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Abstract

In this note, we show that over fields of any characteristic, exponential sums
of Boolean instantiations of polynomials computed by multilinear circuits can
be computed by multilinear circuits with polynomial blow-up in size. In par-
ticular, multilinear-VNP equals multilinear-VP. Our result showing closure
under exponential sums also holds for other restricted multilinear classes –
polynomials computed by multilinear (bounded-width) algebraic branching
programs and formulas. Furthermore, it holds even if the circuit class is
not fully multilinear but computes a polynomial that is multilinear in the
summation variables.
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1. Introduction

Valiant [1, 2] introduced algebraic complexity theory to study the com-
plexity of polynomial families. One of the most fundamental problems in
algebraic complexity theory is to decide whether the classes VP and VNP are
distinct. These classes were first defined by Valiant in [1, 2] as the algebraic
analogues of the Boolean complexity classes P and NP (however, a closer look
at the definitions reveals that they are really an analogue of LOGCFL and #P;
LOGCFL is a subclass of P). For basics and detailed treatment of the subject
we refer the reader to [3, 4]. We borrow notations from [4, 5]. VP is the
class of sequences of polynomials with polynomially bounded degree that are
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computable by polynomial sized arithmetic circuits. Moreover, a sequence
of polynomials (fn) belongs to VNP if and only if there exist polynomials p
and q, and a sequence (gn) ∈ VP such that for all n,

fn(x1, . . . , xq(n)) =
∑

ȳ∈{0,1}p(x̄)

gn(x1, . . . , xq(n), y1, . . . , yp(n)).

So, in other words, one can think of VNP as exponential sums of poly-
nomial sized circuits; VNP =

∑
·VP. Hence the VP versus VNP question

can also be thought of as understanding the power of exponential sums.
In the foundational paper [2], Valiant observed that exponential sums of
polynomial sized formulas (

∑
·VF) or (

∑
·VPe) exactly capture exponen-

tial sums of polynomial sized circuits (
∑
·VP). That is, VNPe = VNP (see

also [6]). He used this observation crucially to show that the permanent
polynomial is VNP-hard. VBP is the class of polynomial families computed
by algebraic branching programs of polynomial size; equivalently, families
that can be represented as the determinant of a polynomially large ma-
trix, where the entries are either field elements or variables. It is known
that VF ⊆ VBP ⊆ VP; hence from Valiant’s observation, it follows that∑
·VF =

∑
·VBP =

∑
·VP = VNP.

Valiant’s observation raises a natural question to study: How powerful
are exponential sums of restricted circuit classes?

A natural restriction on arithmetic circuits is multilinearity. A polynomial
is called multilinear if each variable in the polynomial has degree at most
1. An arithmetic circuit is called multilinear if every gate in it computes
a multilinear polynomial. Furthermore, if for every product gate, the sub-
circuits rooted at the left and right child are variable-disjoint, then the circuit
is called syntactic multilinear.

The exponential summation under the restriction of syntactic multilin-
earity was studied by Jansen et al. [7, 8, 5]. They showed that syntactic
multilinear classes are closed under exponential sums. In particular, expo-
nential summation does not add any power to syntactic multilinear formulas.
Contrast this with the case of general formulas, where it become as powerful
as VNP. Exponential summations of polynomials were also studied by Juma
et al. [9]. Their motivation was to obtain query algorithms for #SAT that
are better than brute-force. They proved that over fields of characteristic
different from 2, multilinear polynomials are closed under exponential sums
(Observation 1.3, [9]).
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In this note we study the exponential summation under the restriction
of multilinearity (not necessarily syntactic). Using techniques different from
those used in [5, 9], we extend their results by showing that over any field,
exponential summation does not add power to multilinear circuit classes. In
particular, since in the multilinear world we know that VF is strictly weaker
than VBP ([10, 11]), our result implies that in the multilinear world we do
not have an analogue of the collapse

∑
·VF =

∑
·VBP =

∑
·VP that holds

in the general world. A corollary of our result is that VNP = VP in the mul-
tilinear setting, whereas we do not believe that a similar thing holds in non-
multilinear setting. Thus our result highlights essential differences between
the general and multilinear worlds, and indicates that separations/collapses
in the restricted multilinear world may have no bearing on the true state of
affairs in the general world.

We obtain our result (Theorem 1) by considering summations of general
polynomials, but the summation is over variables that have degree at most 1
in the polynomial. We show that such a summation over multilinear variables
is as good as evaluating the polynomial at one or a small number of points.

2. Preliminaries

An arithmetic circuit is a directed acyclic graph with leaves labeled by
variables or field elements, and internal nodes (called gates) labeled by one
of the field operations + and ×. The vertex with out-degree 0 is called the
output gate. Note that each gate computes a polynomial in a natural way.
The polynomial computed by the circuit is the polynomial computed at the
output gate of the circuit. If the out-degree of each internal node is 1, that
is, the undirected graph underlying the circuit is a tree, then the circuit is
called a formula. The size of a circuit or formula is the number of gates in
it including the input gates. We say that a circuit is layered if there is a
partition V1, . . . , V` of non-input gates in the circuits into layers such that all
incoming edges of Vi are either from input gates or from Vi−1, 1 < i ≤ `. The
width of a layered circuit is the maximum number of gates per layer.

An algebraic branching program (ABP) is a directed acyclic graph with
two distinguished vertices s and t. Vertex s has in-degree 0, and vertex t has
out-degree 0. Each edge is labeled with either a field element or a variable.
The weight of a path from s to t is the product of the labels of the edges
appearing in the path. The polynomial computed by an algebraic branching
program G is the sum of the weights of all paths from s to t in G. The size
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of an algebraic branching program is the number of vertices in it. An ABP
is called layered if the vertices can be partitioned into layers such that edges
are present only in between consecutive layers. The width of a layered ABP
is the maximum number of nodes in any layer.

A variable x is said to have degree at most d in the polynomial f if
each non-zero monomial in f has degree at most d in x and at least one
monomial containing x has degree exactly d. We say that a polynomial
f(x1, . . . , xn, y1, . . . , yn) is multilinear in the Y = {y1, . . . , yn} variables if all
variables in Y have degree at most 1 in f . Thus a polynomial over the set of
variables X is called multilinear if the polynomial is multilinear in X. By a
multilinear circuit/formula we mean a circuit/formula computing multilinear
polynomials at each gate in the circuit/formula.

3. Exponential sums of multilinear polynomials

We now state and prove our main theorem.

Theorem 1. Let f(x1, . . . , xN , y1, . . . , ym) be a polynomial that is multilin-
ear in the Y = {y1, . . . , ym} variables. Let h(X) be the exponential sum
polynomial

h(X) =
∑

e∈{0,1}m
f(X, e1, . . . , em).

If f has an efficient computation, so does h. The following table gives upper
bounds on the complexity measures of h in terms of the corresponding mea-
sures of f .

Char 6= 2
Char = 2

infinite fields finite fields

Circuit (size,width)
f s, w s, w s, w
h s+ 1, w 3s(m+ 1), w + 1 s(m+ 1)2, w(m+ 1)

ABP (size,width)
f s, w s, w s, w
h s+ 1, w 3s(m+ 1), w + 2 s(m+ 1), w(m+ 1)

Formula size
f s s s
h s+ 1 O(s) [5] O(s) [5]

Furthermore, if the circuit/ABP/formula for f is multilinear, then so is
the circuit/ABP/formula for h.

Proof: Let f(x1, . . . , xN , y1, . . . , ym) be some polynomial that is multilinear
in the Y = {y1, . . . , ym} variables. Then there are polynomials fS(X) in the
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variables X = {x1, . . . , xN}, one for each S ⊆ [m], such that we can express
f in terms of them:

f(X, Y ) =
∑
S⊆[m]

fS(X)
∏
i∈S

yi.

Now consider the exponential Boolean sum

h(X) =
∑

e∈{0,1}m
f(X, e) =

∑
e∈{0,1}m

∑
S⊆[m]

fS(X)
∏
i∈S

ei

=
∑

e∈{0,1}m

∑
S⊆[m]:i∈S⇒ei=1

fS(X)

=
∑
S⊆[m]

fS(X)
∑

e∈{0,1}m:i∈S⇒ei=1

1

=
∑
S⊆[m]

fS(X)2m−|S|.

Char 6= 2. If the field has characteristic other than 2, then

h(X) = 2m
∑
S⊆[m]

fS(X)2−|S| = 2mf(x1, . . . , xN , 1/2, . . . , 1/2).

Since f(x1, . . . , xN , 1/2, . . . , 1/2) is a projection of f(X, Y ), we see that
if f is computed by a multilinear circuit C, then C ′ obtained by setting all
the yi variables to 1/2 is also multilinear (the polynomials at each node are
projections of the respective polynomials in C). Multiplying the output of
C ′ with 2m gives a circuit for h. This observation was also made in [9]. Note
that the same thing can be done for ABPs or formulas, again with just one
extra node, and no increase in width.

Char = 2. If the field F has characteristic 2, then a little more work is needed
to compute h(X). We see that for |S| < m , the contribution from fS to h
vanishes due to characteristic 2, and we are left with

h(X) =
∑
S⊆[m]

fS(X)2m−|S| = f[m](x1, . . . , xN).

So we need to compute f[m](X). The polynomial

g(X, y) , f(x1, . . . , xn, y, y, . . . , y)
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may be viewed as a univariate polynomial g′(y) in G[y], where G is the ring
F[X]. Then f[m](X) is just the coefficient of ym in g′. (Note that g′(y) has
degree at most m, since f is multilinear in Y .)

If a circuit C of size s computes f , then setting each yi ∈ Y to y gives
circuit C ′, also of size s, computing g′. Now there are two cases to consider.

Infinite fields. This is the easier case, and we give a construction that even
preserves width, using the standard interpolation trick. Let g′(y) =

∑m
i=0 ciy

i

where ci ∈ F[X]. Pick m+ 1 distinct values αj from F and consider the sys-
tem of equations

∑m
i=0 ciα

i
j = g′(αj); 0 ≤ j ≤ m. More succinctly,

V [c0, . . . , cm]t = [g′(αo), g
′(α1), . . . , g′(αm)]t, where V is a Vandermonde ma-

trix and is hence invertible. Hence cm is a linear combination of the poly-
nomials g′(αo), g

′(α1), . . . , g′(αm) computed by distinct copies of C ′. By in-
creasing the depth/length, this linear combination can be computed in a way
that increases the width of a circuit only by 1 and of an ABP only by 2.

It follows easily that if f is computed by a multilinear circuit, then the
circuit obtained above is also multilinear.

Finite fields. Using the standard procedure of homogenization (see [3, 4]),
we can obtain circuits C0, C1, . . . , Cm for the homogeneous components of g′.
The circuitD(X) = Cm(X, 1), is the desired circuit for h. The size is bounded
by s(m+ 1)2, and width by w(m+ 1).

It remains to see why D is multilinear when C is multilinear. For this,
we need to look at the structure of the homogeneous circuit obtained by the
homogenization procedure. For every gate u in C, we introduce m+ 1 gates
in the homogeneous circuit. We refer to these m+1 copies as the major gates.
Each major gate computes a homogeneous part of the polynomial computed
at u in C. Therefore, a major gate corresponds to a gate u in C, and a
degree i ∈ {0, 1, . . . ,m}; we refer to this gate as [u, i]. Hence the output gate
of the circuit D(X) is the gate [r,m], where r is the output gate of C. The
edge connections in the homogeneous circuit D are defined inductively. For
the input gates we label the copies appropriately. If u = v + z, we make
the connections based on the rule [u, i] = [v, i] + [z, i] for all i. Otherwise if
u = v×z, the connections are based on the rule [u, i] =

∑i
k=0[v, k]× [z, i−k].

In this last case, we refer to the intermediate (multiplication) gates used at
each major gate to accumulate the homogeneous parts as the minor gates.

Let pC(X, Y ) and pD(X) be the polynomials computed at u in C and at
[u, i] in D respectively. We know that pC(X, Y ) is multilinear in X and Y .
Hence in the expression pC(X, y, y, . . . , y) =

∑m
j=0 pC,j(X)yj, each pC,j(X) is

multilinear. By construction, pD(X) = pC,i(X); hence it is multilinear.
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Now consider the minor gates. It seems possible that two minor gates
compute non-multilinear terms that cancel out when accumulated in the
major gate. We need to show that this does not happen, and that the minor
gates also compute multilinear polynomials.

Lemma 1. Let α, β and γ be three gates in C such that α = β × γ. If the
three gates are multilinear, then the variables appearing in the polynomials
computed by β and γ are disjoint.

Proof: With slight abuse of notation, let α, β, γ also denote the polynomials
computed by the respective gates. Suppose there exists a variable v which
is in β and in γ. Consider the total order on the variables: x1 < . . . < xn <
y1 < . . . < ym and the derived lexicographic order on the monomials. Let
mβ and mγ be the maximal monomials in β and γ which contain v. We show
that the monomial mβmγ is in α. If it is not, it is cancelled by some other
monomial nβnγ. But, mβmγ contains v2, so nβ and nγ must both contain v.
By assumption, nβ ≤ mβ and nγ ≤ mγ. So, nβnγ ≤ mβmγ and the equality
holds only if mβ = nβ and mγ = nγ. Thus the monomial mβmγ does not get
cancelled and appears in α. Hence α is not multilinear, a contradiction. �

Lemma 2. If [u, i] is a major gate in D, then every variable appearing in
the polynomial computed at [u, i] also appears in the polynomial computed at
the gate u in C.

Proof: As before, let pD(X) and pC(X, Y ) be the polynomials computed at
the gates [u, i] and u. Then, pD(X) is the coefficient of yi in the polynomial
pC(x1, . . . , xn, y, . . . , y). Consequently, the variables of pD(X) are included in
the variables of pC(x1, . . . , xn, y, . . . , y). Moreover, as pC(x1, . . . , xn, y, . . . , y)
is a projection of the polynomial pC(X, Y ), the variables of pC(x1, . . . , xn, y, . . . , y)
are included in the variables in pC(X, Y ). �

A minor gate in D feeding into gate [u, i] corresponds to some k ∈
{0, 1, . . . , i} and computes [v, k] × [z, i − k]. We have already seen that the
polynomials computed at the major gates [v, k] and [z, i− k] are multilinear.
Furthermore, by Lemma 2, the variables of [v, k] (respectively [z, i− k]) are
a subset of the variables of v (respectively z). As v and z share no variables
(Lemma 1), the same holds for [v, k] and [z, i−k] as well. Thus their product
is also multilinear.

This completes the proof for circuits. The same homogenization trick
works for ABPs as well, taking size s and width w to size s(m+1) and width
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w(m+1). However for formulas, it could result in a huge blowup in size. But
recall that multilinear formulas can be made syntactic multilinear without
any increase in size [10]. Hence the result for multilinear formulas follows
directly from [5]. �

From Theorem 1 we obtain the closure property of multilinear classes.

Corollary 2. The following circuit classes are closed under exponential sums:
multilinear poly-size bounded-width branching programs (m-VBWBP), multi-
linear poly-size formulas (m-VF), multilinear poly-size branching programs
(m-VBP), and multilinear poly-size circuits (m-VP). In particular, we have
m-VP = m-VNP.
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