
Identity Testing, multilinearity testing, and
monomials in Read-Once/Twice Formulas and

Branching Programs?

Meena Mahajan1, B V Raghavendra Rao2, and Karteek Sreenivasaiah1

1 Institute of Mathematical Sciences, Chennai, India. {meena,karteek}@imsc.res.in
2 Saarland University, Saarbrücken, Germany. bvrr@cs.uni-sb.de

Abstract. We study the problem of testing if the polynomial computed
by an arithmetic circuit is identically zero (ACIT). We give a determin-
istic polynomial time algorithm for this problem when the inputs are
read-twice formulas. This algorithm also computes the MLIN predicate,
testing if the input circuit computes a multilinear polynomial.

We further study two related computational problems on arithmetic cir-
cuits. Given an arithmetic circuit C, 1) ZMC: test if a given monomial
in C has zero coefficient or not, and 2) MonCount: compute the number
of monomials in C. These problems were introduced by Fournier, Malod
and Mengel [STACS 2012], and shown to characterize various levels of
the counting hierarchy (CH).

We address the above problems on read-restricted arithmetic circuits and
branching programs. We prove several complexity characterizations for
the above problems on these restricted classes of arithmetic circuits.

1 Introduction

A fundamental question concerning a given arithmetic circuit is: does the circuit
compute the identically zero polynomial? This is the well-known problem Arith-
metic Circuit Identity Testing ACIT, that has spurred an enormous amount of
research in the last two decades. A complete derandomization of black-box ACIT
even for depth four arithmetic circuits implies circuit lower bounds [13, 2].

Today, there are two frontiers for identity testing. One is based on the (alter-
nation) depth of the circuit. Deterministic identity testing algorithms are known
for depth-2 crcuits, for depth-3 circuits with restrictions on the top fanin, and
for restricted depth-4 circuits. (See [1] and the references therein.) As indicated
by [2], improving this to arbitrary depth-4 circuits will be a major breakthrough.

The other frontier is concerned with formulas. Restricting fanout in a circuit
to 1 yields formulas; further restricting formulas to allow each variable at no
more than k leaves yields Read-k Formulas. The simplest kind of formulas are
read-once formulas ROFs: every variable appears at most once. Deterministic
polynomial-time algorithms for ACIT on such formulas are trivial. Going beyond

? partially supported by Indo-German Max Planck Center (IMPECS)

these for k > 1, one breakthrough in [15] shows how to test k-sums of ROFs: for
each k ∈ O(1), ACIT can be efficiently performed on a sum of k ROFs.

However, not every Read-k formula can be expressed as a sum of k ROFs.
Along this thread, the next improvement in [5] shows how to do identity testing
on read-k formulas that are known to be multilinear, that is, the polynomials
computed at each node are multilinear.

To use the algorithm from [5] for a Read-k formula, we first need to check
whether it is multilinear. The multilinearity testing predicate MLIN is as hard
as ACIT in general ([11]), but for read-k formulas, it could conceivably be easier.
Thus one way to extend the result of [5] to arbitrary read-k formulas is to develop
a multilinearity test for such formulas.

Our main result is a multilinearity test for read-twice formulas R2Fs. Such
a test, in conjunction with [5], would give an ACIT test for R2Fs too. But our
test is actually intertwined with an ACIT test for subformulas. We give a de-
terministic polynomial-time algorithm that simultaneously decides whether an
R2F is multilinear and whether it is identically zero. It performs identity tests
on partial derivatives. It also uses the sum-of-k-ROFs test from [15] on some
subformulas as well as on some formulas obtained by transforming subformulas
of the input formula. Thus it is inherently a non-blackbox algorithm; so is the
polynomial-time algorithm from [15].

ACIT tests check whether the polynomial computed by the crcuit has at least
one monomial. Natural generalizations/variants of this question are (1) Mon-
Count: compute the number of monomials in the polynomial computed by a
given circuit, and (2) ZMC: Decide whether a given monomial has zero coeffi-
cient in the polynomial computed by a given circuit. ZMC was introduced by
Koiran and Perifel [14]. More recently, Fournier, Malod and Mengel [11] showed
that ZMC and MonCount characterize certain levels of the counting hierarchy
(CH, the hierarchy based on the complexity classes PP and C=P). In fact, Mon-
Count remains hard even if restricted to formulas. They also show that if the
circuits compute multilinear polynomials, then these problems become easier
(equivalent to PP and ACIT respectively), and that multilinearity checking itself
is equivalent to ACIT. All these results from [11] are in the non-black-box model,
where the circuit is given explicitly in the input.

Since ACIT on Read-k formulas appears easier, naturally one could ask whether
MonCount and ZMC become easier as well? We observe that this is not the case:
even for monotone (no negative constants) read-twice formulas, MonCount is
#P-hard. This further leads us to the investigation: where exactly does hard-
ness for MonCount and ZMC begin? Further, translating the classes between NP
and PSPACE down to classes below P, can we show that on restricted circuits,
MonCount and ZMC are complete for the translated classes?

Starting with ROFs, we show (Theorem 2) that MonCount for ROFs is in
the GapNC1-hierarchy, i.e. the AC0-closure of GapNC1, where GapNC1 is the
class of Boolean problems that can be computed by arithmetic formulas over
the integers with constants 0, 1, -1. The GapNC1-hierarchy is an intriguing class
that lies between NC1 and DLOG and has been studied extensively in the last

two decades; see for instance [3]. We also show that ZMC for ROFs is in logspace
(Theorem 6). It is straightforward to see that ZMC for ROFs is hard for C=NC1,
so this is almost tight. (The “gap” between Boolean NC1, C=NC1, GapNC1 and
DLOG is very small.)

Another natural, well-studied restriction is when the circuit is an algebraic
branching program BP with edges labeled by the allowed constants or by vari-
ables. Evaluation of BPs on Boolean-valued inputs is complete for the arithmetic
class GapL, the logspace analogue of the class GapP. The GapL hierarchy (the
AC0 closure of GapL) is known to be contained in log n depth threshold circuits
TC1 and hence in log2 n depth Boolean circuits NC2. Two restrictions on BPs,
in order of increasing generality, are: (1) occur-once BPs, or OBPs, where each
variable appears at most once anywhere in the BP, these subsume ROFs, and
(2) multilinear BPs, or MBPs, where the polynomial computed at every node is
multilinear. Again, deterministic algorithms are known for ACIT on OBPs, [12].
We show that MonCount for OBPs is in the GapL hierarchy (Theorem 4), while
ZMC for OBPs and even MBPs is complete for the complexity class C=L (The-
orem 5). (As a comparison, a well-known complete problem for C=L is testing
singularity of an integer matrix [4].)

A related problem explored in [11] as a tool to solving MonCount is that of
checking, given a circuit C and monomial m, whether C computes any monomial
that extends m. Denote this problem ExistExtMon. Though our algorithms for
MonCount do not need this subroutine, we also show that for OBPs (and hence
for ROFs), ExistExtMon lies in the GapL hierarchy (Theorem 7).

2 Preliminaries

Circuits, formulas, branching programs, polynomials. An arithmetic cir-
cuit C over a ring R is a directed acyclic graph where every node has in-degree
zero or two. The nodes with in-degree zero are called leaves. Internal nodes are
labeled + or × and leaves are labeled from X ∪ R, where X = {x1, . . . , xn},
a set of variables. There is a node of out-degree zero, called the root node or
the output gate. Unless otherwise stated, R is the ring of integers Z, and we
allow only the constants {−1, 0, 1} in the circuits. An arithmetic formula F is
an arithmetic circuit where fan-out for every gate is at most one.

The depth of a circuit is the length of a longest root-to-leaf path. The
alternation-depth is the maximum number of alternations between + and ×
gates along any root-to-leaf path. In the literature on identity testing, depth is
used to mean alternation-depth. However we differentiate between these, as is
done in uniform circut complexity literature, because bounded fanin is crucial
to some of our algorithms. Note that converting a circuit to a bounded fanin
circuit increases only the depth, not the size or the alternation depth.

Every node in C computes a polynomial in R[x1, . . . , xn] in a natural way.
Let g be a gate in a circuit (or formula) C. We denote by pg the polynomial
computed at gate g of C. We denote by pC the polynomial pr, where r is the

output gate of C. Let varg
∆
= {xi | some descendant of g is a leaf labelled xi}.

A read-once arithmetic formula (ROF for short) is an arithmetic formula
where each variable occurs at most once as a label. More generally, in a read-k
arithmetic formula a variable occurs at most k times as a label.

An algebraic branching program (ABP for short) over a ring R is a directed
acyclic graph B with edges labeled from {x1, . . . , xn} ∪ R, and with two desig-
nated nodes, s with zero in-degree, and t with zero out-degree. For any directed
path ρ in B, let weight(ρ) =

∏
e: an edge in ρ label(e).

Any pair of nodes u, v in B computes a polynomial in R[x1 . . . xn] defined by:
pB(u, v) =

∑
ρ: ρ is a u v path in B weight(ρ). The ABP B computes the polyno-

mial pB
4
= pB(s, t). We drop the subscript B when clear from context.

We consider the following restrictions of ABPs in increasing order of general-
ity: (1) occur-once ABPs (OBP for short), where each variable appears at most
once anywhere in the ABP (such BPs generalize ROFs), (2) read-once ABPs, or
RBPs, where no path has two occurrences of the same variable, and (3) multi-
linear BPs, or MBPs, where the polynomial computed at every pair of nodes is
multilinear.
Complexity Classes. For all the standard complexity classes, the reader is
referred to [6]. We define some of the non-standard complexity classes that are
used in the paper. Let f = (fn)n≥0 be a family of integer valued functions
fn : {0, 1}n → Z. f is in the complexity class GapL exactly when there is some
nondeterministic logspace machine M such that for every x, f(x) equals the
number of accepting paths of M on x minus the the number of rejecting paths
of M on x. C=L is the class of languages L such that for some f ∈ GapL, for
every x, x ∈ L⇔ f(x) = 0. The GapL hierarchy is built over bit access to GapL
functions, with a deterministic logspace machine at the base, and is known to
be contained in NC2. (See [4, 3] for more details.)

GapNC1 denotes the class of families of functions (fn)(n≥0), fn : {0, 1}n → Z,
where (fn)n>0 can be computed by a uniform polynomial size log depth arith-
metic circuit family. This equals the class of functions computed by uniform
polynomial-sized arithmetic formulas ([8]). C=NC1 is the class of languages L
such that for some GapNC1 function family (fn)n≥0, and for every x, x ∈
L ⇔ f|x|(x) = 0. The GapNC1 hierarchy comprises of languages accepted by
polynomial-size constant depth unbounded fanin circuits (AC0) with oracle ac-
cess to bits of GapNC1 functions, and is known to be contained in DLOG. (See [9,
10] for more details.)
Miscellaneous Notation. A monomial is represented by the sequence of de-
grees of the variables. For instance, over x1, x2, x3, the monomial x21 is repre-
sented as (2, 0, 0), and the monomial x1x3 is represented as (1, 0, 1). For a degree
sequence m = (d1, . . . , dn) we denote the monomial

∏n
i=1 x

di
i by Xm. For any set

S ⊆ [n], we denote by mS the multilinear monomial
∏
i∈S xi. For a monomial

m and polynomial p, coeff(p,m) denotes the coefficient of m in p. [statement S]
is a Boolean 0-1 valued predicate that takes value 1 exactly when S is true.

We now describe the computational problems considered in this paper.

ACIT: Given an arithmetic circuit C over Z, test if the polynomial computed by
C is identically zero.

MonCount: Given an arithmetic circuit C over Z, compute the number of mono-
mials in the polynomial computed by C.

MLIN: Given an arithmetic formula F over Z, test if the polynomial pF is mul-
tilinear.

ZMC: Given an arithmetic circuit C over Z, and a monomialm, test if coeff(pC ,m)
is zero or not.

ExistExtMon: Given an arithmetic circuit C over Z, and a monomial m, test if
there is a monomial M with non-zero coefficient in pC such that M extends
m; that is, m|M .

Note: for a single variable xi, ExistExtMon(C, xi) just tests if the partial deriva-
tive of pC with respect to xi is identically zero.

The following propositions list some of the known results used in the paper.

Proposition 1 ([7, 8]). Evaluating an arithmetic formula where the leaves are
labelled {−1, 0, 1} is in DLOG (even GapNC1).

Proposition 2 ([15]). Given k ROFs in n variables, there is a deterministic
(non black-box) algorithm that checks whether they sum to zero or not. The
running time of the algorithm is nO(k).

Proposition 3 (folklore). The following problems are in DLOG:
1) Given a formula F , a gate g ∈ F , and a variable x, check whether x ∈ varg.
2) Given a rooted tree T , and two nodes u, v, find lowest common ancestor (LCA)
of u and v.

3 Read-twice Formulas: multilinearity and identity tests

In this section we consider the problem of testing multilinearity (MLIN) and
testing identically zero (ACIT) on read-twice formulas. The individual degree of
a variable in a polynomial p computed by read-twice formula F is bounded by
two. Thus, multilinearity testing boils down to testing if the second order partial
derivative of xi is zero for every variable xi. We use the inductive structure of
a read-twice formula to test first order partial derivatives for zero, using the
knowledge of MLIN and ACIT at gates at the lower levels, and to combine this
information to compute MLIN and ACIT at the root.

Theorem 1. For read-twice formulas, the problems ACIT, MLIN, and
ExistExtMon(φ, x) (where φ is the input formula and x is a single variable in it)
are in P.

Proof. Let φ be the given read-twice formula on variables x1, . . . , xn, with S
internal nodes. Without loss of generality, assume that φ is alternating; that is,
inputs to a + gate are either leaves or are × gates, and inputs to a × gate are
either leaves or are + gates.

We proceed by induction on the structure of the formula φ. For each gate g
in φ and each variable x ∈ X, we iteratively compute the value of the constant
term of pg, denoted const(g), and the following set of 0-1 valued functions:

ACIT(g) = 1⇔ pg ≡ 0; MLIN(g) = 1⇔ pg is multilinear;

ExistExtMon(g, x) = 1⇔ pg has a monomial m that contains x .

Recall that ExistExtMon(g, x) = 1 exactly when the partial derivative of pg with
respect to x is not identically zero; in this case we say that x survives in g. (Note:
Since φ is a formula, the values const(g) can be represented with poly(|φ|) bits.)

The base case is when φ is a single variable or a constant. That is, φ consists
of a single gate g, labelled L ∈ X ∪ {0,+1,−1}. Then ACIT(g) = 1 if and only
if L = 0, MLIN(g) = 1 always, and ExistExtMon(g, x) = 1 if and only if L = x.
Also, const(g) is L if L 6∈ X, 0 otherwise.

Now assume that for every gate u below the root gate of φ, the above func-
tions have been computed and stored as bits. Let f be the root gate of φ. We
show how to compute these functions at f . The order in which we compute them
depends on whether f is × or a + gate.

First, consider f = g×h. We compute the functions in the order given below.

1. const(f) = const(g)× const(h).
2. ACIT(f) = ACIT(g) ∨ ACIT(h).
3. MLIN(f): If f is identically zero, then it is vacuously multilinear. Otherwise,

for it to be multilinear, it must be the product of two (non-zero) multilinear
polynomials in disjoint sets of variables. Thus

MLIN(f) = ACIT(f) ∨

[
MLIN(g) ∧MLIN(h)∧(∧

x∈X
[¬ExistExtMon(g, x) ∨ ¬ExistExtMon(h, x)]

)]
Note that the ACIT(f) term is necessary, since f can be multilinear even if,
for instance, g is not, provided h ≡ 0.

4. ExistExtMon(f, x): x appears in pf if and only if pf 6≡ 0 and x appears in at
least one of pg, ph. Thus

ExistExtMon(f, x) = ¬ACIT(f) ∧ [ExistExtMon(g, x) ∨ ExistExtMon(h, x)]

Next, consider f = g+h. We compute the functions in the order given below.

1. const(f) = const(g) + const(h).
2. MLIN(f): Since f is read-twice, a non-multilinear monomial in g cannot get

cancelled by a non-multilinear monomial in h; that would require at least 4
occurrences of some variable. Thus, f is multilinear only if both g and h are.
The converse is trivially true. Thus MLIN(f) = MLIN(g) ∧MLIN(h).

3. ExistExtMon(f, x): This is the non-trivial part; we defer it to a bit later.
4. ACIT(f): Once we compute the functions above, this is straightforward:

ACIT(f) = [const(f) = 0] ∧
∧
x∈X
¬ExistExtMon(f, x)

We now describe how to compute ExistExtMon(f, x) when f = g + h. If x
survives in neither g nor h, then it does not survive in f . But if it survives in
exactly one of g, h, it cannot get cancelled in the sum, so it survives in f . Thus

ExistExtMon(g, x) ∨ ExistExtMon(h, x) = 0 =⇒ ExistExtMon(f, x) = 0

ExistExtMon(g, x)⊕ ExistExtMon(h, x) = 1 =⇒ ExistExtMon(f, x) = 1

So now assume that x survives in both g and h. We can write the polynomials
computed at g, h as pg = αx+ α′ and ph = βx+ β′, where α′, β′ do not involve
x; and we know that α 6≡ 0, β 6≡ 0. We want to determine whether α+ β ≡ 0.

Since x appears in varg and varh, and since f is read-twice, we conclude that
x is read exactly once each in g and in h. Hence α, β also do not involve x.

We construct a formula computing α as follows: In the sub-formula rooted at
g, let ρ be the unique path from x to g. For each + gate u on the path ρ, let u′

be the child of u not on ρ; replace u′ by the constant 0. Thus we retain only the
parts that multiply x; that is, we compute αx. Setting x = 1 gives us a formula G
computing α. A similar construction with the formula rooted at h gives a formula
H computing β. Set F = G+H. Note that F is also a read-twice formula, and
it computes α + β. Thus in this case ExistExtMon(f, x) = 1⇔ ACIT(F) = 0, so
we need to determine ACIT(F).

Let Y denote the set of variables appearing in F ; Y ⊆ X \ {x}. Partition Y :
A: variables occurring only in G; B: variables occurring only in H;
C: variables occurring in G and H.
If A∪B = ∅, then Y = C, and each variable in F appears once in G and once

in H. That is, both G and H are read-once formulas. We can now determine
ACIT(F) in time polynomial in the size of F using Proposition 2.

If A ∪ B 6= ∅, then let y ∈ A. If y survives in G, it cannot get cancelled
by anything in H, so it survives in F and F 6≡ 0. Similarly, if any y ∈ B
survives in H, then F 6≡ 0. We briefly defer how to determine this and complete
the high-level argument. If no y ∈ A survives in G, and no y ∈ B survives
in H, then let F ′ = G′ + H ′ be the formula obtained from F,G,H by setting
variables in A∪B to 0. Clearly, the polynomial computed remains the same; thus
α+ β = pF = pF |A∪B←0 = pF ′ . But F ′ satisfies the previous case (with respect
to F ′, A′ ∪ B′ = ∅), and so we can use Proposition 2 as before to determine
ACIT(F ′) = ACIT(F).

Now we describe how to determine whether a variable y ∈ A survives in G.
(The situation for y ∈ B surviving in H is identical.) We exploit the special
structure of G: there is a path ρ where all the + gates have one argument 0
and the path ends in a leaf labeled 1. Let T = {T1, . . . , T`} be the subtrees
hanging off the × gates on ρ; let ui be the root of Ti. Note that each Ti ∈ T is
a sub-formula of our input formula φ, and hence by the iterative construction
we know the values of the functions ACIT, MLIN, ExistExtMon at gates in these
sub-trees. In fact, we already know that ACIT(ui) = 0 for all i, since we are in the

situation where α 6≡ 0, and α =
∏`
i=1 pui

. Hence, if y appears in just one sub-tree
Ti, then ExistExtMon(G, y) = ExistExtMon(ui, y). If y appears in two sub-trees
Ti, Tj , then ExistExtMon(G, y) = ExistExtMon(ui, y) ∨ ExistExtMon(uj , y). ut

A direct attempt to generalise this to read-k formulas would be to maintain
ExistExtMon(f, xi) for 1 ≤ i ≤ k at each gate. However, this does not work
because in iteratively computing these values, we generate 2-sums of read-k
formulas, not k-sums of ROFs, and cannot use Proposition 2.

4 Counting Monomials

We now consider the MonCount problem. In an ROF, a monomial, once generated
in a sub-formula, can be cancelled only by multiplication with a zero polynomial.
We exploit this fact to obtain an efficient algorithm for MonCount on ROFs.
We then show that even for read-twice formulas, the problem becomes very
hard. Since we cannot generalise Theorem 2 to read-twice formulas, we consider
generalising it beyond ROFs to read-once BPs. For OBPs, similar properties as
for ROFs hold, and again we obtain an efficient algorithm for MonCount.

We start with ROFs:

Theorem 2. Given a read-once formula F , MonCount(pF) can be computed by
an AC0 circuit with oracle gates for GapNC1 functions, and hence in DLOG.

The following lemma is used in proving Theorem 2:

Lemma 1. The language L defined below is in C=NC1:

L = {〈F, g〉 | F is an arithmetic formula, g is a gate in F , and NZ(g) = 0}

For any polynomial p, p ≡ 0 if and only if the constant term of p is 0 and
MonCount(p) is 0. Hence, from Theorem 2 and Lemma 1 we have the following:

Corollary 1. In the non-blackbox setting, ACIT on ROFs is in the GapNC hi-
erarchy and hence in DLOG.

Our next result shows that extending Theorem 2 to Read-k formulas for
k > 1 is extremely unlikely. Even for formulas that are monotone (no negative
constants) and read-twice, and furthermore, are decomposable as the sum of two
read-once formulas, MonCount is at least as hard as #P.

Theorem 3. MonCount is #P complete for the sum of two monotone read-once
formulas.

We now show how to count monomials in OBPs. The approach used in Theo-
rem 2 does not directly generalize to OBPs, i.e., knowing MonCount at immedi-
ately preceding nodes is not enough to compute MonCount at a given node in an
OBP. However, since every variable occurs at most once in an OBP, every path
generating a monomial should pass through one of these edges. This allows us to
keep track of the monomials at any given node of the OBP, given the monomial
count of all of its predecessors.

We begin with some notations. Let B be an occur-once BP on the set of
variables X, and u, v be any nodes in B. Let c(u, v) be the constant term in

p(u, v). We define the 0-1 valued indicator function that describes whether this
term is non-zero:

NZ(u, v) =

{
1 if c(u, v) 6= 0,

0 otherwise.

We cannot directly use the strategy we used for
ROFs, since even in an OBP, there can be cancel-
lations due to the constant terms. For instance, in
the figure alongside, #p(s, b) = #p(s, c) = 1, but
#p(s, t) = 0. We therefore identify edges critical for
a polynomial. We say that edge e = (w, u) of B is
critical to v if

b
1

��========

s
x // a

1

@@��������

−1 ��???????? t

c
1

@@�������

1. label((w, u)) ∈ X; and
2. B has a directed path ρ from u to v with all edges labeled by {−1, 1}.

We have the following structural property for the monomials in p(s, v):

Lemma 2. In an occur-once OBP B with start node s, for any node v in B,

p(s, v) = c(s, v) +
∑

(w,u) critical to v

p(s, w) · label(w, u) · c(u, v) .

Proof. Note that if edges (w, u) 6= (w′, u′) are both critical to v, then the mono-
mials in p(s, w)·label(w, u) and p(s, w′)·label(w′, u′) will be disjoint, because P is
occur-once. (The variables labeling (w, u) and (w′, u′) make the monomials dis-
tinct.) Moreover, for any monomial m in p(s, v), there is exactly one critical edge
(w, u) such that m has non-zero coefficient in the polynomial p(s, w)×label(w, u).
The critical edge corresponds to the last variable of the monomial to be “col-
lected” en route to v from s. This completes the proof. ut

For nodes w, u, v in B where (w, u) is an edge, define a 0-1 valued indicator
function that specifies whether or not (w, u) is critical to v. That is,

critical(〈w, u〉, v) =

{
1 if (w, u) is critical for v

0 otherwise

Using this and Lemma 2, we can show:

Lemma 3. In an occur-once OBP B with start node s, for any node v in B,

#p(s, v) =
∑

e=(w,u)

critical(〈w, u〉, v) ·
(
#p(s, w) + NZ(s, w)

)
· NZ(u, v).

If w is not in a layer to the left of v, then (w, u) cannot be critical to v, and
so #p(s, w) is not required while computing #p(s, v). Hence we can sequentially
evaluate #p(s, v) for all nodes v in layers going left to right, provided we have
all the values NZ(s, w) and critical(〈w, u〉, v).

Lemma 4. Define languages L1, L2 as follows:

L1 = {〈B, u, v〉 | B is an OBP, u, v are nodes in B, and NZ(u, v) = 0. }

L2 =

{
〈B, u, v, w〉 | B is an OBP, u, v, w are nodes in B, and

critical(〈w, u〉, v) = 1.

}
Then L1 and L2 are both in C=L.

From Lemma 3, the comment following it, and Lemma 4, we obtain a poly-
nomial time algorithm to count the monomials in pB . However, with a little bit
of care, we can obtain the following stronger result:

Theorem 4. Given an occur-once branching program B, the number of mono-
mials in pB can be computed in the GapL hierarchy and hence in NC2.

Proof. Starting from B, we construct another BP B′ as follows: B′ has a node
v′ for each node v of B. For each triple w, u, v where (w, u) is an edge in B,
we check via oracles for L1 and L2 whether (w, u) is critical to v and whether
NZ(u, v) = 1. If both checks pass, we add an edge from w′ to v′. We also check
whether NZ(s, w) = 1, and if so, we add an edge from s′ to v′. (We do this
for every w, u, so we may end up with multiple parallel edges from s′ to v′.
To avoid this, we can subdivide each such edge added.) B′ thus implements
the right-hand-side expression in Lemma 3. It follows that pB′(s′, v′) equals
#pB(s, v). Note that B′ can be constructed in logspace with oracle access to
C=L. Also, since B′ is variable-free, it can be evaluated in GapL. Hence #pB can
be computed in the GapL hierarchy. ut

As in Corollary 1, using Theorem 4 and Lemma 4, we have:

Corollary 2. In the non-blackbox setting, ACIT on OBPs is in the GapL hier-
archy and hence in NC2.

5 Zero-test on a Monomial Coefficient (ZMC)

From [11], ZMC is known to be in the second level of CH and hard for the
class C=P. For the case of multilinear BPs MBPs, we show that ZMC exactly
characterizes the complexity class C=L.

Theorem 5. ZMC for multilinear BPs is complete for C=L. More precisely,

1. ZMC for OBPs is hard for C=L.
2. Given a BP B computing a multilinear polynomial pB, and given a multi-

linear monomial m, the coefficient of m in pB can be computed in GapL.

Proof. (Sketch) Hardness: A complete problem for C=L is: does a BP B with
labels from {−1, 0, 1} evaluate to 0? Add a node t′ as the new target node, and
add edge t → t′ labeled x to get B′. Then B′ is an OBP, and (B′, x) ∈ ZMC if
and only if B evaluates to 0.

Upper bound: The idea is to construct (by relabelling the edges of B) a
branching program B′ computing a univariate polynomial, and a monomial m′,
such that the coefficients of m in pB and of m′ in pB′ are the same. The coeffi-
cients of pB′ can be computed in GapL, establishing the second statement. This
will imply that the zero-test is in C=L. ut

The upper bound above, for ZMC on MBPs, also applies to ROFs, since
ROFs can be converted to OBPs by a standard construction. However, with a
careful top-down algorithm, we can give a stronger upper bound of DLOG for
ZMC on ROFs.

Theorem 6. Given a read-once formula F computing a polynomial pF , and
given a multilinear monomial m, the coefficient of m in pF can be computed in
DLOG. Hence ZMC for ROFs is in DLOG.

The lower bound proof in Theorem 5 can be modified to show that ZMC on
ROFs is hard for C=NC1. It is natural to ask whether there is a matching upper
bound. In our construction above, we need to compute predicates of the form [x ∈
varg]. If these can be computed in NC1 for ROFs, then the monomial coefficients
can be computed in GapNC1, improving the upper bound of ZMC to C=NC1.
However, this depends on the specific encoding in which the formula is presented.
In the standard pointer representation, the problem models reachability in out-
degree-1 directed acyclic graphs, and hence is as hard as DLOG.

6 Checking existence of monomial extensions

We now address the problem ExistExtMon. Given a monomial m, one wants to
check if the polynomial computed by the input arithmetic circuit has a monomial
M that extends m (that is, with m|M). This problem is seemingly harder than
ZMC, and hence the bound of Theorem 5 does not directly apply to ExistExtMon.
We show that ExistExtMon for OBPs is in the GapL hierarchy.

Theorem 7. The following problem lies in the GapL hierarchy: Given an occur-
once branching program B and a multilinear monomial m, check whether pB
contains any monomial M such that m|M .

The above bound can be brought down to DLOG for the case of ROFs.

Theorem 8. The following problem is in DLOG: Given a read-once formula F
computing a polynomial pF , and given a multilinear monomial m, check whether
pF contains any monomial M such that m|M .

7 Conclusion

In this paper, we studied the complexity of certain natural problems on severely
restricted circuits.

We have shown that ACIT and MLIN are easy on read-twice formulas. In a
recent extension, we have shown that using [5] instead of [15] yields a simpler al-
gorithm that works even for read-3 formulas. Extending this to Read-k formulas
for any constant k > 3 remains open.

We have shown that MonCount remains #P-hard for read-twice formulas.
We have shown that on read-once formulas and occur-once branching pro-

grams, the complexity of ZMC and ExistExtMon does reduce drastically. Ideally,
we would like these problems to characterise complexity classes within P; we
have partially succeeded in this.

We leave open the question of extending these bounds for formulas and
branching programs that are constant-read.

References

1. M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits:
Hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence
degree-k circuits. In STOC, 2012. To Appear.

2. M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In FOCS,
pages 67–75, 2008.

3. E. Allender. Arithmetic circuits and counting complexity classes. In J. Krajicek,
editor, Complexity of Computations and Proofs, Quaderni di Matematica Vol. 13,
pages 33–72. Seconda Universita di Napoli, 2004.

4. E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity, 8(2):99–126, 1999.

5. M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing polynomial
identity testing for multilinear constant-read formulae. In CCC, pages 273–282,
2011.

6. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

7. S. Buss. The Boolean formula value problem is in ALOGTIME. In STOC, pages
123–131, 1987.

8. S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm
for formula evaluation. SIAM Journal of Computation, 21(4):755–780, 1992.

9. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1

computation. Journal of Computer and System Sciences, 57:200–212, 1998.
10. S. Datta, M. Mahajan, B. V. R. Rao, M. Thomas, and H. Vollmer. Counting

classes and the fine structure between NC1 and L. Theoretical Computer Science,
417:36–49, 2012.

11. H. Fournier, G. Malod, and S. Mengel. Monomials in arithmetic circuits: Complete
problems in the counting hierarchy. In STACS, 2012.

12. M. J. Jansen, Y. Qiao, and J. M. N. Sarma. Deterministic black-box identity testing
π-ordered algebraic branching programs. In FSTTCS, pages 296–307, 2010.

13. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

14. P. Koiran and S. Perifel. The complexity of two problems on arithmetic circuits.
Theoretical Computer Science, 389(1-2):172–181, 2007.

15. A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In STOC,
pages 507–516, 2008.

