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Abstract
We study computation by formulas over (min,+). We consider the computation of max{x1, . . . , xn}
over N as a difference of (min,+) formulas, and show that size n + n logn is sufficient and ne-
cessary. Our proof also shows that any (min,+) formula computing the minimum of all sums of
n − 1 out of n variables must have n logn leaves; this too is tight. Our proofs use a complex-
ity measure for (min,+) functions based on minterm-like behaviour and on the entropy of an
associated graph.
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1 Introduction

A (min,+) formula is a formula (tree) in which the leaves are labeled by variables or con-
stants. The internal nodes are gates labeled by either min or +. A min gate computes the
minimum value among its inputs while a + gate simply adds the values computed by its
inputs. Such formulas can compute any function expressible as the minimum over several
linear polynomials with non-negative integer coefficients.

In this work, we consider the following problem: Suppose we are given n input variables
x1, x2, . . . , xn and we want to find a formula which computes the maximum value taken by
these variables, max(x1, x2, . . . , xn). If variables are restricted to take non-negative integer
values, t is easy to show that no (min,+) formula can compute max. Suppose now we
strengthen this model by allowing minus gates as well. Now we have a very small linear
sized formula: max(x1, x2, . . . , xn) = 0−min(0−x1, 0−x2, . . . , 0−xn). It is clear that minus
gates add significant power to the model of (min,+) formulas. But how many minuses do
we actually need? It turns out that only one minus gate, at the top, is sufficient. Here is
one such formula: (Sum of all variables) - mini (Sum of all variables except xi). The second
expression above can be computed by a (min,+) formula of size n logn using recursion. So,
we can compute max using min, + and one minus gate at the top, at the cost of a slightly
super-linear size. Can we do any better? We show that this simple difference formula is
indeed the best we can achieve for this model.

The main motivation behind studying this question is the following question asked in
[8]: Does there exist a naturally occuring function f for which (min,+) circuits are super-
polynomially weaker than (max,+) circuits? There are two possibilities:
1. Show that max can be implemented using a small (min,+) circuit.
2. Come up with an explicit function f which has small (max,+) circuits but requires large

(min,+) circuits.
© Meena Mahajan and Prajakta Nimbhorkar and Anuj Tawari;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 74; pp. 74:1–74:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.74
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


74:2 Computing max using (min,+) formulas

Since we show that no (min,+) formula (or circuit) can compute max, option 1 is ruled out.
In the weaker model of formulas instead of circuits, we show that any difference of (min,+)
formulas computing max should have size at least n logn. This yields us a separation
between (max,+) formulas and difference of (min,+) formulas.

Background
Many dynamic programming algorithms correspond to (min,+) circuits over an appropri-
ate semiring. Notable examples include the Bellman-Ford-Moore (BFM) algorithm for the
single-source-shortest-path problem (SSSP) [2, 5, 14], the Floyd-Warshall (FW) algorithm
for the All-Pairs-Shortest-Path (APSP) problem [4, 18], and the Held-Karp (HK) algorithm
for the Travelling Salesman Problem (TSP) [6]. All these algorithms are just recursively
constructed (min,+) circuits. For example, both the BFM and the FW algorithms give
O(n3) sized (min,+) circuits while the HK algorithm gives a O(n2 · 2n) sized (min,+) cir-
cuit. Matching lower bounds were proved for TSP in [7], for APSP in [8], and for SSSP
in [10]. So, proving tight lower bounds for circuits over (min,+) can help us understand
the power and limitations of dynamic programming. We refer the reader to [8, 9] for more
results on (min,+) circuit lower bounds.

Note that algorithms for problems like computing the diameter of a graph are naturally
expressed using (min,max,+) circuits. This makes the cost of converting a max gate to a
(min,+) circuit or formula an interesting measure.

A related question arises in the setting of counting classes defined by arithmetic circuits
and formulas. Circuits over N, with specific resource bounds, count accepting computation
paths or proof-trees in a related resource-bounded Turing machine model defining a class
C. The counting function class is denoted #C. The difference of two such functions in a
class #C is a function in the class DiffC. On the other hand, circuits with the same resource
bounds, but over Z, or equivalently, with subtraction gates, describe the function class GapC.
For most complexity classes C, a straightforward argument shows that that DiffC and GapC
coincide. See [1] for further discussion on this. In this framework, we restrict attention
to computation over N and see that as a member of a Gap class over (min,+), max has
linear-size formulas, whereas as a member of a Diff class, it requires Ω(n logn) size.

Our results and techniques:
We now formally state our results and briefly comment on the techniques used to prove
them.
1. For n ≥ 2, no (min,+) formula over N can compute max(x1, x2, . . . , xn). (Theorem 10)

The proof is simple: apply a carefully chosen restriction to the variables and show that
the (min,+) formula does not output the correct value of max on this restriction.

2. max(x1, x2, . . . , xn) can be computed by a difference of two (min,+) formulas with total
size n + ndlogne. More generally, the function computing the sum of the topmost k
values amongst the n variables can be computed by a difference of two (min,+) formulas
with total size n+ n(dlogne)min{k,n−k}. (Theorem 11)
Note that the sum of the topmost k values can be computed by the following formula:
(Sum of all variables) - minS (Sum of all variables except those in S). Here S ranges over
all possible subsets of {x1, x2, . . . , xn} of cardinality n − k. Using recursion, we obtain
the claimed size bound.

3. Let F1, F2 be (min,+) formulas over N such that F1 − F2 = max(x1, x2, . . . , xn). Then
F1 must have at least n leaves and F2 at least n logn leaves. (Theorem 13)
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A major ingredient in our proof is the definition of a measure for functions computable by
constant-free (min,+) formulas, and relating this measure to formula size. The measure
involves terms analogous to minterms of a monotone Boolean function, and uses the
entropy of an associated graph under the uniform distribution on its vertices. In the
setting of monotone Boolean functions, this technique was used in in [15] to give formula
size lower bounds. We adapt that technique to the (min,+) setting.
The same technique also yields the following lower bound: Also, any (min,+) formula
computing the minimum over the sums of n − 1 variables must have at least n logn
leaves. This is tight. (Lemma 12 and Corollary 18)

2 Preliminaries

2.1 Notation
Let X denote the set of variables {x1, . . . , xn}. We use x̃ to denote (x1, x2, . . . , xn, 1).

We use ei to denote the (n + 1)-dimensional vector with a 1 in the ith coordinate and
zeroes elsewhere. For i ∈ [n], we also use ei to denote an assignment to the variables
x1, x2, . . . , xn where xi is set to 1 and all other variables are set to 0.

I Definition 1. For 0 ≤ r ≤ n, the n-variate functions Sumn, MinSumr
n and MaxSumr

n are
as defined below.

Sumn =
n∑

i=1
xi

MinSumr
n = min

{∑
i∈S

xi | S ⊆ n, |S| = r

}

MaxSumr
n = max

{∑
i∈S

xi | S ⊆ n, |S| = r

}

Note that MinSum0
n and MaxSum0

n are the constant function 0, and MinSum1
n and MaxSum1

n

are just the min and max respectively.

I Observation 2. For 1 ≤ r < n, MinSumn
n = MaxSumn

n = Sumn = MinSumr
n+MaxSumn−r

n .

2.2 Formulas
A (min,+) formula is a directed tree. Each leaf of a formula has a label from X ∪ N; that
is, it is labeled by a variable xi or a constant α ∈ N. Each internal node has exactly two
children and is labeled by one of the two operations min or +. The output node of the
formula computes a function of the input variables in the natural way. The input nodes of
a formula are also referred to as gates.

If all leaves of a formula are labeled from X, we say that the formula is constant-free.
A (min,+,−) formula is similarly defined; the operation at an internal node may also

be −, in which case the children are ordered and the node computes the difference of their
values.

We define the size of a formula as the number of leaves in the formula. For a formula
F , we denote by L(F ) its size, the number of leaves in it. For a function f , we denote by
L(f) the smallest size of a formula computing f . By Lcf (f) we denote the smallest size of
a constant-free formula computing f .

MFCS 2017
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2.3 Graph Entropy
The notion of the entropy of a graph or hypergraph, with respect to a probability distribution
on its vertices, was first defined by Körner in [11]. In that and subsequent works (e.g.
[12, 13, 3, 15]), equivalent characterizations of graph entropy were established and are often
used now as the definition itself, see for instance [16, 17]. In this paper, we use graph
entropy only with respect to the uniform distribution, and simply call it graph entropy.
We use the following definition, which is exactly the definition from [17] specialised to the
uniform distribution.

I Definition 3. Let G be a graph with vertex set V (G) = {1, . . . , n}.
The vertex packing polytope V P (G) of the graph G is the convex hull of the characteristic

vectors of independent sets of G.
The entropy of G is defined as

H(G) = min
~a∈V P (G)

n∑
i=1

1
n

log 1
ai

.

It can easily be seen that H(G) is a non-negative real number, and moreover, H(G) = 0 if
and only if G has no edges. We list non-trivial properties of graph entropy that we use.

I Lemma 4 ([12, 13]). Let F = (V,E(F )) and G = (V,E(G)) be two graphs on the same
vertex set. The following hold:
1. Monotonocity. If E(F ) ⊆ E(G), then H(F ) ≤ H(G)
2. Subadditivity. Let Q be the graph with vertex set V and edge set E(F ) ∪ E(G). Then

H(Q) ≤ H(F ) +H(G).

I Lemma 5 (see for instance [16, 17]). The following hold:
1. Let Kn be the complete graph on n vertices. Then H(Kn) = logn.
2. Let G be a graph on n vertices, whose edges induce a bipartite graph on m (out of n)

vertices. Then H(G) ≤ m
n .

3 Transformations and Easy bounds

We consider the computation of max{x1, . . . , xn} over N using (min,+) formulas.
To start with, we describe some properties of (min,+) formulas that we use repeatedly.

The first property, Proposition 7 below, is expressing the function computed by a formula
as a depth-2 polynomial where + plays the role of multiplication and min plays the role of
addition. The next properties, Proposition 8 and 9 below, deal with removing redundant
sub-expressions created by the constant zero or moving common parts aside.

I Definition 6. Let F be a (min,+) formula with leaves labeled from X ∪N. For each gate
v ∈ F , we construct a set Sv ⊆ Nn+1 as described below.

We construct the sets inductively based on the depth of v.
1. Case 1. v is a leaf labeled α for some α ∈ N. Then Sv = {α · en+1}. (Recall, ei is the

unit vector with 1 at the ith coordinate and zero elsewhere).
2. Case 2: v is a leaf labeled xi for some i ∈ [n]. Then Sv = {ei}.
3. Case 3: v = min{u,w}. Then Sv = Su ∪ Sw.
4. Case 4: v = u+ w. Then Sv = {ã+ b̃ | ã ∈ Su, b̃ ∈ Sw} (coordinate-wise addition).
Let r be the output gate of F . We denote by S(F ) the set Sr so constructed.



M. Mahajan and P. Nimbhorkar and A. Tawari 74:5

It is straightforward to see that if F has no constants (so Case 1 is never invoked), then
an+1 remains 0 throughout the construction of the sets Sv. Hence if F is constant-free, then
for each ã ∈ S(F ), an+1 = 0.

By construction, the set S(F ) describes the function computed by F . Thus we have the
following:

I Proposition 7. Let F be a formula with min and + gates, with leaves labeled by elements
of {x1, . . . , xn} ∪ N. For each gate v ∈ F , let fv denote the function computed at v.

Then fv = min{〈ã · x̃〉 | ã ∈ Sv}.

The following proposition is an easy consequence of the construction in Definition 6.

I Proposition 8. Let F be a (min,+) formula over N. Let G be the formula obtained from
F by replacing all constants by the constant 0. Let H be the constant-free formula obtained
from G by eliminating 0s from G through repeated replacements of 0 + A by A, min{0, A}
by 0. Then
1. L(H) ≤ L(G) = L(F ),
2. S(G) = {b̃ | bn+1 = 0,∃ã ∈ S(F ),∀i ∈ [n], ai = bi}, and
3. G and H compute the same function min{〈b̃ · x̃〉 | b̃ ∈ S(G)}.
(Note: It is not the claim that S(G) = S(H). Indeed, this may not be the case. eg. let
F = x + min{1, x + y}. Then S(F ) = {101, 210}, S(G) = {100, 210}, S(H) = {100},
However, the functions computed are the same.)

The next proposition shows how to remove “common” contributors to S(F ) without
increasing the formula size.

I Proposition 9. Let F be a (min,+) formula computing a function f .
If, for some i ∈ [n], ai > 0 for every ã ∈ S(F ), then f−xi can be computed by a (min,+)

formula F ′ of size at most size(F ).
If an+1 > 0 for every ã ∈ S(F ), then f − 1 can be computed by a (min,+) formula F ′ of

size at most size(F ).
In both cases, S(F ′) = {b̃ | ∃ã ∈ S(F ), b̃ = ã− ei}.

Proof. First consider i ∈ [n]. Let X be the subset of nodes in F defined as follows:

X = {v ∈ F | ∀ã ∈ Sv : ai > 0}

Clearly, the output gate r of F belongs to X. By the construction of the sets Sv, whenever
a min node v belongs to X, both its children belong to X, and whenever a + node belongs
to X, at least one of its children belongs to X. We pick a set T ⊆ X as follows. Include r
in T . For each min node in T , include both its children in T . For each + node in T , include
in T one child that belongs to X (if both children are in X, choose any one arbitrarily).
This gives a sub-formula of F where all leaves are labeled xi. Replace these occurrences of
xi in F by 0 to get formula F ′. It is easy to see that S(F ′) = {ã − ei | ã ∈ S}. Hence F ′
computes f − xi.

For i = an+1, the same process as above yields a subformula where each leaf is labeled
by a positive constant. Subtracting 1 from the constant at each leaf in T gives the formula
computing f − 1. J

It is intuitively clear that no (min,+) formula can compute max. A formal proof using
Proposition 7 appears below.

I Theorem 10. For n ≥ 2, no (min,+) formula over N can compute max{x1, . . . , xn}.

MFCS 2017
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Proof. Suppose, to the contrary, some formula C computes max. Then its restriction D to
x1 = X, x2 = Y , x3 = x4 = . . . = xn = 0, correctly computes max{X,Y }. Since all leaves
of D are labeled from {x1, x2} ∪ N, the set S(D) is a set of triples. Let S ⊆ N3 be this set.
For all X,Y ∈ N, max{X,Y } equals E(X,Y ) = min{AX +BY + C | (A,B,C) ∈ S}.

Let K denote the maximum value taken by C in any triple in S. If for some B,C ∈ N,
the triple (0, B,C) belongs to S, then E(K + 1, 0) ≤ C ≤ K < K + 1 = max{0,K + 1}. So
for all (A,B,C) ∈ S, A 6= 0, so A ≥ 1. Similarly, for all (A,B,C) ∈ S, B ≥ 1. Hence for all
(A,B,C) ∈ S, A+B ≥ 2.

Now E(1, 1) = min{A+B + C | (A,B,C) ∈ S} ≥ 2 > 1 = max{1, 1}. So E(X,Y ) does
not compute max(X,Y ) correctly. J

However, if we also allow the subtraction operation at internal nodes, it is very easy to
compute the maximum in linear size; max(x1, . . . , xn) = −min{−x1,−x2, . . . ,−xn}. Here
−a is implemented as 0− a, and if we allow only variables, not constants, at leaves, we can
compute −a as (x1 − x1)− a.

Thus the subtraction operation adds significant power. How much? Can we compute
the maximum with very few subtraction gates? It turns out that the max function can be
computed as the difference of two (min,+) formulas. Equivalently, there is a (min,+,−)
formula with a single − gate at the root, that computes the max function. This formula is
not linear in size, but it is not too big either; we show that it has size O(n logn). A simple
generalisation allows us to compute the sum of the largest k values.

I Theorem 11. For each n ≥ 1, and each 0 ≤ k ≤ n, the function MaxSumk
n can be

computed by a difference of two (min,+) formulas with total size n+ n(dlogne)min{k,n−k}.
In particular, the function max{x1, . . . , xn} can be computed by a difference of two

(min,+) formulas with total size n+ ndlogne.

Proof. Note that MaxSumk
n = Sumn−MinSumn−k

n . Lemma 12 below shows that MinSumn−k
n

can be computed by a formula of size n(dlogne)min{k,n−k} for 0 ≤ k ≤ n. Since Sumn can
be computed by a formula of size n, the claimed upper bound for MaxSumk

n follows. J

I Lemma 12. For all n, k such that n ≥ 1 and 0 ≤ k < n, the functions MinSumk
n,

MinSumn−k
n can be computed by a (min,+) formula of size n(dlogne)k.

Hence the functions MinSumk
n, MinSumn−k

n can be computed by (min,+) formulas of size
n(dlogne)min{k,n−k}.

Proof. We prove the upper bound for MinSumn−k
n . The bound for MinSumk

n follows from
an essentially identical argument.

We prove this by induction on k.
Base Case: k = 0. For every n ≥ 1, MinSumn−k

n = Sumn and can be computed with size
n.
Inductive Hypothesis: For all k′ < k, and all n > k′, MinSumn−k′

n can computed in size
n(dlogne)k′ .
Inductive Step: We want to prove the claim for k, where k ≥ 1, and for all n > k. We
proceed by induction on n.

Base Case: n = k + 1. MinSumn−k
n = MinSum1

n is the minimum of the n variables,
and can be computed in size n.
Inductive Hypothesis: For all k < m < n, MinSumm−k

m can be computed in size
m(dlogme)k.
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Inductive Step: Let m′ = bn/2c, m′′ = dn/2e, Let X, Xl, Xr denote the sets of
variables {x1, . . . , xn}, {x1, . . . , xm′}, {xm′+1, . . . , xn}. Note that |Xl| = m′, |Xr| =
m′′, m′ +m′′ = n. Let p denote dlogne. Note that dlogm′e = dlogm′′e = p− 1.
To compute MinSumn−k

n on X, we first compute, for various values of t, MinSumm′−t
m′

on Xl, MinSumm′′−(k−t)
m′′ on Xr, and add them up. We then take the minimum of

these sums. Note that if m′ = t or m′′ = k − t, then that summand is simply 0 and
we only compute the other summand. Now MinSumn−k

n (X) can be computed as

min
{

MinSumm′−t
m′ (Xl) + MinSumm′′−(k−t)

m′′ (Xr) | max{0, k −m′′} ≤ t ≤ min{m′, k}
}

For all the sub-expressions appearing in the above construction, we can use inductively
constructed formulas. Using the inductive hypotheses (both for t < k and for t = k,
m′′ < n), we see that the number of leaves in the resulting formula is given by

min{m′,k}∑
t=max{0,k−m′′}

[
m′(p− 1)t +m′′(p− 1)k−t

]
≤

k∑
t=0

[
m′(p− 1)t +m′′(p− 1)k−t

]
=

[
k∑

t=0
m′(p− 1)t

]
+
[

k∑
t=0

m′′(p− 1)t

]

= (m′ +m′′)
[

k∑
t=0

(p− 1)t

]
≤ n [(p− 1) + 1]k = npk

J

In the rest of this paper, our goal is to prove a matching lower bound for the max
function. Note that the constructions in Theorem 11 and Lemma 12 yield formulas that
do not use constants at any leaves. Intuitively, it is clear that if a formula computes the
maximum correctly for all natural numbers, then constants cannot help. So the lower bound
should hold even in the presence of constants, and indeed our lower bound does hold even
if constants are allowed.

4 The main lower bound

In this section, we prove the following theorem:

I Theorem 13. Let F1, F2 be (min,+) formulas over N such that F1−F2 = max(x1, . . . , xn).
Then L(F1) ≥ n, and L(F2) ≥ n logn.

The proof proceeds as follows: we first transform F1 and F2 over a series of steps to formulas
G1 and G2 no larger than F1 and F2, such that G1 − G2 equals F1 − F2 and hence still
computes max, and G1 and G2 have some nice properties. These properties immediately
imply that L(F1) ≥ L(G1) ≥ n. We further transform G2 to a constant-free formula H
no larger than G2. We then define a measure for functions computable by constant-free
(min,+) formulas, relate this measure to formula size, and use the properties of G2 and H
to show that the function h computed by H has large measure and large formula size.
Transformation 1: For b ∈ {1, 2}, let Sb denote the set S(Fb). For i ∈ [n + 1], let Ai be
the minimum value appearing in the ith coordinate in any tuple in S1 ∪ S2. Let Ã denote

MFCS 2017
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the tuple (A1, . . . , An, An+1). By repeatedly invoking Proposition 9, we obtain formulas Gb

computing Fb − 〈Ã · x̃〉, with L(Gb) ≤ L(Fb). For b ∈ {1, 2}, let Tb denote the set S(Gb).
We now establish the following properties of G1 and G2.

I Lemma 14. Let F1, F2 be (min,+) formulas such that F1 − F2 computes max. Let G1,
G2 be obtained as described above. Then
1. L(G1) ≤ L(F1), L(G2) ≤ L(F2),
2. max(X) = F1 − F2 = G1 −G2,
3. For every i ∈ [n], for every ã ∈ T1, ai > 0. Hence L(G1) ≥ n.
4. For every i ∈ [n], there exists ã ∈ T2, ai = 0.
5. There exist ã ∈ T1, b̃ ∈ T2, an+1 = bn+1 = 0.
6. For every i, j ∈ [n] with i 6= j, for every ã ∈ T2, ai + aj > 0.

Proof. 1. This follows from proposition 9.
2. Obvious.
3. Suppose for some ã ∈ T1 and for some i ∈ [n], ai = 0. Consider the input assignment

d̃ where di = 1 + an+1 and dj = 0 for j ∈ [n] \ {i}. Then max{d1, . . . , dn} = 1 + an+1.
However, 〈ã · d̃〉 = an+1. Therefore on input d̃, G1(d̃) ≤ an+1. Since G2 ≥ 0 on all
assignments, we get G1(d̃)−G2(d̃) ≤ an+1 < max(d̃), contradicting the assumption that
G1 −G2 computes max.

4. This follows from the previous point and the choice of Ai for each i.
5. From the choice of An+1, we know that there is an ã in T1 ∪ T2 with an+1 = 0. Suppose

there is such a tuple in exactly one of the sets T1, T2. Then exactly one of G1(0̃), G2(0̃)
equals 0, and so G1 −G2 does not compute max(0̃).

6. Suppose to the contrary, some ã ∈ T2 has ai = aj = 0. Consider the input assignment
d̃ where di = dj = 1 + an+1 and dk = 0 for k ∈ [n] \ {i, j}. Then max{d1, . . . , dn} =
1 + an+1. Since every xk figures in every tuple of T1, G1(d̃) ≥ di + dj = 2an+1 + 2. But
G2(d̃) ≤ an+1. Hence G1(d̃)−G2(d̃) does not compute max(d̃).

J

We have already shown above that L(F1) ≥ L(G1) ≥ n. Now the more tricky part: we
need to lower bound L(G2).
Transformation 2: Let H ′ be the formula obtained by simply replacing every constant
in G2 by 0. Let H be the constant-free formula obtained from H ′ by eliminating the
zeroes, repeatedly replacing 0 + A by A, min{0, A} by 0. Let h be the function computed
by H. Then, Lcf (h) ≤ L(H) ≤ L(H ′) = L(G2) ≤ L(F2). It thus suffices to show that
Lcf (h) ≥ n logn. To this end, we define a complexity measure µ, relate it to constant-free
formula size, and show that it is large for the function h.

I Definition 15. For an n-variate function f computable by a constant-free (min,+) for-
mula, we define

(f)1 = {i | f(ei) ≥ 1, f(0) = 0}.
(f)2 = {(i, j) | f(ei + ej) ≥ 1, f(ei) = 0, f(ej) = 0}.

We define G(f) to be the graph whose vertex set is [n] and edge set is (f)2.
The measure µ for function f is defined as follows:

µ = |(f)1|
n

+H(G(f))
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The following lemma relates µ(f) with L(f). This relation has been used before, see
for instance [15] for applications to monotone Boolean circuits. Since we have not seen an
application in the setting of (min,+) formulas, we (re-)prove this in detail here; however, it
is really the same proof.

I Lemma 16. Let f be an n-variate function computable by a constant-free (min,+) formula.
Then Lcf (f) ≥ n · µ(f).

Proof. The proof is by induction on the depth of a witnessing formula F that computes f
and has Lcf (F ) = Lcf (f).

Base case: F is an input variable, say xi. Then (f)1 = {xi}, and G(f) is the empty
graph, so µ(f) = 1

n . Hence 1 = Lcf (f) = nµ(f).
Inductive step: F is either F ′+F ′′ or min{F ′, F ′′} for some formulas F ′, F ′′ computing

functions f ′, f ′′ respectively. Since F is an optimal-size formula for f , F ′ and F ′′ are optimal-
size formulas for f ′ and f ′′ as well. So Lcf (f) = L(F ) = L(F ′)+L(F ′′) = Lcf (f ′)+Lcf (f ′′).

Case a. F = F ′ + F ′′. Then (f)1 = (f ′)1 ∪ (f ′′)1 and G(f) ⊆ G(f ′) ∪G(f ′′). Hence,

µ(f) ≤ |(f
′)1 ∪ (f ′′)1|

n
+H(G(f ′) ∪G(f ′′)) (Lemma 4)

≤ |(f
′)1|
n

+ |(f
′′)1|
n

+H(G(f ′)) +H(G(f ′′)) (Lemma 4)

= µ(f ′) + µ(f ′′)

≤ 1
n
· Lcf (f ′) + 1

n
· Lcf (f ′′) (Induction)

= 1
n
· Lcf (f) (Lcf (f) = Lcf (f ′) + Lcf (f ′′))

Case b. F = min(F ′, F ′′). Let (f ′)1 = A and (f ′′)1 = B. Then (f)1 = A ∩ B and
G(f) ⊆ G(f ′)∪G(f ′′)∪G(A \B,B \A). Here, G(P,Q) denotes the bipartite graph G with
parts P and Q. Hence,

µ(f) ≤ 1
n

(|A ∩B|) +H(G(f ′) ∪G(f ′′) ∪G(A \B,B \A)) (Lemma 4)

≤ 1
n

(|A ∩B|) +H(G(f ′)) +H(G(f ′′)) +H(G(A \B,B \A)) (Lemma 4)

≤ 1
n

(|A ∩B|) +H(G(f ′)) +H(G(f ′′)) + 1
n

(|A \B|+ |B \A|) (Lemma 5)

≤ 1
n

(|A|+ |B|) +H(G(f ′)) +H(G(f ′′))

= µ(f ′) + µ(f ′′)

≤ 1
n
· Lcf (f ′) + 1

n
· Lcf (f ′′) (Induction)

= 1
n
· Lcf (f) (Lcf (f) = Lcf (f ′) + Lcf (f ′′))

Hence, µ(f) ≤ 1
n · Lcf (f). J

Using this measure, we can now show the required lower bound.

I Lemma 17. For the function h obtained after Transformation 2, µ(h) ≥ logn.

Proof. Recall that we replaced constants in G2 by 0 to get H ′, then eliminated the 0s to get
constant-free H computing h. By Proposition 8, we know that S(H ′) = {b̃ | bn+1 = 0,∃ã ∈
T2, ai = bi∀i ∈ [n]} and that h = min{x̃ · b̃ | b̃ ∈ S(H ′)}.
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From item 4 in Lemma 14, it follows that (h)1 = ∅. (For every i, there is a b̃ ∈ S(H ′)
with bi = 0. So h(ei) ≤ 〈ei · b̃〉 = 0.)

Since (h)1 is empty, (i, j) ∈ G(h) exactly when h(ei +ej) ≥ 1. From item 6 in Lemma 14,
it follows that every pair (i, j) is in G(h). Thus G(h) is the complete graph Kn.

From Lemma 5 we conclude that µ(h) = logn. J

Lemmas 16 and 17 imply that Lcf (h) ≥ n logn. Since Lcf (h) ≤ L(H) ≤ L(H ′) =
L(G2) ≤ L(F2), we conclude that L(F2) ≥ n logn.

This completes the proof of Theorem 13.

A major ingredient in this proof is using the measure µ. This yields lower bounds for
constant-free formulas. For functions computable in a constant-free manner, it is hard to
see how constants can help. However, to transfer a lower bound on Lcf (f) to a lower bound
on L(f), this idea of “constants cannot help” needs to be formalized. The transformations
described before we define µ do precisely this.

For the MinSumn−1
n function, applying the measure technique immediately yields the

lower bound Lcf (MinSumn−1
n ) ≥ n logn. Transferring this lower bound to formulas with

constants is a corollary of our main result, and with it we see that the upper bound from
Lemma 12 is tight for MinSumn−1

n .

I Corollary 18. Any (min,+) formula computing MinSumn−1
n must have size at least n logn.

Proof. Let F be any formula computing MinSumn−1
n . Applying Theorem 13 to F1 = x1 +

. . .+ xn and F2 = F , we obtain L(F ) ≥ n logn. J

5 Discussion

Our results hold when variables take values from N. In the standard (min,+) semi-ring, the
value ∞ is also allowed, since it serves as the identity for the min operation. The proof of
our main result Theorem 13 does not carry over to this setting. The main stumbling block
is the removal of the “common” part of S(F ). However, if we allow ∞ as a value that a
variable can take, but not as a constant appearing at a leaf, then the lower bound proof still
seems to work. However, the upper bound no longer works; while taking a difference, what
is ∞−∞?

Apart from the many natural settings where the tropical semiring (min,+,N∪{∞}, 0,∞)
crops up, it is also interesting because it can simulate the Boolean semiring for monotone
computation. The mapping is straightforward: 0, 1,∨,∧ in the Boolean semiring are replaced
by ∞, 0,min,+ respectively in the tropical semiring. Proving lower bounds for (min,+)
formulas could be easier than for monotone Boolean formulas because the (min,+) formula
has to compute a function correctly at all values, not just at 0,∞. Hence it would be
interesting to extend our lower bound to this setting with ∞ as well.

Our transformations crucially use the fact that there is a minimum element, 0. Thus,
we do not see how to extend these results to computations over integers. It appears that
we will need to include −∞, and since we are currently unable to handle even +∞, there is
already a barrier.

The lower bound method uses graph entropy which is always bounded above by logn.
Thus this method cannot give a lower bound larger than n logn. It would be interesting to
obtain a modified technique that can show that all the upper bounds in Theorem 11 and
Lemma 12 are tight. It would also be interesting to find a direct combinatorial proof of our
lower bound result, without using graph entropy.
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