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1 Introduction

A leftist grammar is a rewrite system in which the only kind of production rules

allowed are “create left-context” via a −→ ba, and “erase left-context” via ba −→

a. There is a special start symbol, S, which cannot be created or erased, but which

can create context. A string w is said to be in L(G) if wS can be transformed

through a sequence of rewrite rules to S.

To the best of our knowledge, these leftist grammars have appeared in just

one place in the literature, namely, in the work of [8]. There, the authors present

schemes for determining accessibility or safety in certain protection systems,

which provide the formal basis for trust management. Their model, first pro-

posed in [9, 2] in the context of Java virtual worlds, is a capability-based system.

It strictly generalises the grammatical protection systems of [1, 6] (where creation

of new objects is disallowed and the take-grant model of [7] (where there is only

a restricted set of rights), and is a special case of the general access-matrix model

[3] which is undecidable.

The authors of [8] show that accessibility in their model is decidable by map-

ping it to a membership query in a leftist grammar. They explicitly raise the

question of placing these grammars within the Chomsky hierarchy (for basics

about formal language theory, see an standard textbook, such as [4, 5]). While

all the examples they constructed were context-free, they were unable to show

that all leftist languages are context-free, or even context-sensitive.
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In this work, we make some progress towards answering this question. We

show that leftist languages without any “create-context” rules can be non-regular,

by constructing a leftist grammar and proving that the language it generates is

non-regular. We use a novel technique of constructing a deterministic infinite-

state automaton accepting the language, and then proving that it is minimal.

Since the leftist rewrite system has no rules for creating context, it is trivially

context-free. Thus we show that leftist systems with no create-context rules

are incomparable with regular languages and properly contained in context-free

languages.

We also show that over binary alphabets, all leftist languages (even those

generated by grammars with create-context rule) are regular, though the converse

is not true.

2 Definition and some properties of leftist lan-

guages

Definition 1 A leftist grammar is a rewrite system G = (V, S, P ) where S ∈ V

and every rule α −→ β ∈ P satisfies the following conditions:

• 1 ≤ |α|, |β| ≤ 2.

• If |α| = 2, then α = ab where a ∈ V \ {S}, b ∈ V , and β = b.

• If α = b ∈ V , then β = ab for some a ∈ V \ {S}.

The grammar G generates the langauge L(G) = {w ∈ V ∗ | S =⇒∗

G wS}.

A leftist language is a langauge generated by some leftist grammar.

By reversing the derivation process, we can see that w ∈ L(G) iff wS =⇒∗

G′ S,

where G′ has rules β −→ α for each α −→ β ∈ P . Indeed, it is in this form that

these languages are introduced in [8], as strings that can be completely erased by

rules of the prescribed form.

Due to the very limited nature of the rules, we will show that leftist languages

have to be highly structured. Thus several regular languages are not leftist.

Definition 2 For any non-empty word w ∈ V ∗, the sets suffix(w), prune(w) and

stutter(w) are defined as follows:

suffix(w) = {x ∈ V ∗ | ∃y, w = yx}

stutter(w) = {x ∈ V ∗ | w = a1a2 . . . an and x ∈ a+
1 a+

2 . . . a+
n }

prune(w) = {x ∈ V ∗ | w ∈ stutter(x)}
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We extend these definitions to sets of words in the natural way: suffix(L) =⋃
w∈L suffix(w), prune(L) =

⋃
w∈L prune(w) and stutter(L) =

⋃
w∈L stutter(w).

The proof of the following lemma is quite direct.

Lemma 3 If L is a leftist language, then suffix(L), prune(L) and stutter(L) all

equal L.

Corollary 4 The regular language L = {a2n | n ∈ N} is not leftist.

Proof: This follows from lemma 3 and the fact that a 6∈ L, but a ∈ suffix(L) ∩

prune(L).

Another useful property of leftist languages is composition:

Lemma 5 If L is a leftist language, and w, x ∈ L, then wx ∈ L.

Proof: By assumption, there are derivations S =⇒∗ wS and S =⇒∗ xS. Just

compose them: S =⇒∗ wS =⇒∗ wxS.

We now show that any leftist language over a binary alphabet is necessarily

regular. Thus to exhibit a non-regular language, we need at least three different

terminals, and in the next two sections we establish that three terminals suffice.

Theorem 6 Let L ⊂ V ∗ be a leftist language, where |V | ≤ 2. Then L is regular.

Proof: If L is unary, say a subset of a∗, then either L has no non-empty word,

or L equals stutter(prune(L)) which contains stutter(a) which equals a+. Either

way, L is regular.

So now assume that V = {a, b}. If both S −→ aS and S −→ bS are in

P , then it is easy to see that L(G) = V ∗. If neither rule is there in P , then

L(G) = ∅. Let G have only one “create” rule from S, say S −→ aS. If a −→ ba

is not in P , then b can never be created and the language is unary. If a −→ ba

is in P , then there are two cases: if S can erase a (i.e. rule aS −→ S is in P ),

then effectively S can create b and so L(G) = V ∗. If S cannot erase a, then the

rightmost letter of any w ∈ L must be a. But any such string can be generated,

since S =⇒ aS =⇒∗ b∗aS and Lemma 5 applies. Thus L(G) = V ∗a. Thus in all

cases, L is regular.

3 The non-regular leftist language

The language we consider is that defined by the following leftist grammar:
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Definition 7 G = ({a, b, c, S}, S, P ) where P has the following rules:

S −→ aS a −→ ba b −→ cb c −→ ac

The langauge L generated by the above grammar is trivially context-free: it is

generated by the grammar G′ = ({a, b, c}, {S, A, B, C}, S, P ′) where P ′ has the

rules:

S −→ AS A −→ BA B −→ CB C −→ AC A −→ a B −→ b C −→ c

We now prove our main result, namely, that L is not regular. One approach

for doing this is to show that L ∩ R is non-regular for some regular set R. In

particular, let R = {(bca)∗(cba)∗} and A = {(bca)m(cba)n | m ≤ n}. Showing

that L ∩ R = A would suffice. It is easy to see that A ⊆ L ∩ R; see the

Appendix. However, to see that L ∩ R ⊆ A, we must show that if m > n then

(bca)m(cba)n 6∈ L. We do not see any easy way of proving this. In particular,

one could use the Cocke-Younge-Kasami parser for context-free languages (see eg

[4]) to decide membership of these strings. But since this has to be established

for all m, n, it leads to an extremely tedious proof. Instead, we present here an

automata-theoretic proof which, in our view, is more elegant.

We first construct a deterministic finite-state automaton M with countably

infinite states. We establish that L(G) = L(M). Then we argue that the au-

tomaton M is minimal, hence concluding that L(G) is non-regular. (Since we

already know that A ⊆ L ∩ R, it would suffice to show that L ⊆ L(M) and

L(M) ∩ R ⊆ A. However, we find presenting the entire proof that L = L(M)

more satisfying. Further, we believe that the automaton-based approach would

be applicable while considering general leftist languages as well.)

The automaton M is as shown in Figure 1. Formally, it is defined below.

q 0 q 1 q 2 q 3 qq 0 q 5 q 64

a

b

a

b cc

c a b c a b

b c a b c a

a b c a

. . . 

Figure 1: The automaton M

Definition 8 The automaton M is given by M = (Q, Σ, δ, q0, F ) where Q =

{q0, q1, q2, . . .} = {qi | i ≥ 0}, Σ = {a, b, c}, F = {q0}, and δ is defined as follows:
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i (mod 3) 0 1 2

Backi c a b

Fronti b c a

Loopi a b c

δ(qi,Backi) = qi−1 for i > 0

δ(q0,Back0) = q2

δ(qi,Loopi) = qi for i ≥ 0

δ(qi,Fronti) = qi+1 for i ≥ 0

The transition function δ : Q × Σ −→ Q is extended to δ̂ : Q × Σ∗ −→ Q in the

natural way.

The following are easy observations.

Proposition 9 For each i > 0, Backi+1 = Loopi = Fronti−1. Also, Back1 =

Loop0 = Front2. Furthermore, for each i ≥ 0, the following rules are productions

of G, and these are the only productions not involving S.

Loopi −→ Fronti Loopi

Backi −→ Loopi Backi

Fronti −→ Backi Fronti

Lemma 10 For every w ∈ Σ∗, and for every state qi,

1. If δ̂(qi, w) = qj and the qi ; qj path on w does not use the edge δ(q0, c) = q2,

then δ̂(qi+3, w) = qj+3.

2. If δ̂(qi, w) = qj and the qi ; qj path on w uses the edge δ(q0, c) = q2 at

least once, then δ̂(qi+3, w) = qj.

Proof: We induct on |w|. For |w| = 0, the claim is obvious. Now let w = w′d.

For any state qi, consider the path from qi on w′. If this path uses the anomalous

edge δ(q0, c) = q2, then by the induction hypothesis, δ̂(qi+3, w
′) = δ̂(qi, w

′) and so

δ̂(qi+3, w) = δ̂(qi, w) as well. So now assume that until d is seen, the anomalous

edge is not used. Hence by the induction hypothesis, if δ̂(qi, w
′) = qj, then

δ̂(qi+3, w
′) = qj+3. We consider two cases:

Case 1: On input d, the anomalous edge is used. This means that d = c and

j = 0, giving δ̂(qi, wd) = q2. So δ̂(qi+3, w
′) = q3, giving δ̂(qi+3, w

′d) = q2

because δ(q3, c) = q2.

Case 2: On input d, the anomalous edge is not used. But all other transitions

from qj and qj+3 are isomorphic, for every j. So if δ(qj, d) = ql, then

δ(qj+3, d) = ql+3.
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Lemma 11 If d −→ ed is a rule in G where d 6= S, and δ̂(q0, wd) = qj, then

δ̂(q0, wed) ∈ {qj , qj−3}. (In particular, if j < 3, then δ̂(q0, wed) = qj.)

Proof: We induct on |w|. Let δ̂(q0, w) = qk and δ(qk, d) = qj. It is easy to verify

explicitly that if j < 3 (and hence k ≤ 3), then δ̂(q0, wed) = qj . So we assume

now that j ≥ 3. We consider three cases:

d = Loopk: So k = j. By Proposition 9, Loopk −→ FrontkLoopk, so e = Frontk.

Also, d = Backk+1. So δ̂(q0, wed) = δ̂(qk, ed) = δ(qk+1, d) = qk.

d = Backk: So j = k − 1. By Proposition 9, Backk −→ LoopkBackk, so e =

Loopk. So δ̂(q0, wed) = δ̂(qk, ed) = δ(qk, d) = qk−1 = qj .

d = Frontk: So j = k + 1. By Proposition 9, Frontk −→ BackkFrontk, so

e = Backk. So δ̂(q0, wed) = δ̂(qk, ed) = δ(qk−1, d). Now d = Frontk =

Backk+2 = Backk−1, so δ(qk−1, d) = qk−2 = qj−3.

With these two lemmas, we can now establish that L(G) ⊆ L(M).

Lemma 12 L(G) ⊆ L(M). That is, For all w ∈ Σ∗, if S =⇒∗

G wS then

δ̂(q0, w) = q0.

Proof: The proof procceds by induction on |w|. We want to show that for every

w ∈ Σ∗, if S =⇒∗

G wS then δ̂(q0, w) = q0. We induct on |w|. It is straightforward

to verify this for |w| < 2. Assume that it is true for all strings of length upto k,

and now consider a string w of length k + 1.

We zero in on the last step in a derivation of w. If this step uses the rule

S −→ aS, then the derivation must be S =⇒∗

G w1S =⇒G w1aS = wS. But by

induction, δ̂(q0, w1) = q0, and so δ̂(q0, w1a) = δ(q0, a) = q0.

So now assume that the last step in the derivation uses a rule d −→ ed for

d ∈ {a, b, c}. So the derivation has the form S =⇒∗

G w1dw2S =⇒G w1edw2S =

wS. Let δ̂(q0, w1d) = qj for some j. By the induction hypothesis, we know that

δ̂(qj , w2) = q0. By Lemma 11 δ̂(q0, w1ed) = qk ∈ {qj , qj−3}.

If k = j, then δ̂(q0, w1edw2) = δ̂(q0, w1dw2) = q0, and we are done.

If k = j − 3, let us assume that δ̂(qk, w2) = ql for some l > 0. Then by

Lemma 10 above, δ̂(qj , w2) equals δ̂(qk+3, w2) and is either ql or ql+3. Either way,

it is not q0. So δ̂(q0, w1dw2) is not q0, contradicting the induction hypothesis.

Hence our assumption must be wrong, and in fact δ̂(qk, w2) = q0. It follows that

δ̂(q0, w1edw2) = q0.
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It is easy to see that for each state qi ∈ Q, the shortest string taking M

from qi to q0 is unique and is of length i. Let ri be this string; it is nothing but

BackiBacki−1 . . .Back1. More formally, r0 = ε, and for j ≥ 1, rj = Backjrj−1.

For each w ∈ Σ∗, define f(w) = i if δ̂(q0, w) = qi.

Lemma 13 For all w ∈ Σ∗, S =⇒∗

G wrf(w)S.

Proof: The proof proceeds by induction on |w|. For the base case, |w| = 0, so

w = ε. Then f(w) = 0, rf(w) = r0 = ε, and so the statement is trivially true.

Assume now that the statement is true for all strings of length less than k.

Consider a string w of length exactly k. Let w = xd where d ∈ Σ, x ∈ Σ∗,

|x| = k − 1. Let δ̂(q0, x) = qj and δ(qj , d) = qi so that δ̂(q0, w) = qi. By the

induction hypothesis, we know that S =⇒∗

G xrjS. We need to establish that

S =⇒∗

G xdriS. We consider two cases.

j = 0: Then S =⇒∗

G xS. Observe that S =⇒G aS =⇒G baS =⇒G cbaS.

d = a: Then we have i = 0, and r0 = ε, so wrf(w) = w = xa. From

the induction hypothesis and the observation above, we have S =⇒∗

G

xS =⇒G xaS, proving the claim.

d = b: Then we have i = 1, and r1 = a, so wrf(w) = wa = xba. From

the induction hypothesis and the observation above, we have S =⇒∗

G

xS =⇒∗

G xbaS, proving the claim.

d = c: Then we have i = 2, and r2 = ba, so wrf(w) = wba = xcba. From

the induction hypothesis and the observation above, we have S =⇒∗

G

xS =⇒∗

G xcbaS, proving the claim.

j ≥ 0: Then S =⇒∗

G xrjS. Again, there are three cases.

d = Backj: In this case, we have i = j − 1, and dri = rj . The result now

follows from the induction hypothesis.

d = Loopj: In this case, we have i = j and ri = rj . From the induction hy-

pothesis and Proposition 9, we have S =⇒∗

G xrjS = xBackjrj−1S =⇒G

xLoopjBackjrj−1S = xdrjS, proving the claim.

d = Frontj: In this case, i = j+1 and d = Loopi. Now xdri = xFrontjBackj+1rj =

xFrontjLoopjrj. From the induction hypothesis and Proposition 9, we

have S =⇒∗

G xrjS = xBackjrj−1 =⇒G xLoopjBackjrj−1S =⇒G

xFrontjLoopjBackjrj−1S = xFrontjLoopjrjS, proving the claim.
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Since r0 = ε, and since f(w) = 0 for every w ∈ L(M), the following corollary

is immediate.

Corollary 14 L(M) ⊆ L(G).

Lemma 15 The automaton M is minimal; no two states are equivalent.

Proof: Simply observe that ri is of length i for each i. Since δ̂(qi, ri) ∈ F , while

δ̂(qj , ri) 6∈ F for any j > i, it follows that no two states qi and qj are equivalent.

Theorem 16 The leftist language L generated by the grammar defined in Defi-

nition 7 is not regular.

Proof: From Lemma 12 and Corollary 14, it follows that L(M) = L(G). Lemma 15

then shows that M is minimal. And M has infinite states. So no finite-state au-

tomaton can accept L.

From Corollary 4 and Theorem 16 our main result follows:

Theorem 17 Leftist languages with only erase rules are incomparable with reg-

ular languages.
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Appendix

Lemma 18 For every pair of numbers 0 ≤ m ≤ n, the string (bca)m(cba)n is in

L(G).

Proof: We will show that {(cba)l | l ≥ 0} ⊆ L(G) and {(bca)m(cba)m | m ≥

0} ⊆ L(G). The result then follows from Lemma 5.

To see the first claim, note that S =⇒ aS =⇒ baS =⇒ cbaS, and c =⇒ ac =⇒

bac =⇒ cbac; thus we have S =⇒3 cbaS and S =⇒3l (cba)lS. (In the derivation,

at each step the letter creating an additional letter to its left is underlined.)

We prove the second claim by induction on m. The base case, when m = 0, is

obvious. Now assume that we have a derivation S =⇒∗ (bca)m−1(cba)m−1S. We

append to this the following derivation, starting from the first c in the (cba)m−1

part: c =⇒ ac =⇒ bac =⇒ bbac =⇒ bcbac =⇒ bccbac =⇒ bcacbac. These six

steps insert (bca)(cba) in the middle of the string generated inductively, creating

(bca)m(cba)m as desired.
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