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Abstract

For the all-ones lower triangular matrices, the upper and lower bounds on rigidity
are known to match [13]. In this short note, we apply these techniques to the all-
ones extended lower triangular matrices, to obtain upper and lower bounds with a
small gap between the two; we show that the rigidity is θ(n2

r
).
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For a square matrix over any field, the rigidity function is defined as

RM(r)
def
= inf

N
{support(N) : rank(M + N) ≤ r}

where support(N) = #{(i, j) |N [i, j] 6= 0}. The rigidity of a matrix is thus the
minimum number of entries that need to be changed to bring down the rank
below a given value. A folklore result is that over any field, RM(r) ≤ (n− r)2.
The notion of rigidity was introduced by Valiant [16] and was independently
proposed by Grigoriev [6].

The main motivation for studying rigidity is that good lower bounds on rigidity
give important complexity-theoretic results in various computational models,
such as linear algebraic circuits and communication complexity. An important
result in this direction, established by Valiant [16], says that if for some ǫ > 0
there exists a δ > 0 such that an n×n matrix Mn has rigidity RMn

(ǫn) ≥ n1+δ

over a field F, then the transformation x → Mx cannot be computed by
linear size logarithmic depth linear circuits. See [2] for a survey of this result.
Razborov [14] proves that good lower bounds on rigidity over a finite field
imply strong separation results in communication complexity: For an explicit
infinite sequence of (0,1)-matrices {Mn} over a finite field F , if RM(r) ≥
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n2

2(log r)o(1) for some r ≥ 2(log log n)ω(1)
, then there is an explicit language LM /∈

PH
cc, where PH

cc is the analog of PH in the communication complexity setting.
See [3,8] for surveys.

However, obtaining explicit bounds on the rigidity of special family of matrices
is surprisingly elusive, and thus has received a lot of attention [4,5,8,9,12,15]
Recently, Lokam [10] proved the first unconditional super-linear (in fact, quadratic)
lower bound for rigidity for an explicit family of matrices (over C). However,
similar results are not known for Q or for finite fields Fq for any q ≥ 2. The
rareness of matching, or even close, lower and upper bounds correlates well
with the lack of upper bounds on the computational version of rigidity [11].
Due to the difficulty in obtaining non-trivial bounds, the exploration of com-
binatorial techniques that may lead to such bounds becomes interesting.

A rare case where a closed-form expression has been obtained for rigidity is
for the all-ones lower triangular matrices Tn. By all-ones we mean that any
entry permitted to be non-zero is one. That is, Tn is the matrix of dimension
n with j ≤ i =⇒ Tn[i, j] = 1, j > i =⇒ Tn[i, j] = 0. It is shown in [13] that
over any field,

RTn
(r) =

(n − r + ∆)(n + r − ∆ + 1)

2(2r + 1)

where n = 2rk + r + k + ∆ for k ≥ 0, 1 ≤ ∆ ≤ 2r + 1.

In this note we consider all-ones extended lower triangular (elt) matrices. In
an elt matrix M , the first diagonal above the main diagonal can be non-zero,
but all other elements above the diagonal must be 0. (That is, M [i, j] 6=
0 =⇒ j ≤ i + 1.) It is worthwhile noting that elt matrices can capture a lot
of information: it is known that determinant/permanent computation of elt
matrices is as hard as the general case, see [1,7]. An all-ones elt matrix ELn

of dimension n is an elt matrix satisfying j ≤ i + 1 =⇒ M [i, j] = 1, and has
rank n−1. Even with this small extension beyond Tn, we are unable to obtain
a closed-form expression for rigidity. However, applying a slight modification
of the proof of [13], we show lower and upper bounds differing by an additive
factor of roughly n/r.

What we find interesting is that though the modification to the matrix family
considered in [13] is extremely slight, we are not able to match the lower
and upper bounds. Nor does the proof indicate indicate where the slack is:
which of the bounds is less likely to be tight. We believe that exploring such
combinatorics can help in improving lower bounds.

Theorem 1 Given n and r such that r ≤ n−2, define the following quantities:
k =

⌊

n−r−1
2r+1

⌋

; δ = n − r − k(2r + 1); Γ = (k+1)
2

(n − r + δ); ℓ =
⌊

n−r
2r+1

⌋

. Now,
over any field,
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(1) If n ≤ 3r, then RELn
(r) = n − r − 1.

(2) If n ≥ 3r + 1, then Γ ≤ RELn
(r) ≤ Γ + ℓ − 1.

Asymptotically, RELn
(r) ∈ θ(n2

r
).

Our upper bound proof directly mimics that of [13]. Our lower bound proof
mimics that of [13] to obtain one bound, and then further tightens it when
n = 3r + 1. A combinatorial argument that can provide a similar tightening
at all n = r + k(2r + 1) would completely close the gap between the upper
and lower bounds, but we do not see how to obtain this.

Upper Bound: Define τ = n − r − (2r + 1)ℓ. We will show that

RELn
(r) ≤

(ℓ + 1)

2
(n − r + τ) + ℓ − 1

This immediately yields the claimed upper bound when n ≤ 3r, since l = 0
in this case. When n ≥ 3r + 1, consider two cases:

Case 1: ℓ = k. Then τ = δ and so Γ = (k+1)
2

(n − r + δ) = (ℓ+1)
2

(n − r + τ).
Case 2: ℓ = k + 1. Then τ = 0, δ = 2r + 1, and n = 2rℓ + r + ℓ = δℓ + r. So

Γ = (k+1)
2

(n − r + δ)

= (ℓ+1)
2

(n − r + δ) − 1
2
(n − r + δ)

= (ℓ+1)
2

(n − r + τ) + (ℓ+1)
2

(δ) − 1
2
(δℓ + δ)

= (ℓ+1)
2

(n − r + τ)

Thus in either case, the upper bound holds.

Now we establish the upper bound in terms of ℓ and τ .

We start with the matrix ELn, which has rank n − 1. In particular, the first
n − 1 rows are linearly independent. Thus to bring the rank down to r or
less, at most r of these rows can remain unchanged. We can view the changes
as being made sequentially, and track the ranks of matrices along the way,
beginning with n − 1 and ending with r′ ≤ r. Since changing a single entry
of any matrix changes the rank by at most 1, the optimal way to reduce rank
will have r′ = r. Our upper bound assumes that the r linearly independent
rows in the final matrix are in fact unchanged rows of ELn. (It is possible that
a better upper bound exists, that does not use this assumption. But we were
unable to derive one, and we think it is unlikely.)

We identify r linearly independent rows Rj1 , . . . Rjr
which we will keep intact,

so the rank of the resulting matrix is still at least r. We will change each of
the other rows to one of these rows by changing some entries. But to minimize
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the number of entries changed, we adopt the following general strategy used
in [13] for Tn. Let n0 be the first set of rows which we will explicitly make
zero. Similarly, n2i−1 is the number of rows just above Rji

which are changed
to Rji

by changing the appropriate 0s to 1s, and n2i is the number of rows
below the row Rji

which are changed to Rji
by changing the appropriate 1s to

0s. Now the total number of changes is a function of these ni’s, as described
below, and the natural idea for minimizing the number of changes be to make
the contribution of each ni roughly equal. In particular, this evenly spaces out
the rows to be preserved. In detail:

# of changes in n0-block =
∑n0

t=1(t + 1) = n0(n0+3)
2

# of changes in n2i−1-block =
∑n2i−1

t=1 t = n2i−1(n2i−1+1)
2

# of changes in n2i-block =
∑n2i

t=1 t = n2i(n2i+1)
2

)

# of changes in n2r-block = n2r − 1 +
∑n2r−1

t=1 t = (n2r+2)(n2r−1)
2

and we want to minimize the total number of changes.

Intuitively, the optimal choice to achieve this should be to make all the ni’s
equal, except n0 which should be one less. This is because for each i 6∈ {0, r},
some row needs ni changes, and for the extreme blocks the maximum change
needed is n0 + 1 and n2r − 1 respectively, due to the elt structure. We just
try to minimize this maximum change per block. While we cannot show that
this strategy is indeed optimal, we use it to obtain our upper bound. When
τ = 2r; we set n0 = ℓ, ni = ℓ + 1 for i ≥ 1. When τ < 2r, some of the blocks
other than n0 will also have size ℓ rather than ℓ + 1. Thus the last τ blocks
will have size ℓ + 1, and the first (2r + 1 − τ) will be of size ℓ. Thus,

Total number of changes = ℓ(ℓ+1)
2

(2r + 1) + ℓ − 1 + (ℓ + 1)τ

= (ℓ+1)
2

[n − r + τ ] + ℓ − 1

Lower Bound: The lower bound when n ≤ 3r is easy to see: for decreasing
the rank of any matrix, at least one entry has to be changed.

The lower bound when n ≥ 3r + 1 is a little more tricky. In [13], the cor-
responding lower bound for lower triangular matrices Tn is obtained by first
showing that if Tn + Bn has rank bounded by r, then some row of Bn has at
least k + 1 non-zero entries. Deleting this row and column yields Tn−1 + Bn−1

also of rank bounded by r. Applying this argument repeatedly, the total num-
ber of changes is bounded by a certain sum, yielding the result. Our proof
follows the same outline, and differs in essentially two places: (a) Deleting any
row i and column i + 1 of ELn yields ELn−1. (b) At n = 3r + 1 a tighter
bound is possible.
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Lemma 2 below shows that some row has lots of changes. Lemma 3 shows that
when n = 3r + 1, at least 2r + 1 changes are needed. Using these lemmas we
can establish the lower bound. When n ≥ 3r + 2, apply Lemma 2 repeatedly,
eliminating one dense row each time, preserving the ELT structure, until n
comes down to 3r + 1. Now Lemma 3 says that 2r + 1 more changes are
necessary. Thus the total number of changes is at least δ(k + 1) + (2r + 1)k +

(2r + 1)(k − 1) + . . . + (2r + 1)3 + (2r + 1)2 + (2r + 1) = (k+1)
2

(n − r + δ),
giving the lower bound.

We now proceed to state and prove the lemmas.

Note that k and δ are functions of n and r. If we fix r and vary n, then
k(2r + 1) + r + 1 ≤ n ≤ k(2r + 1) + 3r + 1. The value of k remains unchanged
for 2r + 1 successive values of n, during which δ ranges over 1 to 2r + 1.

If r +2 ≤ n ≤ 3r +1, there is a row with at least 1 change. Now, for a general
n, assuming that ELn + Bn has rank bounded by r, repeated applications of
the following lemma show that Bn has reasonable row-wise density.

Lemma 2 Let r ≤ n−2, and let Bn be a matrix such that rank(ELn+Bn) ≤ r.
Then some row in Bn, other than the last row, has at least (k +1) non-zeroes.

Proof: This proof is similar to that in [13]. Assume to the contrary that every
row of Bn (possibly other than row n) has fewer non-zeroes than required. Let
An = ELn +Bn. The idea is to choose a set S of r +1 rows which exclude row
n (and hence are linearly independent in ELn), and are linearly dependent in
An, and to then show that one of the rows from S in Bn has many non-zeroes.
We choose S as follows

S = {k, k + (2k + 1), . . . , k + r(2k + 1)}

Since rank(An) ≤ r, the rows indexed by S are linearly dependent in An;
hence for some non-empty subset S ′ of S, we have non-zero αj’s satisfying

∑

j∈S′

αjaj = 0 and hence
∑

j∈S′

αjlj = −
∑

j∈S′

αjbj

Here aj, lj, bj refer to the jth row vectors of An, ELn and Bn respectively.
By our assumption, the vector on the right-hand-side RHS has at most s′k
non-zero entries (s′ = |S ′|). Exploiting the special structure of the matrix,
we show that the left-hand-side LHS has more non-zero terms than the RHS
and get a contradiction. Due to the structure of ELn, the LHS is of the form
(c1, c1 . . . c1, c2, c2 . . . c2, . . . cs′ . . . c s′ , 0 . . . 0). Each ci section is of size at least
2k + 1, except the c1 section, which has size at least k + 1. Two consecutive
sections cannot be zeros since αj 6= 0 for all j. And the last section necessarily
has cs′ 6= 0.

5



Case 1: s′ = 2t+1 for some t. Now consider the LHS. There are at least t+1
blocks of non-zeroes. At most one of these (the first) is of size k + 1; all the
rest have size 2k + 1. Hence the number of non-zero elements on the LHS
is at least (2k + 1)t + k + 1 = (2t + 1)k + t + 1 > s′k.

Case 2: s′ = 2t with t 6= 0. There are at least t blocks of non-zeros. Further-
more, if the first block is a non-zero block, then in fact there must be t + 1
non-zero blocks. Thus there are at least t blocks of non-zeros of size 2k + 1.
Thus the number of non-zeroes on the LHS is at least t(2k + 1) > s′k. 2

Lemma 3 RELn
(r) ≥ 2r + 1 when n = 3r + 1.

Proof: Suppose not; assume that 2r changes suffice to bring the rank of
E = EL3r+1 to r or less. That is, there is a matrix B with at most 2r non-zero
entries such that A = B + E has rank r or less. Since there are 3r + 1 rows,
at least r + 1 of them are left unchanged. These must be linearly dependent
to achieve rank(A) ≤ r, so they must include rows n− 1 and n of E (all other
rows of E are linearly independent) and exactly r − 1 other rows.

Let S be the set of indices of preserved rows; |S| = r + 1 and {n − 1, n} ⊆ S.
Let S ′ = [n]\S; then |S ′| = 2r. Each row of B in S ′ has at least one non-zero.
But since there are only 2r non-zeroes overall, each row of B in S ′ has, in fact,
exactly one non-zero.

For each i ∈ S ′, row i is dependent on S and on S \{n}. (With a single change
per row, no row cannot be zeroed out.) Let U = S \ {n}∪{i}. Then, as in the
proof of Lemma 2, there exists U ′ ⊆ U : i ∈ U ′, and for each u ∈ U ′, ∃αu 6= 0
such that

∑

u∈U ′

αueu = −
∑

u∈U ′

αubu.

The RHS has a single non-zero in row i since rows of B from S are zero. The
LHS is of the form is of the form (c1, c1 . . . c1, c2, c2 . . . c2, . . . cu′ . . . cu′ , 0 . . . 0)
where cu′ 6= 0. To get just one non-zero on the LHS, cu′ must be a block of size
1, and all other cj’s must be zero. Thus ∃k : U ′ = {k−1, k}, and αk+αk−1 = 0.
But, we know that αi must be non-zero, since this is the row we are expressing
as a combination of rows in S. Hence U ′ must be either {i− 1, i} or {i, i + 1}.
Thus, for each row i ∈ S ′, either row i−1 or row i+1 is in S. So rows in S can
be separated by at most 2 rows of S ′. Since rows n = 3r + 1 and n − 1 = 3r
are in S, the 3rd last row of S is at least 3r − 3, the 4th last row of S is at
least 3r − 6, and so on; the first row of S is at least row 3. But then row 1
does not have a neighbouring row in S, a contradiction. 2
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