
A Note on Mod and Generalised Mod Classes

Meena Mahajan∗ N. V. Vinodchandran†

Keywords. Computational Complexity: Mod classes, relativised separations, truth-table re-

ductions.

1 Introduction

We characterise Mod classes in terms of #P functions, where the membership is determined by

co-primality or gcd testing of the function value (Theorem 3.1), instead of residue (mod k)

testing. Imposing a restriction on the range of the functions gives a characterisation of the

intersection of Mod classes (Theorem 3.2). These intersection classes, which we denote by

Mod ∩k P , are interesting because they share most of the “nice” properties (closure under

complementation, normal forms, lowness for itself etc) of ModpP for prime p. We show that the

class Mod ∩k P is low for ModkP , and also for Mod ∩k P itself (Theorem 3.3).

We also strengthen some of the separation results known for Mod classes. A diagonalisation

argument due to Beigel shows that when k is a prime not dividing j, ModjP can be separated

from ModkP in some relativised world. We observe that this argument even separates Mod ∩j P

from ModkP under the same conditions (Theorem 4.1). Further, if k is not known to be prime,

the same argument still diagonalises, but out of a smaller class; it separates Mod ∩j P from

Mod ∩k P (Theorem 4.2).

The class ModP was defined in [6] as a generalisation of the Mod classes. We define a simple

generalisation, ModKP , and show that it coincides with the disjunctive truth table closure of

ModP , PModP
dtt (Theorem 5.2). We give neat characterisations of PModP

dtt and PModP
ctt (Theorem

5.3), and also a new characterisation of ModP (Theorem 5.4).

The results of section 5 thus give us an overall picture of the relations between the generalised

Mod classes as shown in Figure 1. Arrows denote containment, and connections tagged co-

indicate that the corresponding classes are the Co-classes of each other.

∗The Institute of Mathematical Sciences, Madras 600 113, India. email: meena@imsc.ernet.in
†The Institute of Mathematical Sciences, Madras 600 113, India. email: vinod@imsc.ernet.in. Work done at

the Department of Computer Science and Engineering, Indian Institute of Technology, Madras 600 036, India.

1

P
ModP

ctt

P
ModP

dtt

ModKP

(variable k)

=

Uk kMod P

(fixed k)Mod P

U
kUk

(fixed k, promise)

U Mod Pp p

(fixed p)

=

Uk co-Mod Pk

(fixed k)

ModP

(variable p)
Co

Co

Figure 1. Relations among gemeralised Mod classes

2

2 Preliminaries

We follow the standard definitions and notations in computational complexity theory (see, e.g.,

[1] or [5]). A function f is in #P if there exists a nondeterministic polynomial time Turing

Machine M such that ∀x, f(x) is the number of accepting paths of M on input x. #P is closed

under several arithmetic operations, including addition, multiplication, binomial coefficients,

etc. [3]. A language L is in ModkP [3, 4] if there is a #P function f such that ∀x ∈ Σ∗, x ∈

L ⇔ f(x) 6≡ 0 (mod k). We use the notation ∨iModpi
P and ∧iModpi

P to denote the classes

{∪iLi | Li ∈ Modpi
P} and {∩iLi | Li ∈ Modpi

P} respectively. If k has prime factorisation k =

Πip
αi

i where the pi are distinct primes, then we denote Πipi by π(k). If π(k) = k then k is

said to be squarefree. φ(k) denotes the Eulerian function, the number of integers less than and

co-prime to k.

The following results about Mod classes will be used in this note.

Theorem 2.1 1. ([3], Corollary 33) ModkP = ∨p|k, p primeModpP .

2. ([3], Theorem 23) Let p be prime. A language L is in ModpP if and only if it has a 0-1

normal form #P function; that is, there exists a #P function satisfying, for all x,

x ∈ L ⇒ f(x) ≡ 1 (mod p)

x 6∈ L ⇒ f(x) ≡ 0 (mod p)

3. ([3], Theorem 27) If p is prime, then ModpP
ModpP = ModpP .

4. ([2], Theorem 10) Let j > 1, and let k be a prime number that is not a divisor of j. There

exists an oracle A such that ModjP
A 6⊆ ModkP

A.

The class ModP has been introduced by Köbler et al in [6]. ModP is the generalised version

of ModpP , where p is a prime.

Definition 2.2 ([6]) A language L is in ModP iff there exists a #P function f and a function

g ∈ FP such that for all strings x, g(x) = 0p for some prime p, and x ∈ L ⇔ f(x) 6≡ 0

(mod p).

It is shown in [6] that the #P function f can be brought into 0-1 normal form (it always

evaluates to either 1 or 0 (mod |g(x)|)). It has also been shown that the class does not change

if, in the definition, g is allowed to return powers of prime numbers.

3

3 New Characterisations

In this section, we show some new characterisations for Mod classes. These characterisations

use co-primality and gcd testing on the values of #P functions, rather than residue testing.

Theorem 3.1 L ∈ ModkP if and only if there exists a #P function f such that x ∈ L ⇔

gcd(f(x), k) 6= 1.

Proof: (⇒). Let L ∈ ModkP . Let k = Πip
αi

i , where pi are the prime factors of k. Then

L ∈ ∨pi|k, pi primeModpi
P Theorem 2.1, 1.

⇒ L ∈ ∧pi|k, pi prime Co-Modpi
P

⇒ L ∈ ∧pi|k, pi primeModpi
P

So let L = ∩Li where each Li ∈ Modpi
P via #P function fi in 0-1 normal form (from

Theorem 2.1, 2). Then it is easy to verify that the function f = Σi
k

p
αi
i

fi satisfies the given

conditions.

(⇐). If f is a #P function satisfing the given conditions then L ∈ ModkP via the #P function

h = fφ(k) + (k − 1).

In other words, a language L ∈ ModkP can be characterised using a #P function f such

that if x ∈ L, f maps x to a non-invertible element of the ring Z/kZ, and if x 6∈ L, f maps x to

an invertible element.

A promise version of the above class of functions, where

gcd(f(x), k) 6= 1 ⇒ gcd(f(x), k) = k

characterises the intersection of the Modpi
P classes, where pi is a prime factor of k. For brevity

we henceforth denote this class by

Mod ∩k P
△
= ∩pi|k, pi primeModpi

P

Thus if k is squarefree, then Mod ∩j P = Mod ∩k P for all j such that π(j) = k.

Theorem 3.2 L ∈ Mod ∩k P iff there exists a #P function f such that

x ∈ L ⇒ gcd(f(x), k) = 1

x 6∈ L ⇒ gcd(f(x), k) = k

Proof: (⇒). Let L ∈ Mod ∩k P where k = Πip
αi

i . For all i, let L ∈ Modpi
P via #P functions

hi in 0-1 normal form. Then L ∈ Modp
αi
i

P via #P function fi = h
αiφ(p

αi
i

)
i which is also in

0-1 normal form. Now it is easy to verify that the function f = Σi
k

p
αi
i

fi satisfies the given

conditions.

4

(⇐). It is obvious that if there exists a function satisfying the conditions, then L ∈ Modpi
P for

each i via the same function. Hence L ∈ Mod ∩k P .

It follows that for every k, languages in Mod ∩k P have a 0-1 normal form #P function with

respect to k. Note that in the above theorem, the conditions of Theorem 3.1 have been restricted

to the promise version and inverted. This does not matter because Mod ∩k P is closed under

complementation.

The class Mod ∩k P is of some interest because it is low for ModkP , as we show below. In

fact, it is also low for itself, whereas an analogous result for ModkP classes is known to hold

only when k is prime. Also, we do not know of any class which contains Mod ∩k P and is low

for ModkP ; Mod ∩k P is the largest known class with this property.

Theorem 3.3 For any k ≥ 2,

(1) ModkP
Mod∩kP = ModkP

(2) Mod ∩k PMod∩kP = Mod ∩k P

Proof: We prove (1); (2) follows identically. Let A ∈ ModkP
Mod∩kP via an oracle L ∈

Mod ∩k P . Then

A ∈ ∨pi|k, pi primeModpi
PL relativised version of Theorem 2.1, 1.

⊆ ∨pi|k, pi primeModpi
PModpi

P by definition of Mod ∩k P

= ∨pi|k, pi primeModpi
P Theorem 2.1, 3.

= ModkP Theorem 2.1, 1.

4 Separation Results

In [2], the construction of an oracle relative to which ModjP is not contained in ModkP is

outlined (Theorem 2.1, 4.). This result applies when k is prime and j and k are relatively prime.

It is open whether the second condition alone is sufficient to exhibit such a separation. If we

consider separations of the Mod∩ classes instead of Mod classes, then we show (Theorem 4.2)

that this condition suffices.

A careful examination of the oracle construction in [2] shows that only the subset Mod ∩j P

of ModjP is used in proving ModjP
A 6⊆ ModkP

A. The construction diagonalises out of the

class ModkP , in the process creating a language which satisfies the promise of Theorem 3.2.

Thus the construction actually proves the following result:

5

Theorem 4.1 Let j > 1, and let k be a prime that is not a divisor of j. Then there exists an

oracle A such that

Mod ∩j PA 6⊆ ModkP
A

If k is allowed to be composite, as long as it has at least one prime factor not dividing j, the

diagonalisation argument can still be used. However, it now diagonalises out of a much smaller

(presumably) class, namely the class Mod ∩k P .

Theorem 4.2 Let j and k be two integers. If k has a prime factor not dividing j, then there

exists an oracle B such that Mod ∩j PB 6⊆ Mod ∩k PB.

Proof: Since k has a prime factor p that does not divide j, it follows from the above theorem

that there exists an oracle B such that Mod ∩j PB 6⊆ ModpP
B. But Mod ∩k PB ⊆ ModpP

B,

since p|k. Therefore Mod ∩j PB 6⊆ Mod ∩k PB.

In particular, if gcd(j, k) = 1, then the corresponding Mod ∩ P classes can be separated;

there exists an oracle B such that Mod ∩j PB 6⊆ Mod ∩k PB.

For any two primes p, q, the classes ModpP and ModqP can be separated (from Theorm 2.1,

4.) in some relativised world. Consequently, we have a proper separation between the Mod ∩k P

and ModkP classes in some relativised world, as the following corollary states .

Corollary 4.3 If k is not prime or a power of a prime, then there is an oracle C such that

Mod ∩k PC ⊂ ModkP
C .

5 Generalised Mod classes

In this section we generalise the class ModkP to ModKP and show that this class is precisely

the disjunctive truth table closure of the class ModP .

Definition 5.1 A language L is in ModKP iff there exists a #P function f and a function

g ∈ FP such that for all strings x, g(x) outputs a positive integer k as a list 〈0p
α1

1 , 0p
α2

2 , · · · , 0p
αn
n 〉

where k = Πip
αi

i , and x ∈ L ⇔ f(x) 6≡ 0 (mod k).

(k can also be represented as a list 〈〈0p1 , 0α1〉, 〈0p2 , 0α2〉, · · · , 〈0pn , 0αn〉〉. Even though 0p
αi
i

requires pαi

i to be polynomially bounded (implying small exponents), the same number pαi

i with

polynomial-valued αi can be expressed simply by repeating 0pi αi times in the list.)

6

Theorem 5.2 PModP
dtt = ModKP

Proof: (a) ModKP ⊆ PModP
dtt .

Let L ∈ ModKP via f ∈ #P and g ∈ FP . Define B = {〈x, 0pe

〉 | f(x) 6≡ 0 (mod pe)}. Then

B ∈ ModP via #P function f and FP function gB, where gB, on input 〈x, 0pe

〉, outputs 0pe

.

(Although g does not return a prime, it always returns a power of a prime. So the language is

still in ModP , as described in [6].)

Let g(x) = 〈0p
α1

1 , 0p
α2

2 , · · · , 0p
αn
n 〉, representing k = Πip

αi

i . Now L disjunctively reduces to B

via an FP function h, where h, on input x, produces the list 〈〈x, 0p
α1

1 〉, 〈x, 0p
α2

2 〉, · · · , 〈x, 0p
αn
n 〉〉.

(b) PModP
dtt ⊆ ModKP .

Let L be disjunctively reducible to a set B ∈ ModP via h. Then for all strings x, h(x) produces

a list 〈y1, y2, · · · , ym〉 such that x ∈ L ⇔ ∃i, 1 ≤ i ≤ m : yi ∈ B.

Let B ∈ ModP via a 0-1 normal form #P function f and an FP function g. For any string

x, let P (x) = {|g(y1)|, |g(y2)| · · · |g(ym)|} be the set of primes computed by g. (Note that two

strings may give the same prime on same input x.) Let Ip(x) = {yi | g(yi) = 0p}. Define

functions f̃ and g̃ as follows:

f̃ =
∑

p∈P (x)











∏

q∈P (x)−p

q













∏

y∈Ip(x)

(f(y) + p − 1)p−1



 (p − 1) + 1











g̃(x) = 〈0p1 , 0p2 , · · · , 0pn〉 each pi ∈ P (x)

Since the value of each prime is polynomial in the length of x, it follows from the closure

properties of #P functions that f̃ ∈ #P . Also it is easy to verify that g̃ ∈ FP . We show that

the language L ∈ ModKP via f̃ ∈ #P and g̃ ∈ FP .

Let the value that g̃ computes on input x be k.

x ∈ L ⇒ f(yi) ≡ 1 (mod |g(yi)|) for some i ≤ m

⇒ f(yi) ≡ 1 (mod p) for some p ∈ P (x), p = |g(yi)|

⇒
(

∏

y∈Ip(x) (f(y) + p − 1)p−1
)

(p − 1) + 1 ≡ 1 (mod p)

⇒ f̃(x) 6≡ 0 (mod p)

⇒ f̃(x) 6≡ 0 (mod k)

x 6∈ L ⇒ f(yi) ≡ 0 (mod |g(yi)|) for all i ≤ m

⇒ f(yi) ≡ 0 (mod p), p = |g(yi)| ∀i

⇒
(

∏

y∈Ip(x) (f(y) + p − 1)p−1
)

(p − 1) + 1 ≡ 0 (mod p) ∀p ∈ P (x)

⇒ f̃(x) ≡ 0 (mod k)

7

Like ModkP , ModKP can also be characterised in terms of gcd testing.

Theorem 5.3 A language L ∈ ModKP if and only if there exists a #P function f and

a function g ∈ FP such that for all strings x, g(x) outputs a positive integer k as a list

〈0p
α1

1 , 0p
α2

2 , · · · , 0p
αn
n 〉 where k = Πip

αi

i , and

x ∈ L ⇔ gcd(f(x), k) 6= 1

Proof: (a) Let L be in ModKP via functions h ∈ #P , g ∈ FP . Then f as defined below

satisfies the required condition. Let k = Πip
αi

i be computed by g on input x. Then

f(x) = Σi
k

pαi

i

[

(h(x))pi−1(pi − 1) + 1
]

.

(b) Checking if gcd(f(x), k) = 1 is conjunctive truth-table reducible to ModP queries (using

a construction similar to that in the proof of Theorem 5.2 (a)). Since ModP is closed under

complementation [6], ModKP= PModP
dtt = co-PModP

ctt .

The preceding theorem also characterises PModP
ctt as the class of languages L such that x ∈

L ⇔ gcd(f(x), k) = 1, where f and g are as defined in the theorem.

For ModP , the #P function can be brought into 0-1 normal form. If the FP function is

also allowed to return non-primes in suitably encoded form, we get the presumably larger class

ModKP = PModP
dtt . However, if the #P function is constrained to be in 0-1 normal form with

respect to these composite numbers as well, we get back the original class ModP , as shown

below.

Theorem 5.4 A language L ∈ ModP if and only if there exists a function f ∈ #P and a

function g ∈ FP such that for all strings x, g(x) = 0k for some positive integer k ≥ 2 and

x ∈ L ⇒ f(x) ≡ 1 (mod k)

x 6∈ L ⇒ f(x) ≡ 0 (mod k)

(Larger values of k can be represented using the list representation, as in the definition of

ModKP . However, it is easy to see that in this case, this makes no difference to the class.)

Proof: (⇒) This follows from the 0-1 normal form of ModP .

(⇐) Suppose there exist functions f ∈ #P and g ∈ FP . Consider the function g′ which returns

any prime factor of the number computed by g on x. Since g returns g(x) in unary (or in

factorised) notation, clearly g′ ∈ FP . Now L ∈ ModP via f and g′.

8

Acknowledgements

We wish to thank Johannes Köbler for pointing out an error in an earlier version of this note.

We also wish to thank V Arvind and V Vinay for many comments which helped improve the

presentation and readability of this note.

References

[1] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity – I. Springer Verlag, Berlin

Heidelberg, 1988.

[2] R. Beigel. Relativized counting classes: relations among thresholds, parity, and mods. Jour-

nal of Computer and System Sciences, 42:76–96, 1991.

[3] R. Beigel, J. Gill, and U. Hertrampf. Counting classes: Thresholds, parity, mods, and few-

ness. In Proceedings of the Seventh Annual Symposium on Theoretical Aspects of Computer

Science, pages 49–57. Springer-Verlag, 1990. Lecture Notes in Computer Science # 415.

[4] U. Hertrampf. Relations among Mod-classes. Theoretical Computer Science, 74:325–328,

1990.

[5] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, 1979.

[6] J. Köbler and S. Toda. On the power of generalized MOD-classes. In Proceedings of the

Eighth Annual Conference on Structure in Complexity theory, 1993.

9

