Firstly, we give a depth reduction for constant width syntactically multilin-
ear arithmetic circuits. We show that a polynomial computed by a syntactically
multilinear circuit of constant width and polynomial size can also be computed
by a syntactically multilinear formula of logarithmic depth and polynomial
size (Theorem 3.1 and Corollary 3.2). Thus, if restricted to be syntactically
multilinear, then the class VNC1 is at least as powerful as VsSC0. Note that
even in the syntactically multilinear world, we can unwind circuits into formu-
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las, and so log depth formulas are equivalent to log depth circuits or VNC1.
Using our abbreviated notation, this show that sm-VsSC0 ⊆ sm-VNC1. Ironi-
cally however, the known converse containment VNC1 ⊆ VsSC0 does not seem
to translate into the syntactically multilinear world. This is mainly because
the only known translation Ben-Or & Cleve (1992) from a log-depth formula
into a constant width branching program (and hence an sSC0 circuit) does not
preserve syntactic multilinearity.

By the above result, we have that sm-VBWBP ⊆ sm-VsSC0 ⊆ sm-VNC1. Ex-
ploring these classes further, we obtain a somewhat surprising result. Namely,
we show that syntactically multilinear algebraic branching programs of con-
stant width and polynomial size are as powerful as syntactically multilinear
circuits of constant width and polynomial size (Theorem 4.1), i.e. sm-VsSC0 ⊆
sm-VBWBP. Thus the restriction of syntactic multilinearity pulls VsSC0 down
to VBWBP. In order to establish this, we use the equivalence of skew cir-
cuits and branching programs, and the notions of a weakly skew circuit (first
studied by Toda (1992)) and a multiplicatively disjoint circuit (introduced
by Malod & Portier (2008)).

The two results described above give a reversal in the relationships among
the three classes VBWBP, VNC1 and VsSC0: In the general world, VsSC0 is
the strongest class and the other two are equal and contained in VsSC0, i.e.

VBWBP = VNC1 ⊆ VsSC0. In the syntactically multilinear world, sm-VNC1

turns out to be the strongest class, whereas the other two are equal and con-
tained in it, i.e. sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1. This indicates that stan-
dard simulations may fail in the syntactically multilinear world, and need to be
examined afresh. We do this next, showing that the classic depth-reduction of
Brent (1973) works in this setting (Theorem 5.1), as also the divide-and-conquer
technique of Savitch converting branching programs to circuits (Lemma 5.2),
and the folklore staggering (see Istrail & Zivkovic (1994)) of a small-depth to a
small-width circuit (Lemma 5.3). A more recent characterisation of arithmetic
AC0 via restricted planar branching programs, Allender et al. (1999), also car-
ries through (Corollary 5.7). In fact, examining this more closely, we obtain a
characterisation of Boolean NC1 as well as VNC1 via polynomial size branching
programs of log width or unbounded width, with the same restricted planarity
condition (Corollary 5.8).

Another context in which we study the effect of syntactic multilinearity
is the complexity of coefficient functions, first studied in a systematic way
in Malod (2007). In general, these functions can be quite hard to compute.
However for most syntactically multilinear classes, we show that the coefficient
functions are also computable within the same class. Further, exponential sums
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are also computable within the respective classes. (Theorems 6.5,6.7)

The rest of the paper is organized as follows: In Section 2 we give for-
mal definitions of syntactically multilinear circuits. Section 3 contains a depth
reduction for syntactically multilinear constant-width circuits. In Section 4
we give a width preserving simulation of constant width syntactically multi-
linear circuits by syntactically multilinear algebraic branching programs. In
Section 5 we discuss the relationships among syntactically multilinear classes.
In Section 6 we discuss the coefficient functions for syntactically multilinear
classes.

2. Preliminaries

2.1. Arithmetic Circuits and Algebraic Branching Programs. Let K

be a fixed ring. Let X = {x1, . . . , xn} be variables that take values from K.
An arithmetic circuit (or a straight line program) over K is a directed acyclic
multi-graph C, where nodes of zero in-degree are called input gates and are
labeled from the set K ∪ {x1, . . . , xn}. The nodes of zero out-degree are called
output gates. The remaining nodes of C are labeled from {+,×}. Whenever
not stated explicitly, we assume that in-degree of every node is bounded by 2.
A gate f computes a polynomial pf in K[X] which can be defined inductively
in a natural way: an input gate computes a polynomial that is a constant or a
single-variable monomial; if f = g × h, then pf = pg × ph, where pg and ph are
polynomials computed by g and h respectively (available by induction); and if
f = g + h, then pf = pg + ph. The set of polynomials computed at its output
gates constitute the polynomials computed by a circuit. If the circuit has a
single output gate, we simply refer to the polynomial computed by the circuit.
In what follows, we may use the same symbol f for representing both the gate
and the polynomial represented by it. A polynomial family (fn)n≥0 is said to
be computed by a circuit family (Cn)n≥0 if ∀n ≥ 0, fn is computed by Cn.

We say that two circuit families are equivalent if they compute the same
set of polynomials.

Without loss of generality, we assume that a circuit is layered, i.e. there is
a partition V1, . . . , Vℓ of the non-input gates in the circuits so that all incoming
edges of Vi are either from input gates or from Vi−1, 1 < i ≤ ℓ. Each part Vi in
the partition forms a layer of the circuit. The measures of size, depth, width
and syntactic degree of a circuit are defined in the same way as in the case of
Boolean circuits: size is the number of gates, depth is the length of the longest
path from an input gate to an output gate, width is the maximum number of
gates per layer, and the syntactic degree d(f) of a gate f is inductively defined
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to be 1 at an input gate, max{d(g), d(h)} if f = g + h, and d(g) + d(h) if
f = g × h. The syntactic degree of a gate is an upper bound on the degree of
the polynomial computed by that gate.

A formula is a circuit where the out-degree of every gate is bounded by 1.
A skew arithmetic circuit is a circuit in which for every gate f = g × h, either
g ∈ K ∪ X or h ∈ K ∪ X or both.

An algebraic branching program (ABP) over a ring K is a layered directed
acyclic graph G with two designated nodes s (of zero in-degree) and t (of zero
out-degree), in which the edges are labeled from K∪X, where X = {x1, . . . , xn}.
For any s-t path P in G, weight(P ) is defined to be the product of the labels
of edges that appear in P . The polynomial fG computed by G is defined as
∑

P weight(P ), where P ranges over all s-t paths in G. The size of an ABP
is the number of nodes in it. Width is the maximum number of nodes at any
layer. Length of an ABP is the total number of layers in it. In this paper, we
assume (without loss of generality) that the in and out-degrees of every node
in the ABP are bounded by a constant.

As in the case of Boolean and counting circuits, a skew arithmetic circuit
can be transformed into an algebraic branching program and vice versa. See
Vinay (1996) for conversions in the Boolean world; the same carry over in the
arithmetic world as well. See also Nisan (1991). In fact this transformation
increases the width and size by only a constant factor. (The conversion in
Nisan (1991) has quadratic blowup in size because there edges are labelled by
linear forms.) A series-parallel construction due to Valiant transforms formulas
of size s and depth d into ABPs of width O(d) and length O(s).

We now give formal definitions of the Gap classes discussed in the intro-
duction:

Definition 2.1.

GapNC1 =















f : {0, 1}∗ → Z |

There exists a family (Cn)n≥0 of polynomial
size arithmetic formulas with labels from
{−1, 0, 1} such that ∀x ∈ {0, 1}n, f(x) =
Cn(x).















GapsSC0 =























f : {0, 1}∗ → Z |

There exists a family (Cn)n≥0 of constant
width arithmetic circuits of polynomial size
and polynomial syntactic degree with la-
bels from {−1, 0, 1} such that ∀x ∈ {0, 1}n,
f(x) = Cn(x).
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GapBWBP =















f : {0, 1}∗ → Z |

There exists a family (Bn)n≥0 of polyno-
mial size algebraic branching programs
with labels from {−1, 0, 1} such that
∀x ∈ {0, 1}n, f(x) = Bn(x).















The following proposition collects known relationships among the Gap com-
plexity classes:

Proposition 2.2. Caussinus et al. (1998); Limaye et al. (2010) GapNC1 =
GapBWBP ⊆ GapsSC0.

G-graphs are graphs that have planar embeddings where vertices are em-
bedded on a rectangular grid, and all edges are between adjacent columns from
left to right. In these graphs, the node s is fixed as the leftmost bottom node
and t is the rightmost top node. In Allender et al. (1999), a restriction of G-
graphs is considered where the width of the grid is a constant, and only certain
kinds of connections are allowed between any two layers. Namely, for width
2k + 2, the connecting pattern at any layer is represented by one of the graphs
Gk,i (see figure 2.1) for 0 ≤ i ≤ 2k + 2. An rGP (short for restricted grid
branching program) is an algebraic branching program where the underlying
graph is a restricted G-graph of the aforementioned form.

A family of circuits (Cn)n≥0 is said to be C-uniform if there is an algorithm
that uses resources within the complexity class C and on input 1n, computes a
suitably encoded description of the nth circuit Cn. For the classes considered
in this paper, an appropriate notion of uniformity is obtained by letting C be
the class AC0. However, in the algebraic settings, non-uniform constructions
are the norm, so we present our results in a non-uniform framework. Uniform
versions are relevant when talking about the counting classes (Gap classes).
The interested reader is referred to Barrington et al. (1990); Vollmer (1999) for
more details concerning uniformity.

2.2. Valiant’s Classes. In Valiant’s model, a complexity class is a set of
families of polynomials f = (fn)n≥0, where fn ∈ K[X1, . . . Xn] . In this paper,
the prefix V denotes an algebraic class in this model. We now define the differ-
ent complexity classes that are studied in this model. The classes VP, VNP, VPe,
were defined by Valiant (see, for instance, Bürgisser (2000); Malod & Portier
(2008)). We define the other classes in a fashion analogous to VP, by placing
resource bounds on the circuits computing the polynomials. In general, for a
class C of arithmetic circuits or branching programs, we use the nomenclature
VC to denote the class of families of polynomials f = (fn)n≥0 where fn has
degree polynomial in n, and f can be computed by a circuit family in C.
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G0,1(c)G0,0
G0,2

Gk−1,i

Gk,i Gk,2k+1 Gk,2k+2

c

for i ≤ 2k

Figure 2.1: The possible patterns between two layers of rGPs. The label c can
take a value in X ∪ K. Edges without any label are of weight 1.

Definition 2.3.

VP =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size arith-
metic circuit, and deg(fn) ≤ poly(n).

}

VNP =







f = (fn)n≥0 |
∃ a polynomial family g = (gm)m≥0 ∈ VP such
that fn(X) =

∑

e∈{0,1}m′ gm′+n(X, e), where

m′, deg(fn) ≤ poly(n).







VF = VPe =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by a
polynomial size arithmetic formula.

}

VPskew =
{

f = (fn)n≥0 | f ∈ VP; and fn can be computed by a poly-
nomial size skew arithmetic circuit.

}

VBP =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by a poly-
nomial size algebraic branching program

}

VBP[w] =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size
algebraic branching program of width O(w)

}
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VLWBP = VBP[log n] log width branching programs

VBWBP = VBP[1] bounded width branching programs

VNCi =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by polyno-
mial size O(logi n) depth arithmetic circuits
of constant fan-in

}

VAC0 =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by polynomial
size and constant depth arithmetic circuits with
unbounded fan-in gates

}

VSACi =











f = (fn)n≥0 |

f ∈ VP; and fn can be computed by polynomial
size O(logi n) depth arithmetic circuits with con-
stant fan-in for × gates and unbounded fan-in for
+ gates











VLWF =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by a polyno-
mial size arithmetic formula of O(log n) width

}

VrGP =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by polynomial
size restricted grid algebraic branching program

}

VBWrGP =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by polyno-
mial size restricted grid algebraic branching
program of constant width

}

VsSCi =







f = (fn)n≥0 |
fn can be computed by an arithmetic circuit of
polynomial size and polynomial syntactic degree,
and width O(logi n).







VSCi =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by a polynomial
size circuit of width O(logi n)

}

Figure 2.2 shows the known relationships among some of the classes defined
above. The equivalence between VBWBP and VNC1 follows from Ben-Or & Cleve
(1992); that between VNC1 and VPe from Brent (1973). The other containments
follow from the definitions.
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Figure 2.2: Relationships among complexity classes in Valiant’s model (Arrows
denote containment)

2.3. Syntactically Multilinear Circuits. The notion of multilinear cir-
cuits was formally introduced by Nisan & Wigderson (1997). We follow the
notations from Raz (2009). We call a polynomial p multilinear, if for any
monomial of p the individual degree of every variable is bounded by one. Let
C be an arithmetic circuit over the ring K, and let X = {x1, . . . , xn} be its
input variables. For a gate g in C, let pg ∈ K[X] be the polynomial computed
at g. Let Xg ⊆ X denote the set of variables that occur in the sub-circuit
rooted at g. C is called multilinear if for every gate g ∈ C, pg is a multilinear
polynomial. C is said to be syntactically multilinear if for every multiplication
gate g = h × f in C, Xh ∩ Xf = ∅. Clearly, a syntactically multilinear circuit
is also multilinear, though the converse is not necessarily true.

In the case of formulas, the notion of multilinearity and syntactic multilin-
earity are (non-uniformly) equivalent (Proposition 2.1 in Raz (2009)).

In the case of algebraic branching programs, the notion of syntactic multilin-
earity coincides with the read-once property, where no variable appears more
than once on any path. (See Borodin et al. (1993) for more about Boolean
read once branching programs). Namely, we say that an algebraic branching
program P is multilinear if for every node v in P , the polynomial pv (sum of
weights of all s-to-v paths) is multilinear. Furthermore, P is defined to be
syntactically multilinear if in every path of the program (not just s-to-t paths),
no variable appears more than once; i.e. the algebraic branching program is
syntactic read-once.

For any algebraic complexity class VC, we denote by m-VC and sm-VC re-
spectively the functions computed by multilinear and syntactically multilinear
versions of VC.

Raz & Yehudayoff (2008) show that the depth reduction give by Valiant et al.

(1983) preserves syntactic multilinearity. From the fact that a syntactically
multilinear circuit has degree O(n), and observing that the construction actu-
ally yields a semi-unbounded circuit, we conclude
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Proposition 2.4 (Theorem 3.1 in Raz & Yehudayoff 2008). Any polynomial
computed by a syntactically multilinear polynomial size arithmetic circuit is in
sm-VSAC1.

3. Depth Reduction in Small Width sm-Circuits

This entire section is devoted to a proof of Theorem 3.1 below, which says that
a circuit width bound can be translated to a circuit depth bound, provided the
given small-width circuit is syntactically multilinear.

Theorem 3.1. Let C be a syntactically multilinear arithmetic circuit of depth
ℓ and width w and syntactic degree d, with X = {x1, . . . , xn} as the input vari-
ables, and constants from the ring K. Then, there is a syntactically multilinear
circuit E of depth O(w2 log ℓ + log d) and size O(2w2

ℓ25w2

+ 4ℓwd) computing
the same polynomial as C.

An immediate corollary is,

Corollary 3.2. sm-VsSC0 ⊆ sm-VNC1.

It can also be seen that if we apply Theorem 3.1 to a syntactically multilin-
ear arithmetic circuit of poly-logarithmic width and quasi-polynomial size and
degree, then we get a poly-logarithmic depth circuit of quasi-polynomial size.
Thus

Corollary 3.3.

sm-Size, Width, Deg(2poly(log), poly(log), 2poly(log))

⊆ sm-Size, Width, Depth(2poly(log), poly, poly(log))

where sm-Size, Width, Deg(s, w, d) and sm-Size, Width, Depth(s, w, d) denote the
classes of polynomials computable by syntactically multilinear arithmetic cir-
cuits of size s, width w and degree d or depth d respectively.

We first give a brief outline of the technique used. We actually show some-
thing stronger: not only can we compute the polynomials corresponding to
gates at the output level, but also, if we express these polynomials as poly-
nomials exclusively in the variables at the lowest level, then we can compute
all coefficients of the new polynomials in small depth. (Note that the coeffi-
cients are not necessarily ring elements but are themselves polynomials in the
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New  dummy variables

gw
C

g1

Circuit to compute [ph, T ]

as coefficient of a polynomial ph

in K[U ]

Coefficients [pg, R] of

pg as polynomials in K[U ]

zwz1

. . .

A B

uwu1

uwu1

h1 hw. . .

B

A pf as polynomials in K[Z]

Coefficients [pf , S] of

⌈ ℓ
2
⌉

Figure 3.1: Breaking up circuit C into A and B

remaining variables. So when we say we compute the coefficients, we are still
computing polynomials and not ring elements.)

To show this stronger claim, we cut the circuit C at depth ⌈ ℓ
2
⌉, to obtain

circuits A (the upper part) and B (the lower part). Let M = {g1, . . . , gw} be
the gates of C at level ⌈ ℓ

2
⌉. A is obtained from C by replacing the gates in M

by a set Z = {z1, . . . , zw} of new variables. Each gate g of A (or B) represents
a polynomial pg ∈ K[X,Z], and can also be viewed as a polynomial in K[Z],
where K = K[X]. Since A and B are circuits of depth bounded by ⌈ ℓ

2
⌉, we use

induction on each of them. Now we need additional circuitry to patch together
the coefficients so computed and obtain the coefficients corresponding to C.
See Figure 3.1.

For this approach to work, we need to eliminate constants, since they may
violate syntactic multilinearity if replaced by variables at the slice layer. We
say that a gate g syntactically computes a constant if each input gate that is
a descendant of g is labelled by a constant. Without loss of generality, we can
assume that in the circuit C, no gate syntactically computes a constant. If there
is such a gate, simply replace it by an input gate with the computed constant.
This is a non-uniform step. Alternatively, to preserve uniformity, identify the
gates that syntactically compute constants, label all outgoing wires of these
gates by new variables from a set Y , and proceed with this new circuit. It is
easy to see that the new circuit is syntactically multilinear in X ∪ Y .
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To simplify the following construction, we explicitly relabel each input gate
labeled by a constant with a new variable from a set Y .

We now show, in Lemma 3.4, how to achieve depth reduction for syn-
tactically multilinear bounded width circuits which have no constants. This
completes the proof of Theorem 3.1 as well; all we need to do is to explicitly
plug in the constants corresponding to the variables in Y .

Lemma 3.4. Let C ′ be a width w, depth ℓ syntactically multilinear arithmetic
circuit with leaves labeled from X ∪ Y (no constants). Then there is an equiv-
alent syntactically multilinear arithmetic formula C ′′ of size O(2w2

ℓ25w2

) and
depth O(w2 log ℓ) which computes the same polynomial as C ′.

To establish lemma 3.4, we use the intuitive idea sketched earlier; slice the
circuit horizontally, introduce dummy variables along the slice, and proceed
inductively on each part. Now the top part has three types of variables: circuit
inputs X, variables representing constants Y , and variables along the slice Z.
The variables Z appear only at the lowest level of this circuit for the top part,
which is syntactically multilinear in Z as well.

To complete an inductive proof for Lemma 3.4, we need to show depth-
reduction for such circuits. We use Lemma 3.5 below, which tells us that
viewing each gate as computing a polynomial in Z, with coefficients from K =
K[X,Y ], there are small-depth circuits representing each of the coefficients. We
then combine these circuits to compute the polynomial from the the original
circuit.

More formally, let D be a width w, depth ℓ, syntactically multilinear circuit,
with all leaves labeled from X ∪ Y ∪ Z (no constants), where variables from
Z = {z1, . . . zw} appear only at the lowest level of the circuit. Let h1, . . . , hw

be the set of output gates of D i.e. gates at level ℓ. Let phi
∈ K[X,Y, Z]

denote the multilinear polynomial computed at hi. Note that phi
can also be

viewed as a polynomial in K[Z], i.e. a multilinear polynomial with variables
from Z and polynomials from K[X,Y ] as its coefficients; we use this viewpoint
below. For T ⊆ {1, . . . , w}, let [phi

, T ] ∈ K[X,Y ] denote the coefficient of the
monomial mT =

∏

j∈T zj in phi
. The following lemma tells us how to obtain

these coefficients [phi
, T ].

Lemma 3.5. With circuit D as above, ∀h ∈ {h1, . . . , hw} and T ⊆ {1, . . . , w},
there is a bounded fan-in syntactically multilinear arithmetic formula Dh,T

of size bounded by 2w2

ℓ25w2

and depth O(w2 log ℓ), with leaves labeled from
X∪Y ∪{0, 1}, such that the polynomial computed at its output gate is exactly
the coefficient [ph, T ].
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Proof. We proceed by induction on the depth ℓ of the circuit.
Basis : ℓ = 1. The different possibilities are as follows. Here, a can take

any value in X ∪ Y ∪ K.
h = zizj: [ph, T ] = 1 for T = {i, j} and 0 otherwise.
h = azi: [ph, T ] = a for T = {i} and 0 otherwise.

h = a: [ph, T ] = a for T = ∅ and 0 otherwise.
h = zi + zj: [ph, T ] = 1 for T = {i} or T = {j} and 0 otherwise.
h = a + zi: [ph, ∅] = a, [ph, {i}] = 1, and [ph, T ] = 0 otherwise.

Hypothesis: Assume that the lemma holds for all circuits D′ of depth ℓ′ < ℓ
and width w.

Induction Step: Let D be the given circuit of depth ℓ, syntactically multi-
linear in X ∪ Y ∪ Z, where variables from Z appear only at the lowest level of
D. Let {h1, . . . , hw} be the output gates of D. Let {g1, . . . , gw} be the gates
of D at level ℓ′ = ⌈ ℓ

2
⌉. Denote by A the circuit resulting from replacing gates

gi with new variables z′i for 1 ≤ i ≤ w, and removing all the gates below level
ℓ′, and denote by B the circuit with {g1, . . . , gw} as output gates, i.e. gates
above the gi’s are removed. We rename the output gates of A as {f1, . . . , fw}.
Let Z ′ = {z′1, . . . , z

′
w}. Both A and B are syntactically multilinear circuits of

depth bounded by ℓ′ and width w, and of a form where the inductive hypoth-
esis is applicable. For i ∈ {1, . . . , w}, pfi

is a polynomial in K[Z ′] and pgi
is a

polynomial in K[Z], where K = K[X,Y ].
To simplify the exposition, we first describe how to obtain a depth-reduced

circuit, and then describe how to make the new circuit syntactically multilinear.
Applying induction on A and B, for all S,Q ⊆ {1, . . . , w}, [pfi

, S] and
[pgi

, Q] have syntactically multilinear arithmetic circuits Afi,S and Bgi,Q re-
spectively of size 2w2

(⌈ℓ/2⌉)25w2

and depth w2 log(⌈ℓ/2⌉). Note that phi
(Z) =

pfi
(pg1

(Z), . . . , pgw
(Z)). But due to multilinearity,

pfi
(Z ′) =

∑

S⊆[w]

(

[pfi
, S]
∏

s∈S

z′s

)

pgj
(Z) =

∑

Q⊆[w]

(

[pgj
, Q]

∏

q∈Q

zq

)

Using this expression for pfi
in the formulation for phi

, we have

phi
(Z) =

∑

S⊆[w]

(

[pfi
, S]
∏

s∈S

pgs
(Z)

)

Hence, we can extract coefficients of phi
as follows. For any T ⊆ [w], the

coefficient of the monomial mT in phi
is given by

[phi
, T ] =

∑

S⊆[w]

[pfi
, S]
(

coefficient of mT in
∏

s∈S pgs
(Z)

)
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If S has t elements, then the monomial mT is built up in t disjoint parts
(not necessarily non-empty), where the kth part is contributed by the kth
polynomial pg in the above expression. So the coefficient of mT is the product
of the corresponding coefficients. Hence

[phi
, T ] =

∑

S={s1,...,st}⊆[w]















[pfi
, S]

∑

Q1, . . . , Qt :
partition of T

t
∏

k=1

[pgsk
, Qk]















(3.6)

We use this expression to compute [phi
, T ]. We first compute [pfi

, S] and
[pgs

, Q] for all i, s ∈ [w] and all S,Q ⊆ [w] using the inductively constructed
sub-circuits. Then a circuit on top of these does the required combination.
Since the number of partitions of T is bounded by ww, while the number of
sets S is 2w, this additional circuitry has size at most w22www ≤ 2w2

(for w ≥ 2
) and depth w log w + w + log w = O(w2).

Preserving Syntactic Multilinearity: Clearly, the circuit obtained above
need not be syntactically multilinear. To achieve this, we do the following
modifications:

◦ Unwind the expression for each [phi
, T ] into a formula, by creating neces-

sary copies of [pfi
, S] and [pgs

, Q] for all S, T,Q ⊆ {1, . . . , w}.

◦ Consider a term [pfi
, S][pg1

, Q1] · · · [pgt
, Qt] which violates syntactic mul-

tilinearity. There are two cases:

– For some a 6= b, [pga
, Qa] and [pgb

, Qb] share a variable. If the corre-
sponding term [pfi

, S][pg1
, Q1] · · · [pgt

, Qt] has a non-zero contribution
to [phi

, T ], then it means that the original syntactically multilinear
circuit C has a ×-gate v such that the gates ga and gb are reach-
able via two different input gates of v. This violates the syntactic
multilinearity property. So it must be the case that this partition
of Q has no contribution to [phi

, T ]. Hence this particular term
[pfi

, S][pg1
, Q1] · · · [pgt

, Qt] can be replaced by 0 without changing
the output.

– For some a ∈ S, sub-formulas [pga
, Qa] and [pfi

, S] share a variable,
say x. At least one of the polynomials [pga

, Qa] and [pfi
, S] does not

depend on x, since otherwise there is a × gate v in C reachable from
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ga with x in both its sub-formulas, violating the assumption of syn-
tactic multilinearity of C. Now replace x with 0 in the corresponding
sub-formula that does not depend on x.

Note that in the above process, we need to unwind the resulting circuit into
a formula. By equation 3.6 we need to make at most 2w2

copies of each [pgk
, Qk]

for k ∈ [w]. Hence, the size of the resulting formula will blow up by a factor of
2w2w2w2

≤ 22w2

at every induction step.
Let s(ℓ, w) and d(ℓ, w) denote the size and depth of the new circuit Dph,T .

Then from the construction above, we have the recurrences

s(ℓ, w) ≤ 22w2

s(ℓ′, w) + 2w2

≤ 23w2

s(⌈ℓ/2⌉, w)

d(ℓ, w) ≤ d(⌈ℓ/2⌉, w) + O(w2)

Note that ℓ′ = ⌈ℓ/2⌉ satisfies ℓ′ ≤ 3ℓ/4. Suppose that by induction, s(ℓ′, w) ≤
2w2

(ℓ′)cw2

for some constant c to be chosen later. So

s(ℓ, w) ≤ 23w2

2w2

(ℓ′)cw2

≤ 24w2

(3ℓ/4)cw2

= 2w2

ℓcw2
[

23w2

(3/4)cw2
]

≤ 2w2

ℓcw2

where the last inequality holds whenever 8(3/4)c ≤ 1, say c ≥ 25.
Similarly, solving the recurrence for d(ℓ, w) gives d(ℓ, w) = O(w2 log ℓ). �

Proof ( of lemma 3.4). We first relabel all the nodes at the lowest level by
new variables z1, . . . , zw. Then, applying Lemma 3.5, we obtain circuits for
[pg, T ], where g is an output gate of C ′ and T ⊆ {1, . . . , w}. Now, to compute
pg, we sum over all T the values [pg, T ]×

∏

j∈T val(zj), where val(zj) denotes the
original variable for which zj was substituted. This adds O(w) to the overall
depth of the circuit, thus resulting an overall depth of O((w + w2 log ℓ)) =
O(w2 log ℓ). The resulting circuit size is bounded by O(s2w), where s is an
upper bound on the size of the circuits constructed in Lemma 3.5, and hence
is bounded by O(2w2

ℓ25w2

) �

Remark 3.7. If the constant-width circuit C we start with is multilinear but
not syntactically multilinear, then the circuit A as in Lemma 3.5 need not
be multilinear in the slice variables Z. This is the place where the above
construction crucially uses syntactic multilinearity, and does not generalize to
multilinear circuits. See Figure 3.2 for an example.
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Circuit A below is obtained by replacing gates at level 2 by variables
{z1, z2, z3}.

⊗

⊕

??~~~~~~~
⊗

``@@@@@@@

⊗

??~~~~~~~
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Figure 3.2: A is not multilinear in the slice variable z2.
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4. Making a Circuit Skew

The purpose of this section is to give a direct simulation of width bounded
syntactically multilinear circuits by syntactically multilinear ABPs, yielding
the following theorem.

Theorem 4.1. sm-VsSC0 ⊆ sm-VBWBP

As sm-VBWBP ⊆ sm-VsSC0 is trivially true, this, along with Corollary 3.2 from
the previous section, gives the following relations:

Theorem 4.2. sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1.

To establish Theorem 4.1, we proceed as follows. If we use the standard
series-parallel construction on a circuit which is not a formula, the size of the
resulting ABP can blow up exponentially in the depth of the original circuit
(irrespective of its width). But in the case of a syntactically multilinear circuit,
one can assume by Proposition 4.3 that the circuit is multiplicatively disjoint
(we will define this soon). Along with this, if we have a width bound of w,
then for every multiplication gate, one of its sub-circuits is of width at most
w − 1. We exploit this fact to give, in Theorem 4.8, a simulation of constant
width syntactically multilinear circuits by syntactically multilinear ABPs of
constant width, with only a polynomial blow up in the size. Thereom 4.1 thus
follows from Proposition 4.3 and Theorem 4.8. As a warm-up to establishing
Theorem 4.8, we first show in Theorem 4.4 such a depth-reducing simulation
for weakly-skew syntactically multilinear circuits of small width.

The rest of this section is organized as follows: Section 4.1 introduces the
notion of multiplicatively disjoint circuits and weakly skew circuits. In sec-
tion 4.2, we give a width efficient simulation of weakly skew circuits by ABPs.
Section 4.3 gives width efficient simulation of multiplicatively disjoint circuits
by ABPs which preserves syntactic multilinearity.

4.1. Multiplicatively Disjointness and Weakly Skewness.

Multiplicatively Disjoint Circuits: Let C be an arithmetic circuit. C is
said to be multiplicatively disjoint (MD for short) if every multiplication gate
in C operates on disjoint sub-circuits, i.e. if f = g × h is a gate in C, then the
sub-circuits rooted at g and h do not share any node (except the input nodes)
between them (see Malod & Portier (2008)). We denote the multiplicatively
disjoint restriction of a class by the prefix md-, e.g. md-VSCi denotes the class
of family of polynomials computed by polynomial size multiplicatively disjoint
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arithmetic circuits of width O(logi n). It is not hard to see that syntactic
degree of a multiplicatively disjoint circuit is bounded by its size, hence we
have md-VsSCi = md-VSCi.

An arithmetic circuit that computes polynomials of polynomial degree can
be converted into an equivalent MD-circuit without significant blow up in size
Malod & Portier (2008). Thus the three restrictions of MD, small syntactic
degree and small degree of the output polynomial all coincide at polynomial
size and hence are equal to the class VP. However, when the width of the
circuit is bounded by poly(log), all these restrictions are seemingly different,
with MD circuits being the weakest among them, i.e. md-VsSCi = md-VSCi ⊆
VsSCi ⊆ VSCi.

A multiplicatively disjoint circuit need not be syntactic multilinear. On the
other hand, a syntactically multilinear circuit is already almost multiplicatively
disjoint. At any × gate f = g × h, no variable can appear under both g and
h, and so the sub-circuits under g and h can only share constants. As long
as the constants are inputs, this does not violate multiplicative disjointness.
If a shared constant appears internally, then some gate must be syntactically
computing the constant. However, this is redundant in a non-uniform setting.
Consider any syntactically multilinear circuit C. Replace all the gates in C that
syntactically compute constants (that is, they are reachable only from leaves
labeled by values from K) by the values they represent, to obtain a circuit
C ′. Now, it is easy to see that C ′ is multiplicatively disjoint and syntactically
multilinear, and computes the same polynomial. Thus we can assume without
loss of generality that a syntactically multilinear circuit is also multiplicatively
disjoint. In particular, we have

Proposition 4.3. sm-VsSC0 ⊆ md-sm-VsSC0.

Also, note that if the circuit C is multilinear but not syntactically multilinear,
then C ′ need not be multiplicatively disjoint.

Weakly Skew Circuits: An arithmetic circuit C is said to be weakly skew

if for every multiplication gate f = g × h in C, either the edge (g, f) or the
edge (h, f) is a bridge 1 in the underlying graph. By definition, weakly skew
arithmetic circuits are also multiplicatively disjoint. We denote this restriction
on a class by the prefix weaklyskew-.

1 A bridge in an undirected graph is an edge (u, v) whose removal disconnects u from v.
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Toda (1992) has shown2 that weakly skew circuits have equivalent skew
circuits, i.e. weaklyskew-VP = VBP. Jansen (2008) extended this result and
showed that weakly skew circuits are equivalent to skew circuits in the syn-
tactically multilinear world too, i.e. sm-weaklyskew-VP = sm-VBP. However,
the simulation in Jansen (2008) is not width efficient. In the next section, we
present a width efficient version of the simulation in Jansen (2008).

4.2. Weakly Skew to Skew. In this section we give a simulation of weakly
skew syntactically multilinear constant width arithmetic circuits by syntacti-
cally multilinear ABPs of constant width. (Recall, from Section 2, that ABPs
are equivalent to skew circuits.) This construction serves as a simpler case of
the simulation given in the next section. We include it here since we achieve
a slightly better size bound, which allows us to translate the result to higher
width (see Corollary 4.7).

We briefly outline the overall idea: Essentially, we do the series-parallel
construction. Let C be the given weakly skew circuit of width w. All the
+ gates in C are left untouched. For a multiplication gate f = g × h, let
Ch, the sub-circuit rooted at h, be not connected to rest of the circuit. If
width(Ch) ≤ w − 1, then we are in good shape, since by placing the ABP
[h] (available by induction on the structure of C) in series with (and after)
[g] (again available by induction) we can obtain a width bound of O(w2). If
width(Ch) = w, then we have width(Cg) ≤ w − 1. In this case, we make a copy
of [g] and place it in series with (and after) [h] and again can obtain a width
bound of O(w2), but the size can blow up. Using a careful analysis we argue
that size of the new ABP can be bounded by O(2ws), where s is the size of C.
Now we state the main theorem:

Theorem 4.4. Bounded-width weakly skew circuits can be made skew.

weaklyskew-VsSC0 = VBWBP.

weaklyskew-sm-VsSC0 = sm-VBWBP.

Proof. We use the following normal form for circuits:

Lemma 4.5. Let C be an arithmetic circuit of width w and size s. Then there
is an equivalent arithmetic circuit C ′ of width O(w) and size poly(s) such that
fan-in and fan-out of every gate is bounded by two, and every layer has at

2The proof of Theorem 4.3 in Toda (1992) shows this can be done with constant factor
overhead. Proofs of this also were given by Kaltofen and Koiran Kaltofen & Koiran (2008)
and independently Jansen (2008), based on a construction by Malod & Portier (2008) .
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most one × gate. Moreover, C ′ preserves any of the properties of syntactic
multilinearity, weakly skewness and multiplicatively disjointness.

Proof. Let k be a bound on maximum fan-in and fan-out of C. First we
can reduce the fan-in to two by staggering the circuit and keeping copies of the
gates as and when needed. This blows up the width to 2w and size to wks.
Now in a similar manner we can ensure that the fan-out of a gate is bounded
by two and the size blow up will now be w2k2s and width will be 4w. To ensure
the second condition we need to push the gates (using staggering and dummy
+ gates) up by at most 4w levels, thus making the total width 8w and size
2w2k2s. Since k ≤ w + n and w ≤ s we have size bounded by poly(s, n). �

We need some more definitions and notations. For an ABP B of depth d
with a single source s, we say B is endowed with a mainline, if there exist nodes
v1, v2, . . . , vd−1 reachable only along the path s, v1, v2, . . . , vd−1, and if the labels
on this path are all set to the ring’s multiplicative identity 1. See Figure 4.1(a).
For ABPs B1 and B2, piping the mainline of B1 into the mainline of B2 is the
operation of removing the edge from the source of B2 to the first node v of the
mainline of B2, and adding an edge from the last node w of the mainline of B1

to v. See Figure 4.1(b).
The following lemma now gives Theorem 4.4:

Lemma 4.6. Let C be a weakly skew arithmetic circuit of width w > 1 and
size s > 1 in the normal form as given by Lemma 4.5. Let f1, . . . , fw be the
output gates of C. Then there is an equivalent ABP [C] of width w2 +1, depth
2ws and size (w2 + 1)2ws. [C] has a single start node b and terminal nodes
[f1], . . . , [fw], v and will be endowed with a mainline ending in v. Moreover, if
C is syntactically multilinear then so is [C].

Proof. We proceed by induction on s + w. If s = 2, the lemma holds
trivially. If w = 2, then C is a skew-circuit and can be seen as an ABP of
width 3 (We also need to add a mainline; hence, width is 3).

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers.
By the induction hypothesis, the lemma holds for all circuits of size s′ and w′,
where either s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.

Without loss of generality, assume that f1 is a × gate and f2, . . . , fw are +
gates. Let C ′ be the circuit obtained by removing the output gates of C. Let
g1, . . . , gw be the output gates of C ′. Assume that (without loss of generality)
f1 = g1×g2, and also that the edge (g1, f1) is a bridge in the circuit. We define
the sub-circuits D and E of C ′ as follows: D is obtained from C ′ by deleting the
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(a) A BP with a mainline

(b) Piping two mainlines

s

v1

v2

vd−1

...

Figure 4.1: BPs with mainlines

sub-circuit rooted at g1, E is the sub-circuit rooted at g1. See Figure 4.2(a). Let
s′ = size(C ′), w′ = width(C ′), sJ = size(J) and wJ = width(J) for J ∈ {D,E}.
Note that s = s′ + w, and sJ < s for J ∈ {D,E}.

By the induction hypothesis, we have branching programs [D] and [E],
both endowed with a mainline. Let [g1], v

′ denote the output of [E] and
[g2], . . . , [gw], v′′ denote the output nodes of [D], where v′ and v′′ are the last
nodes on the mainlines. Let [F ] be the subprogram of [D], which consists of all
paths from the source of [D] to [g2] and v′′. Construct the program [C] with
output nodes [f1], . . . , [fw], v as follows:
case 1: wE ≤ w − 1.

We compose the ABPs [D] followed by [E] as described below. (See Fig-
ure 4.2(b).)

1. For i, j ≥ 2, [gj] has an edge to [fi] if and only if gj is an input to fi.

2. For input gates fi, draw an edge from v′′ to [fi] with the appropriate
label.

3. Identify [g2] with the start node of [E] and relabel the output node of [E]
as [f1]. Pipe the mainline of [D] into the mainline of [E].
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(a) The weakly−skew circuit

(b) Case 1: width(E) < width(C)

[D]

[E]

DE

[D]

[F]

(c) Case 2: width(E) = width(C)

[E]

[F]

[fw][f1] [f2]

g1

fw(+)f1(×)f2(+)

[fw][f1] [f2]

[g1]

[g2] [gw]

[g1]

gwg2

[g2] [gw]

Figure 4.2: Weakly skew circuits to skew circuits

4. Stagger the nodes [f2], . . . , [fw] until the last level of the new program.

Size and width analysis: By the induction hypothesis, we have

width([E]) ≤ (wE)2 + 1 ≤ (w − 1)2 + 1

width([D]) ≤ w2 + 1

length([E]) ≤ 2w−1size(E)

length([D]) ≤ 2wsize(D)

Hence width([C]) = max{width([D]), width([E]) + w − 1} ≤ w2 + 1 and

length([C]) = length([D]) + length([E)]

≤ 2wDsD + 2wEsE

≤ 2wsD + 2w−1sE ≤ 2ws (as s = sD + sE + w).
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case 2: wE = w, and hence wF ≤ w − 1 and wD ≤ w − 1.
We compose ABPs [E], [F ] and [D] as follows. (See Figure 4.2(c). Note

that a copy of [F ] is also inside [D], but when we refer to [F ] below, we mean
the independent copy.)

1. Identify [g1] with the source of [F ], and pipe the mainline of [E] into the
mainline of [F ].

2. Add an edge from v′ (last node of mainline of [F ]) to the source of [D],

3. Pipe the mainline of [F ] into the mainline of [D].

4. Alongside [D] stagger the output of [F ] (which now equals [f1]).

5. For i, j ≥ 2, [gj] has an edge to [fi] if and only if gj is an input to fi.

6. Finally, for input gates fi, draw an edge (v′′, [fi]) with the appropriate
label.

Size and width analysis: By induction hypothesis,

width([E]) ≤ w2 + 1

width([D]) ≤ (w − 1)2 + 1

width([F ]) ≤ (w − 1)2 + 1

Observe that

width([C]) ≤ max(width([E]), width([F ]), width([D]) + 1)

≤ w2 + 1

Further, length([C]) = length([E]) + length([F ]) + length([D]) + 1

≤ 2wsE + 2w−1sF + 2w−1sD + 1

≤ 2w(sD + sE) + 1 ≤ 2ws.

Since the size of a layered ABP is length × width, we have the required size
bound. If C was syntactically multilinear to start with, then it is easy to see
that so is [C]. �

This completes the proof of Theorem 4.4. �

By the parameters in the Lemma 4.6, it is not hard to see that if we start
with a syntactically multilinear weakly skew circuit of width O(log n), we get
a syntactically multilinear ABP of width O(log2 n), i.e.
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Corollary 4.7. weaklyskew-sm-VsSC1 ⊆ sm-VBP[width = log2 n].

4.3. Multiplicatively Disjoint to Skew. We extend the simulation in
Lemma 4.6, and hence Theorem 4.4, to multiplicatively disjoint circuits.

Theorem 4.8. Bounded-width multiplicatively disjoint circuits can be made
skew.

md-VsSC0 = VBWBP.

md-sm-VsSC0 = sm-VBWBP.

The theorem follows directly from the lemma stated below. The idea is the
same as that used in Lemma 4.6, but with a weaker bound on the size of the
resulting ABP: O(sw) instead of O(2ws).

Lemma 4.9. C be a multiplicatively disjoint arithmetic circuit of width w and
size s in the normal form as given by Lemma 4.5. Let f1, . . . , fw be the output
gates of C. Then there exists an equivalent arithmetic branching program [C]
of width O(w2), length O(sw), and size O(w2sw). [C] has a single start node b
and terminal nodes [f1], . . . , [fw], v, and is endowed with a mainline ending in
v. Moreover, if C is syntactically multilinear, then so is [C].

Proof. We proceed by induction on s + w. If s = 2, the lemma holds
trivially. If w = 2, C is a weakly skew circuit, and hence can be seen as a BP
of width 5.

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers.
Suppose, by induction hypothesis that the lemma holds for all circuits of size
s′ and w′, where either s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.

Let C ′ be the sub-circuit obtained by deleting f1, . . . , fw. Let g1, . . . , gw be
the output gates of C ′. Without loss of generality, let f1 = g1 × g2 be the
only multiplication gate at the output layer of C. Let D denote the sub-circuit
rooted at g1 and E be the sub-circuit rooted at g2. Since C is multiplicatively
disjoint, we have either width(D) ≤ w − 1 or width(E) ≤ w − 1. Without loss
of generality, assume that width(D) ≤ w − 1.

Let s′ = size(C ′), sD = size(D), w′ = width(C ′), and wD = width(D). By
induction hypothesis, we obtain ABPs [C ′] and [D]. [C ′] has w + 1 output
nodes, namely [g1], . . . , [gw], v. [D] has two output nodes [g′

1] and v′.
Now construct the ABP [C] with output nodes [f1], . . . , [fw], v by composing

[C ′] followed by [D] as follows: For all i ≥ 2, connect [gj]s to [fi]s according
to the edges in the circuit C, i.e edge ([gj], [fi]) is in [C] if and only if gj is an
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Figure 4.3: Multiplicatively disjoint to skew

input for fi. In case fi is an input gate, draw an appropriately labeled edge
from v. Put an edge from [g2] to [f1]. Now identify the start node of [D] with
[f1] and re-label the terminal node of [D] as [f1]. Do the necessary staggerings
to carry on the values f2, . . . , fw to the last layer. We also pipe the mainline of
[C ′] into the mainline of [D].

Analysis: As s′ = s − w and w′ ≤ w, using the induction hypothesis we
have

length([C ′]) ≤ s′w
′

≤ (s − w)w.

Furthermore, as sD ≤ s − w and wD ≤ w − 1, we have

width([C ′]) ≤ w′2 + 1 ≤ w2 + 1

length([D]) ≤ swD

D ≤ (s − w)w−1

width([D]) ≤ (w − 1)2 + 1

Now, by the construction,

width([C]) = max{width([C ′]), width([D]) + w − 1}

≤ max{w2 + 1, (w − 1)2 + w − 1} ≤ w2 + 1
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Also,

length([C]) = length([C ′]) + length([D])

≤ (s − w)w + (s − w)w−1 ≤ sw

for w > 2 and w < s. Thus, size([C]) = (w2 + 1)sw. It is easy to see that this
construction preserves the syntactic multilinearity property. �

Note that Lemma 4.9 works for all multiplicatively disjoint circuits. Con-
sequently, the class md-VSC0 becomes the “largest” fragment of VsSC0 known
to us, that is still equivalent to VNC1 = VBWBP. Recall that md-VsSC0 =
md-VSC0. We summarize the situation as follows:

Corollary 4.10. weaklyskew-VSC0 = md-VSC0 = VNC1 = VBWBP

Remark 4.11. The simulation of weakly skew circuits from Lemma 4.6 carries
over to multilinear circuits too. However, as a multilinear circuit need not
be multiplicatively disjoint (see Section 4.1), Lemma 4.9 does not work for
multilinear circuits which are not syntactically multilinear.

5. An Overview of Syntactically Multilinear Classes

Now we turn our attention to the overall picture of the algebraic classes around
VNC1 in the syntactically multilinear world. In other words, we attempt to
redraw the Figure 2.2 when all the classes are restricted to be syntactically
multilinear. We consider and compare the classes sm-VPe, sm-VNC1, sm-VsSC0,
sm-VBWBP, and sm-VrGP.

A classical result from Brent (1973) shows that for every arithmetic formula
F of size s, there is an equivalent arithmetic formula F ′ which has depth
O(log s) and size poly(s). A careful observation of this proof shows that if
we start with a syntactically multilinear formula F , then the depth-reduced
formula F ′ is also syntactically multilinear.

Theorem 5.1. Every syntactically multilinear formula with n leaves has an
equivalent syntactically multilinear circuit of depth O(log n) and size O(n).
In particular, sm-VPe ⊆ sm-VNC1.

Proof. By simultaneous induction on the number of leaves in the formula,
we can prove the following statements. This is exactly the construction of
Brent (1973), analyzed carefully for syntactic multilinearity. For a formula F ,
let |F | denote the number of leaves in F . We inductively establish the following
statements:
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(i) If F is a syntactically multilinear formula with n leaves, then there is an
equivalent syntactically multilinear circuit F ′ of depth ⌈4 log n⌉ and size
2n.

(ii) If x is an input gate in F , then we can express F as F ′ = Ax + B, where
A,B are syntactically multilinear circuits that do not depend on x and
are of depth ⌈4 log |A|⌉ and ⌈4 log |B|⌉ respectively.

Then we can unwind the circuit so obtained into a syntactically multilinear for-
mula; due to the depth bound, the resulting formula will still be of polynomial
size.

In the base case, there is either a single variable or a constant, and the
claim holds trivially.

To proceed by induction, we use the folklore tree separator theorem which
says that in any rooted binary tree T , we can find a node u such that the
sub-tree Tu rooted at u and the sub-tree T \Tu are both of size at most 3/4|T |.
Here the size of a tree is the number of leaf nodes (nodes with degree one) in
it.

Let X be a tree separator for F , with children L,R, so that X = L op R.
Replace the whole subtree under X by a new variable x. By inductive state-
ment (ii), we have F ′ = Ax + B where A,B are as above (i.e. they are both
syntactically multilinear and do not depend on X). Also by inductive state-
ment (i), we have syntactically multilinear formulas L′, R′ equivalent to L,R of
small depth. Thus we have F ′ = A× (L′ op R′) + B. Since A does not depend
on any variable below X, F ′ is syntactically multilinear. Also, depth(F ′) =
max{depth(A) + 2, depth(L′) + 3, depth(R′) + 3, depth(B) + 1} ≤ ⌈4 log n⌉.

To prove the second half of the statement above, let x be any input gate
in F . Now find a tree separator X = L op R such that the subtree at one of
its children, say L, contains x as a leaf node and is of size < n/2. Then, by
inductive statement (ii) applied to L, L′ = Ax+B, where A,B are independent
of x, syntactically multilinear and of small depth. Now replace the subtree at X
by a new variable y. Applying inductive statement (ii), we have F ′ = Cy + D,
where C,D are syntactically multilinear small depth formulas which do not
depend on y (i.e. L op R). Applying inductive statement (i) to R, we have an
equivalent small-depth R′.

Case 1: op = +. Then F ′ = C((Ax+B)+R′)+D = CAx+(CB+CR′+D).
This is again syntactically multilinear since C does not depend on y, i.e.

Ax + B + R.
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Case 2: op = ×. Then F ′ = C(Ax + B)R′ + D = CAR′x + (CBR′ + D).
Here again F ′ is syntactically multilinear since C does not depend on
A,B,R′, and also because A and B do not share any variables with R′.

Since we are constructing a circuit and not a formula, we don’t need to replicate
the circuits for C and R′. For details about the size/depth, see the analysis in
Brent (1973). �

It is easy to see that the path-preserving simulation of a constant width
branching program by a log depth circuit preserves syntactic multilinearity:

Lemma 5.2. For any syntactically multilinear branching program P of width
w and size s over ring K, there is an equivalent syntactically multilinear circuit
C of depth O(log s) and size O(s) with fan-in of + gate bounded by w (or
alternatively, depth O(log w log s) and bounded fan-in).
In particular, sm-VBWBP ⊆ sm-VNC1 and sm-VBP ⊆ sm-VSAC1.

Proof. Let ℓ be the length of P (s = ℓw), and let ps,t denote the weighted
sum of the directed paths between nodes s and t. Let v1, . . . vw denote the
nodes at the level ℓ′ = ⌈ℓ/2⌉ of P . Then ps,t =

∑w
i=1 ps,vi

× pvi,t. Thus the
depth and size of the inductively constructed circuit satisfy the recurrences
d(ℓ) = 2 + d(ℓ′) and s(ℓ) = (3w)s(ℓ′), giving the desired bounds. It is clear
that the circuit so constructed is syntactically multilinear; if it were not, the
offending × gate would pinpoint a path in P that reads some variable twice. �

Note that Lemma 5.2 and Theorem 4.1 together give another proof of Corol-
lary 3.2.

It is also straightforward to see that the construction of Istrail & Zivkovic
(1994), staggering a small-depth formula into a small-width one, preserves syn-
tactic multilinearity. Thus

Lemma 5.3. Let Φ be any sm-formula with depth d and size s. Then there is
an equivalent syntactically multilinear formula Φ′ of depth 2s and width d.
In particular, sm-VNC1 ⊆ sm-VLWF.

Proof. For completeness we give a detailed proof here. The construction is
by induction on the structure of the formula Φ. The base case is when Φ is a
single variable or a constant, in which case the lemma holds trivially.

Suppose the lemma holds for any formula of depth at most d− 1. Consider
the root gate f of a formula Φ of depth d. Suppose f =

∑k
i=1 gi (respectively

f =
∏k

i=1 gi). As the depth of each formula gi is bounded by d−1, by induction
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we have formulas g′
i of width d − 1 and depth bounded by si (the size of gi),

computing the same function as gis. Place the node corresponding to f with
two children. At one child, place the formula g′

1; at the other, place a series of
no-op (i.e. ×1 or +0 ) gates till the last level of g′

1. Then give the last no-op
gate two children, place g′

2 at one child, and so on. The width of the new
formula Φ′ thus obtained is bounded by maxi width(g′

i) + 1, and its depth is
bounded by

∑

i depth(g′
i) + 1 ≤

∑

i si + 1 ≤ s. Note that in this process, for
any gate g in Φ the variables it operates on are not changed in the new formula
Φ′, that is, the only new gates which are introduced in Φ′ are the no-op gates
which are used for staggering, which only multiply by the constant 1. Thus if
Φ is syntactically multilinear then so is Φ. �

From Lemma 5.3 and Theorem 5.1, we have the following equivalence.

Corollary 5.4. Over any ring K,
sm-VPe = sm-VLWF= sm-VNC1 = sm-Formula-Depth,Size(log, poly).

In Allender et al. (1999) a characterisation for unbounded fanin bounded
depth arithmetic circuits in terms of counting number of paths in a restricted
version of bounded width grid graphs is presented. We note that the charac-
terisation given in Allender et al. (1999) works for unbounded fanin bounded
depth arithmetic circuits over arbitrary rings, showing that VBWrGP = VAC0.
By closely examining the parameters in Allender et al. (1999), we obtain a
characterisation for VNC1 in terms of the restricted version of log width grid
branching programs. We also note that these constructions preserve syntac-
tic multilinearity. In the statement and proof below, we use the notion of
alternation-depth: a circuit C has alternation depth a if on every input-to-root
path, the number of maximal segments of gates of the same type is at most a.
Also, for an rGP (and in fact any branching program) P , we denote by Var(P )
the set of variables that appear on some s-to-t path in P . For a formula F ,
Var(F ) denotes the variables appearing anywhere in the formula F ; if h is the
root of F , then without loss of generality Var(F ) = Xh.

Lemma 5.5. Let Φ be an arithmetic formula of size s and alternation depth 2d
over K and with input variables X ∈ K

n. Then there is a restricted grid pro-
gram P of length s2+2s (i.e. the number of edge layers) and width max{2, 2d},
where the edges are labelled from Var(Φ) ∪ K, such that the weighted sum of
s-to-t paths in P is equal to the function computed by Φ.
Further, if Φ is syntactically multilinear, then so is P .
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Proof. We first use associativity of + and × and convert the input formula
to a depth 2d unbounded fan-in formula Φ′. We can thus assume without loss
of generality that in Φ′, all nodes in a particular layer represent the same type
of gate and two successive layers have different kind of gates. Also, we can
assume that Φ′ is height balanced, i.e. any root-to-input path in Φ′ is of length
exactly 2d. We further assume that the root is a × gate. If these conditions
do not hold, then ensuring them will blow up the size of Φ′ to at most s2, and
increase the depth by at most 2. (Since Φ′ has unbounded fan-in gates, its size
is measured by the number of wires rather than the number of gates.)

So now we assume that s and a = 2d are the number of wires and the alter-
nation depth of a formula Φ already in this normal form. The construction here
is exactly the same as in Allender et al. (1999); it is included here for complete-
ness in arguing, over more general parameters, that syntactic multilinearity is
preserved.

We proceed by induction on the depth of the formula Φ. The base case is
when d ≤ 1. If the depth is 0, then Φ is either a variable or a constant in the
underlying ring. In this case the graph is G0,1(c) where Φ = c. If d = 1, then
Φ is a product of linear factors, and a suitable composition of G0,1(c) graphs
and G0,2 represents it.

Suppose that for any (syntactically multilinear) formula F with alternation
depth 2d′ < 2d and number of wires s′ (in the normal form described above),
there is a (syntactically multilinear) restricted grid program P of width 2d′ and
length s′2 + 2s′, where P uses variables from Var(F ).

Now let Φ be a normal form formula with alternation depth 2d. Consider the
root gate g of Φ. Let g1, . . . , gk be the children of g, where gi =

∑ti
j=1 gij . Let

sij and 2dij = 2d − 2 respectively denote the number of wires and alternation
depth of the sub-formula rooted at gij . Note that s = k +

∑

i(ti +
∑

j sij).
Applying induction on the sub-formula rooted at each gij , let Qij denote the
resulting restricted grid program for the formula at gij . Now place the Q′

ij
s

(1 ≤ j ≤ ti) as in Figure 5.2 to get the program Pi, and connect the Pi’s as
shown in Figure 5.1 to get the desired program P . By the inductive hypothesis,
length(Qij) ≤ s2

ij
+2sij and width(Qij) ≤ 2dij . From the construction as above,

we have length(Pi) = ti +1+
∑

j length(Qij) ≤ ti +1+
∑

j(s
2
ij

+2sij) and hence

length(P ) = k − 1 +
∑

i length(Pi) ≤ k − 1 +
∑

i((ti + 1) +
∑

j(s
2
ij

+ 2sij)) ≤

s2 + 2s. Note that the construction in Figure 5.2 adds 2 to the width and the
construction in Figure 5.1 does not change the width. Hence the width of P is
bounded by 2 maxi,j dij + 2 = 2d.

If Φ is syntactically multilinear, then the formulas rooted at gij are all
syntactically multilinear, and for i 6= i′, Var(gi) ∩ Var(gi′) = ∅. Thus, by the
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Figure 5.2: Addition of rGP’s

inductive hypothesis, the programs Qij are syntactically multilinear, and only
use variables from Var(gij), and hence the programs Pi (for each i) only use
variables from Var(gi). Thus for every i 6= i′, Var(Pi) ∩ Var(Pi′) = ∅. Since each
path in the final program goes through exactly one Qij for each i, it follows
that P is syntactically read-once. �

We now establish the converse to Lemma 5.5. The proof of the converse
as in Allender et al. (1999) is uniform and it produces a circuit rather than a
formula. If we do not insist on uniformity of the circuit, then we actually get a
formula. Thus it can be shown that functions computed by width 2w+2, length
ℓ restricted grid programs can be computed (non uniformly) by unbounded fan-
in formulas of depth 2w + 2 with O(ℓ) wires.

Lemma 5.6. Let P be an arithmetic rGP of length ℓ (number of edge layers)
and of width 2w+2 with variables from X ∈ K. Then there exists an equivalent
arithmetic formula Φ over K, with alternation depth at most 2w + 2, size at
most 2ℓ, and Var(Φ) = Var(P ).
Further, if P is syntactically multilinear, then so is Φ.

Proof. Again, this construction is the same as in Allender et al. (1999); it is
presented here with the induction unfolded to allow arguing, over more general
parameters, that syntactic multilinearity is preserved. It yields an unbounded
fan-in circuit of depth d = 2w + 2 with 2ℓ wires, which can then be converted
to a bounded fan-in circuit of the same size with alternation depth d.
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For a program B, let f(B) denote the function computed by B. We proceed
by induction on w. The base case is when w = 0, i.e. we have a rGP P of width
2. A contiguous sequence of layers with pattern G0,1(c1), G0,1(c2), . . . , G0,1(cr)
computes c1 + c2 + . . . cr. If two such maximal sequences are connected by a
layer with G0,2, then the corresponding functions are multiplied. Thus f(P )
can be computed by a depth 2 formula with one × gate as root and a number of
+ gates as its inputs, where the + gates get input from X∪K. The total fan-in
of the + gates is bounded by the number of layers which contain the graph
G0,1(c), for some c. The fan-in of the × gate is one more than the number of
layers which have the graph G0,2. (The layers having G0,0 do not contribute to
the formula.) Thus the total number of wires is bounded by ℓ + 1 ≤ 2ℓ, and
depth is 2. If P is syntactically multilinear, no path reads the same variable
twice, and so the inner blocks separated by G0,2 have disjoint sets of variables.
Hence the top × gate operates on disjoint sets of variables.

Suppose that for any w′ < w the claim holds, i.e. for a (syntactically mul-
tilinear) rGP P ′ of width 2w′ + 2 and length ℓ′, there is an equivalent (syn-
tactically multilinear) formula Φ′ of depth 2w′ + 2 and size 2ℓ′ and using only
variables from Var(P ′).

Now P is the given rGP of width 2w + 2, length ℓ. Let P be composed as
g1, . . . , gℓ. Let i1 < i2 < . . . < im be the (uniquely defined) set of all indices
where gi1 , . . . , gim are the graph Gw,2w+2. Define i0 = 0, im+1 = ℓ + 1.

For each 0 ≤ j ≤ m, let Pj denote the program gij+1, . . . , gij+1−1 sandwiched
between the jth and (j + 1)th incidence of Gw,2w+2.

The nodes sj and tj for each Pj are defined accordingly. Let ℓj denote the
length of Pj; then ℓ = m +

∑

ℓj. Note that these Pjs do not have Gw,2w+2 at
any layer, and f(P ) =

∏

j f(Pj).

Consider Pj for some j. Let hj1 , . . . hjrj
denote the layers of Pj which are

the connecting graph Gw,2w+1. Let Qj,k denote the part of the program between
hjk

and hjk+1
, and Qj,0 denote the part between gij and hj1 and Qj,rj

denote the
part between hjr

and gij+1
. Let Q′

j,k denote the graph obtained from Qj,k be
removing the top-most and bottom-most lines and the edges connecting them.
Then width(Q′

j,k) = width(Qj,k) − 2 = 2w. Let ℓj,k denote the length of Q′
j,k;

so ℓj ≤ rj +
∑rj−1

k=1 ℓj,k. The nodes s′j,k and t′j,k for Q′
j,k are defined accordingly.

Now f(Pj) =
∑rj−1

k=1 f(Q′
j,k). (Note that Qj,0 and Qj,rj

, even if non-trivial, play
no role in f(Pj) because there is no connection from sj to these blocks.)

By induction, for each Q′
j,k we obtain an equivalent (syntactically multi-

linear) formula Φj,k with variables from Var(Q′
j,k), size(Φj,k) = sj,k = 2ℓj,k and

depth(Φj,k) = dj,k = 2w. Now define Φ =
∏

j

∑rj−1
k=1 Φj,k. Then size(Φ) = s =
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m +
∑

j(rj − 1 +
∑

k 2ℓj,k) ≤ 2ℓ and depth(Φ) = 2w + 2 as desired. Clearly
Var(Φ) = Var(P ).

If P is syntactically multilinear, then inductively we have Φj =
∑rj

k=1 Φj,k

operating on Var(Pj), and each Φj,k is syntactically multilinear. Consider the
root gate of Φ. If it is not syntactically multilinear, then for some j < j′, and
for some k, k′, Φj,k and Φj′,k′ use the same variable x. Thus, by induction,
Pj has an sj-to-tj path using x, and Pj′ also has an sj′-to-tj′ path using x.
Combining these paths with (1) the s-to-sj path along the bottom-line, (2) the
tj-to-sj′ path using gij+1 and then the bottom line, and (3) the tj′-to-t path
along the top line, gives a path in P that reads x twice, contradicting the read-
once property of P . �

As an immediate consequence of the above two lemmas, we have:

Corollary 5.7. (i) sm-VAC0 = sm-VBWrGP;

(ii) VNC1 = VrGP = VLWrGP.

(iii) sm-VNC1 = sm-VrGP = sm-VLWrGP;

Proof. (1) follows directly from Lemmas 5.5 and 5.6.
(2) VNC1 ⊆ VLWrGP ⊆ VrGP ⊆ VPe = VNC1, where the first containment fol-
lows from Lemma 5.5, the second is obvious, the third follows from Lemma 5.6,
and the last equality from Brent (1973).
(3) is similar to (2), with the last equality following from Theorem 5.1. �

Further, noting that the constructions do not introduce constants other
than 0 and 1, we see that they hold in the Boolean setting as well. Therefore
we have the following corollary.

Corollary 5.8. NC1 = rGP = LWrGP.

We summarize these relationships in Figure 5.3.

6. Coefficient Functions

Let f be a polynomial over variables X = {x1, x2, . . . , xn}; we denote this by
Var(f) = X. For a monomial m in variables from X, the partial coefficient
function coef(f,m) is defined to be the unique polynomial g such that f can
be written as f = mg + h, where h is a polynomial with none of its monomials
divisible by m.
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Figure 5.3: Relationship among syntactically multilinear classes

Malod studies the complexity of computing coefficient functions of poly-
nomials computed by classes of arithmetic circuits Malod (2007). From an
old observation by Hammon, it can be seen that the permanent polynomial
equals coef(f, y1y2 . . . yn), where f can be computed by the depth-3 formula
f =

∏

i∈[n]

∑

j∈[n] xijyj. In Malod (2007) it is shown that the Hamiltonian
polynomial can be represented as a coefficient of a polynomial g computed by
polynomial size arithmetic circuits. A closer inspection shows that this poly-
nomial g is actually in VBP. Thus arithmetic circuit classes which are only as
powerful as VAC0 or VBP can generate VNP-complete polynomials as coefficient
functions, and hence the coefficient functions are hard in general.

In the case of polynomials computed by syntactically multilinear circuits
we will prove that the situation is markedly different compared to the general
case. For a multilinear polynomial f over variables x1, x2, . . . , xn, we define the
coefficient function mcoef(f, ·) as follows:

for each a = a1a2 . . . an ∈ {0, 1}n, mcoef(f, a) = coef(f, xa1

1 xa2

2 . . . xan

n ).

Given mcoef(f, ·), there is a unique multilinear polynomial g(x, e) in vari-
ables from X and E, such that for all a ∈ {0, 1}n, g(x, a) = mcoef(f, a). This
polynomial can be obtained from f by interpolation, as follows:

g(x, e) =
∑

b∈{0,1}n

mcoef(f, b)
n
∏

i=1

(eibi + (1 − ei)(1 − bi)) .

With some abuse of notation we will denote this polynomial g by mcoef(f, e).
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6.1. Closure Property. A syntactically multilinear complexity class sm-C
is said to be closed under taking coefficients, if for any polynomial f ∈ sm-C,
the polynomial mcoef(f, e) is also in sm-C. We have the following identities:

For any polynomials f and g, and for all a1, . . . , an ∈ {0, 1}, the partial
coefficient of xa1

1 · · ·xan
n in f + g is the sum of the coefficients of xa1

1 · · ·xan
n in f

and g. Hence

mcoef(f + g, e) = mcoef(f, e) + mcoef(g, e)(6.1)

Let f and g be multilinear polynomials in K[x1, . . . , xn] with Var(f) ∩
Var(g) = ∅. For a1, . . . , an ∈ {0, 1}, if there is an i such that ai = 1 and
xi /∈ Varf ∪Var(g), then the partial coefficient of xa1

1 · · · xan
n is zero. Otherwise,

since Var(f) ∩ Var(g) = ∅, the monomial xa1

1 · · ·xan
n factors across f and g in a

unique way, i.e.

mcoef(fg, e) = mcoef(f, ef ) · mcoef(g, eg) ·





∏

xi /∈Var(f)∪Var(g)

(1 − ei)



(6.2)

where ef and eg are the projection of e to Var(f) and Var(g) (i.e. ef
i = 0 for

xi 6∈ Var(f), ef
i = ei for xi ∈ Var(f); similarly for eg ).

For individual variables xi and constants µ we have

mcoef(xi, e) = (xi(1 − ei) + ei)





∏

j∈[n],j 6=i

(1 − ej)



(6.3)

mcoef(µ, e) = µ





∏

j∈[n]

(1 − ej)



(6.4)

Theorem 6.5. Each of the following syntactically multilinear classes is closed
under taking coefficients: sm-VP, sm-VBP, sm-VNC1, sm-VSCi, sm-VBWBP, and
sm-VACi, for all i ≥ 0.

Proof. Let C be a syntactically multilinear circuit computing the polyno-
mial f . We inductively construct a circuit C ′ on variables X∪e = {x1, . . . , xn}∪
{e1 . . . , en}, computing mcoef(f, e), as follows:

Base Case If C is a single input gate, C = a where a ∈ X ∪ K, then the
coefficient function is given by Equations 6.3,6.4.
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Induction

◦ C = C1 + C2: Let C ′
1 and C ′

2 be the circuits obtained from induction
for the coefficient functions of the polynomials computed by C1 and C2.
Then from Equation 6.1, C ′(X, e) = C ′

1(X, e) + C ′
2(X, e).

◦ C = C1 × C2: Let C ′
1 and C ′

2 be the circuits obtained from induction
for the coefficient functions of the polynomials computed by C1 and C2.
From syntactic multilinearity of C we know that Var(C1) ∩ Var(C2) = ∅.
Then from Equation 6.2, we have C ′(X, e) = C ′

1(X, e′) × C ′
2(X, e′′) ×

(

∏

xi /∈Var(C1)∪Var(C2)
(1 − ei)

)

, where e′ = {ei | xi ∈ Var(C1)} and

e′′ = {ej | xj ∈ Var(C2)}.

We first establish that C ′ is syntactically multilinear. The construction for
the base case is trivially syntactically multilinear. When C = C1 + C2, by
induction hypothesis C ′

1 and C ′
2 are syntactically multilinear, so C ′ = C ′

1 + C ′
2

is also syntactically multilinear. For C = C1 × C2, as Var(C1) ∩ Var(C2) = ∅,
we have e′ ∩ e′′ = ∅. So, by definition Var(C ′

1(X, e′) ∩ Var(C ′
2(X, e′′)) = ∅. As

the ei variables that appear in the product
∏

xi /∈Var(C1)∪Var(C2)
(1 − ei) do not

appear in either C ′
1(X, e′) or C ′

2(X, e′′), we conclude that C ′ is syntactically
multilinear.

Now we consider the size/depth of C ′. Each + gate of C has a corresponding
+ gate in C ′. Each × gate in C is replaced by a product of n terms in C ′. Hence
size(C ′) ≤ O(n × size(C)). The products add a O(log n) multiplicative factor
to the depth. Since the n-term product can be computed using staggering
with just one additional gate per layer, we have width(C ′) ≤ width(C) + 1.
Moreover, if C is a formula to begin with, then so is C ′. Thus all the claims in
the Theorem are established. �

Consequently, it follows from Raz (2009) that we have no analogue of Ham-
mon’s observation for the permanent with f ∈ sm-VNC1.

Corollary 6.6. The Permanent and the Determinant polynomials cannot
be expressed as a coefficient of some monomial of a polynomial computed by a
syntactically multilinear arithmetic formula of polynomial size.

6.2. Stability. Following Malod (2007), we say a complexity class sm-C is
stable for coefficient functions if it satisfies the following two conditions:

1. sm-C is closed under taking coefficients, and
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2. Whenever mcoef(f, e) ∈ sm-C, then f ∈ sm-C.

For a multilinear polynomial f(x, e), let Σ(E) f denote
∑

b∈{0,1}m f(x, b). We
say a complexity class sm-C is closed under taking exponential sums, if whenever
f(x, e) ∈ sm-C, then Σ(E)f ∈ sm-C. One can obtain the permanent as Σ(E) f ,
for f ∈ VNC1 Valiant (1982), cf. Bürgisser (2000). But the situation is contrary
for the syntactically multilinear case, because of the following theorem.

Theorem 6.7. The following syntactically multilinear classes are closed un-
der exponential sums, and hence are stable for coefficient functions: sm-VP,
sm-VBP, sm-VNC1, sm-VSCi, sm-VBWBP, and sm-VACi, for all i ≥ 0.

The theorem is an easy consequence of the following straightforward propo-
sition, by patching a given circuit at gates with constant multiplications of
appropriate powers of two.

Proposition 6.8. Let f and g be multilinear polynomials over X and E.
Then

Σ(E) (f + g) = 2aΣ(Var(f) ∩ E) f + 2bΣ(Var(g) ∩ E) g,

where a = |E − Var(f)| and b = |E − Var(g)|. Furthermore, if f and g are
defined on disjoint variables sets, then

Σ(E) fg = 2c
[

Σ(Var(f) ∩ E) f
]

·
[

Σ(Var(g) ∩ E) g
]

where c = |E| − |Var(f) ∪ Var(g)|.

7. Conclusion and Open Questions

We have studied the relationships among syntactically multilinear arithmetic
circuit classes. In the syntactically multilinear world, the relationship VBWBP

= VNC1 ⊆ VsSC0 gets reversed, i.e. sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1.
Except the simulation from arithmetic formulas to constant width branching
programs Ben-Or & Cleve (1992), all known equivalences translate into the
multilinear world.

We have sm-VsSC0 = sm-VBWBP ⊆ sm-VNC1 ⊆ sm-VLWBP ⊆ sm-VBP.
Can any one of these containments be shown to be strict? To separate sm-VNC1

from sm-VBP, it would be sufficient to show that the full rank polynomial of
Raz & Yehudayoff (2008) can be computed by syntactically multilinear ABPs.
The separation of sm-VBWBP from sm-VBP would also be interesting, though
this will be slightly weaker than separating sm-VNC1 from sm-VBP. One reason
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why the separation of sm-VBWBP from sm-VBP would be interesting and possi-
ble is that they are defined over the same model, algebraic branching programs.
The result of Raz (2006); Raz & Yehudayoff (2008) can be seen as separation of
constant + fan-in circuits from polynomial fan-in circuits at logarithmic depth
and polynomial size. Analogously, separating sm-VBWBP from sm-VBP can
be viewed as separating constant width from polynomial width in ABPs of
polynomial size.
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