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Abstract We provide a list of new natural VNP-intermediate polynomial
families, based on basic (combinatorial) NP-complete problems that are com-
plete under parsimonious reductions. Over finite fields, these families are in
VNP, and under the plausible hypothesis ModpP 6⊆ P/poly, are neither VNP-
hard (even under oracle-circuit reductions) nor in VP. Prior to this, only the
Cut Enumerator polynomial was known to be VNP-intermediate, as shown by
Bürgisser in 2000.

We show next that over rationals and reals, the clique polynomial cannot
be obtained as a monotone p-projection of the permanent polynomial, thus
ruling out the possibility of transferring monotone clique lower bounds to the
permanent. We also show that two of our intermediate polynomials, based on
satisfiability and Hamiltonian cycle, are not monotone affine polynomial-size
projections of the permanent. These results augment recent results along this
line due to Grochow.

Finally, we describe a (somewhat natural) polynomial defined independent
of a computation model, and show that it is VP-complete under polynomial-
size projections. This complements a recent result of Durand et al. (2014)
which established VP-completeness of a related polynomial but under constant-
depth oracle circuit reductions. Both polynomials are based on graph homo-
morphisms. A simple restriction yields a family similarly complete for VBP.

1 Introduction

The algebraic analogue of the P versus NP problem, famously referred to as the
VP versus VNP question, is one of the most significant problem in algebraic
complexity theory. Valiant [43] showed that the Permanent polynomial is
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VNP-complete (over fields of char 6= 2). A striking aspect of this polynomial
is that the underlying decision problem, in fact even the search problem, is
in P. Given a graph, we can decide in polynomial time whether it has a per-
fect matching, and if so find a maximum matching in polynomial time [17].
Since the underlying decision problem is an easier problem than the problem
of evaluating the polynomial, it helped in establishing VNP-completeness of a
host of other polynomials by a reduction from the Permanent polynomial
(cf. [5]). Inspired from classical results in structural complexity theory, in par-
ticular [32], Bürgisser [4] proved that if Valiant’s hypothesis (i.e. VP 6= VNP) is
true, then, over any field there is a p-family in VNP which is neither in VP nor
VNP-complete with respect to c-reductions. Let us call such polynomial fam-
ilies VNP-intermediate (i.e. in VNP, not VNP-complete, not in VP). Further,
Bürgisser [4] showed that over finite fields, a specific family of polynomials is
VNP-intermediate, provided the polynomial hierarchy PH does not collapse to
the second level. On an intuitive level these polynomials enumerate cuts in a
graph. This is a remarkable result, when compared with the classical P-NP set-
ting or the BSS-model, since the intermediate problem is natural and described
explicitly. Though the existence of problems with intermediate complexity has
been established in the latter settings, due to the involved “diagonalization” ar-
guments used to construct them, these problems seem highly unnatural. That
is, their definitions are not motivated by an underlying combinatorial problem
but guided by the needs of the proof and, hence, seem artificial. The question
of whether there are other naturally defined VNP-intermediate polynomials
was left open by Bürgisser [5]. We remark that to date the cut enumerator
polynomial from [4] is the only known example of a natural polynomial family
that is VNP-intermediate.

It is known that if VP and VNP coincide, then Permn is a quasi-polynomial-
size projection of Detn. Hence the question of whether the classes VP and VNP
are distinct is often phrased as whether Permn is not a quasi-polynomial-size
projection of Detn. The importance of this reformulation stems from the fact
that it is a purely algebraic statement, devoid of any dependence on circuits.
While we have made very little progress on this question of determinantal
complexity of the permanent, the progress in restricted settings has been con-
siderable. One of the success stories in theoretical computer science is the
unconditional lower bound against monotone computations [38,37,1]. In par-
ticular, Razborov [37] proved that computing the permanent over the Boolean
semiring requires monotone circuits of size at least nΩ(logn). Jukna [29] ob-
served that if the Hamilton cycle polynomial is a monotone p-projection of the
permanent, then, since the clique polynomial is a monotone projection of the
Hamiltonian cycle [43] and the clique requires monotone circuits of exponential

size [1], one would get a lower bound of 2n
Ω(1)

for monotone circuits computing
the permanent, thus improving on [37]. The importance of this observation is
also highlighted by the fact that such a monotone p-projection, over the re-
als, would give an alternate proof of the result of Jerrum and Snir [28] that
computing the permanent by monotone circuits over R requires size at least
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2n
Ω(1)

. (Jerrum and Snir [28] proved that the permanent requires monotone
circuits of size 2Ω(n) over R and the tropical semiring.) The first progress on
the question whether Hamiltonian cycle is a monotone p-projection of the per-
manent, raised in [29], was made recently by Grochow [23]. He showed that
the Hamiltonian cycle polynomial is not a monotone sub-exponential-size pro-
jection of the permanent. This answered Jukna’s specific question about the
Hamiltonian cycle in its entirety, but the underlying motivating question still
remains unanswered: Is the clique polynomial a monotone p-projection of the
permanent? A natural way to attempt a positive answer is to show that the
clique polynomial is a monotone p-projection of some polynomial f which in
turn is a monotone p-projection of the permanent. Grochow’s result rules out
using the Hamiltonian cycle polynomial as f , but leaves open the possibil-
ity that perhaps something else, say, the ‘satisfiability ’ polynomial [43], could
be used. It is known (see Section 5 [1]) that clique is a monotone projection
of the satisfiability polynomial over O(n4) variables. Thus it still left open
the possibility of transferring monotone circuit lower bounds for clique to the
permanent.

While the Perm vs Det problem has become synonymous with the VP
vs VNP question, there is a somewhat unsatisfactory feeling about it. This
rises from two facts: One, that the VP-hardness of the determinant is known
only under the more powerful quasi-polynomial-size projections, and, second,
the lack of natural VP-complete polynomials (with respect to polynomial-size
projections) in the literature. (In fact, with respect to p-projections, the de-
terminant is complete for the possibly smaller class VBP of polynomial-sized
algebraic branching programs.) To remedy this situation, it seems crucial to
understand the computation in VP. Bürgisser [5] showed that a generic polyno-
mial family constructed using a topological sort of a generic VP circuit, while
controlling the degree, is complete for VP. Raz [36], using the depth reduc-
tion of [44], showed that a family of “universal circuits” is VP-complete. Thus
both families directly depend on the circuit definition or characterization of
VP. Last year, Durand et al. [14,15] made significant progress and provided
a natural, first of its kind, VP-complete polynomial. However, the natural
polynomials studied by Durand et al. lacked a bit of punch because their com-
pleteness was established under polynomial-size constant depth c-reductions
rather than projections.

In this paper, we make progress on all three fronts. First, we provide a list of
new natural polynomial families, based on basic (combinatorial) NP-complete
problems [21] whose completeness is via parsimonious reductions [42], that are
VNP-intermediate over finite fields (Theorem 1). Then, we answer the main
motivating question of Jukna by directly proving that the clique polynomial
is not a monotone affine polynomial-size projection of the permanent (Theo-
rem 2). Thus this possibility of transferring monotone circuit lower bounds for
clique to permanent cannot work. Futhermore, we also show that over reals,
some of our intermediate polynomials are not monotone affine polynomial-size
projections of the permanent (Theorem 5). As in [23], the lower bound results
about monotone affine projections are unconditional. Finally, we improve upon
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[15] by characterizing VP and establishing a natural VP-complete polynomial
under polynomial-size projections (Theorem 9). For the upper bound, we ob-
tain a simpler membership algorithm than that in [15] by using nice tree
decompositions. For the lower bound, we obtain hardness with respect to the
more restrictive projections rather than constant-depth c-reductions. We use
graphs that have certain special properties, like rigidity and incomparability,
in the construction of the complete polynomial family. A simpler construction
yields a family similarly complete for VBP (Theorems 7, 8).

Organization of the paper. We give basic definitions in Section 2. Section 3
contains our discussion on intermediate polynomials. In Section 4 we establish
lower bounds under monotone affine projections. The discussion on complete-
ness results appears in Section 5. We end in Section 6 with some interesting
questions for further exploration.

2 Preliminaries

Algebraic complexity:

We say that a polynomial f is a projection of g if f can be obtained from g by
setting the variables of g to either constants in the field, or to the variables of
f . A sequence (fn) is a p-projection of (gm), if each fn is a projection of gt for
some t = t(n) polynomially bounded in n. There are other notions of reduc-
tions between families of polynomials, like c-reductions (polynomial-size oracle
circuit reductions), constant-depth c-reductions, and linear p-projections. For
more on these reductions, see [5].

An arithmetic circuit is a directed acyclic graph with leaves labeled by
variables or constants from an underlying field, internal nodes labeled by field
operations + and ×, and a designated output gate. Each node computes a
polynomial in a natural way. The polynomial computed by a circuit is the
polynomial computed at its output gate. A parse tree of a circuit captures
monomial generation within the circuit. Duplicating gates as needed, unwind
the circuit into a formula (fan-out one). A parse tree is a minimal sub-tree (of
this unwound formula) that contains the output gate, that contains all children
of each included × gate, and that contains exactly one child of each included
+ gate. Each parse tree is naturally associated with a monomial, namely, the
monomial obtained by multiplying the labels of the leaves in the parse tree.
It can be shown that the polynomial computed by a circuit is, in fact, the
polynomial given by the sum of these monomials over all parse trees. For more
on parse trees see [34]. A circuit is said to be skew if at every × gate at most
one incoming edge is the output of another gate.

A family of polynomials (fn(x1, . . . , xm(n))) is called a p-family if both the
degree d(n) of fn and the number of variables m(n) are bounded by a polyno-
mial in n. A p-family is in VP (resp. VBP) if a circuit family (skew circuit fam-
ily, resp.) (Cn) of size polynomially bounded in n computes it. A sequence of
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polynomials (fn) is in VNP if there exist a sequence (gn) in VP, and polynomi-
alsm and t such that for all n, fn(x̄) =

∑
ȳ∈{0,1}t(x̄) gn(x1, . . . , xm(n), y1, . . . , yt(n)).

(VBP denotes the algebraic analogue of branching programs. Since these are
equivalent to skew circuits, we directly use a skew circuit definition of VBP.)

We will also require the universal circuit family [36,41] (Cn) in the normal
form as described in [15]:

Definition 1 (Normal Form Universal Circuits) A universal circuit (Cn)
in normal form is a circuit with the following structure:

– It is a layered and semi-unbounded circuit, where × gates have fan-in 2,
whereas + gates are unbounded.

– Gates are alternating, namely every non-leaf child of a × gate is a + gate
and vice versa. Without loss of generality, the root is a × gate.

– All the input gates have fan-out 1 and they are at the same level, i.e., all
paths from the root of the circuit to an input gate have the same length.

– Cn is a multiplicatively disjoint circuit. That is, sub-circuits of × gates are
disjoint.

– Input gates are labeled by distinct variables. In particular, there are no
input gates labeled by a constant.

– Depth (Cn) := 2cdlog ne, for some constant c > 0; number of variables
(x̄) := vn and size (Cn) := sn, where vn and sn are polynomially bounded
in n. We denote by k(n) the quantity Depth(Cn)/2 = cdlog ne.

– The degree of the polynomial computed by the universal circuit is n.

Boolean complexity:

We need some basics from Boolean complexity theory. Let P/poly denote the
class of languages decidable by polynomial-sized Boolean circuit families. A
function φ : {0, 1}∗ → N is in #P if there exists a polynomial p and a poly-
nomial time deterministic Turing machine M such that for all x ∈ {0, 1}∗,
f(x) = |{y ∈ {0, 1}p(|x|) |M(x, y) = 1}|. For a prime p, define

#pP = {ψ : {0, 1}∗ → Fp | ψ(x) = φ(x) mod p for some φ ∈ #P},
ModpP = {L ⊆ {0, 1}∗ | for some φ ∈ #P, x ∈ L ⇐⇒ φ(x) ≡ 1 mod p}

It is easy to see that if φ : {0, 1}∗ → N is #P-complete with respect to
parsimonious reductions (that is, for every ψ ∈ #P , there is a polynomial-
time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,
ψ(x) = φ(f(x))), then the language L = {x | φ(x) ≡ 1 mod p} is ModpP-
complete with respect to many-one reductions.

Graph Theory:

We consider the treewidth and pathwidth parameters for an undirected graph.
We will work with a “canonical” form of decompositions which is generally
useful in dynamic-programming algorithms.
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A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where
T is a tree, rooted at Xr, whose every node t is assigned a vertex subset
Xt ⊆ V (G), called a bag, such that the following conditions hold:

1. ∪t∈V (T )Xt = V (G). That is, every vertex of G is in at least one bag.
2. For every (u, v) ∈ E(G), there exists a node t of T such that {u, v} ⊆ Xt.
3. For every u ∈ V (G), the set Tu = {t ∈ V (T ) | u ∈ Xt} induces a connected

subtree of T .

The width of a tree decomposition T is one less than the size of the largest
bag; that is, maxt∈V (T ) |Xt| − 1. The tree-width of a graph G, denoted tw(G),
is the minimum possible width of a tree decomposition of G.

A (nice) tree decomposition of a graph G is a tree decomposition T =
(T, {Xt}t∈V (T )) as above that also satisfies the following additional conditions:

1. Xr = ∅, and |X`| = 1 for every leaf ` of T . That is, the root contains the
empty bag, and the leaves contain singleton sets.

2. Every non-leaf node t of T is of one of the following three types:
– Introduce node: t has exactly once child t′, and Xt = Xt′ ∪ {v} for

some vertex v /∈ Xt′ . We say that v is introduced at t.
– Forget node: t has exactly one child t′, and Xt = Xt′ \ {w} for some

vertex w ∈ Xt′ . We say that w is forgotten at t.
– Join node: t has two children t1, t2, and Xt = Xt1 = Xt2 .

It is known that every graph has a nice tree decomposition with width tw(G).
In a similar way we can also define (nice) path decompositions of a graph

and the pathwidth parameter pw(G).
As mentioned before, in this paper we will only work with nice decompo-

sitions. For a complete definition and more on tree decompositions we refer
to [10,31], and references therein.

A sequence (Gn) of graphs is called a p-family if the number of vertices in
Gn is polynomially bounded in n. It is further said to have bounded tree(path)-
width if for some absolute constant c independent of n, the tree(path)-width
of each graph in the sequence is bounded by c.

A homomorphism from G to H is a map from V (G) to V (H) preserving
edges. A graph is called rigid if it has no homomorphism to itself other than
the identity map. Two graphs G and H are called incomparable if there are no
homomorphisms from G→ H as well as H → G. It is known that asymptoti-
cally almost all graphs are rigid, and almost all pairs of nonisomorphic graphs
are also incomparable. For more details, we refer to [26]. For the purposes of
this paper, we only need a collection of three rigid and mutually incomparable
graphs. We can use, for instance, the three graphs, G1, G2, and G3, depicted
in Figure 1. For the graph G, in Fig. 1, there is an edge between i and j if
1 6 |i− j| 6 4. Further add an edge between 1 and 16. The Gi’s are obtained,
as shown in Fig. 1, by adding an extra edge between 1 and 7 + i. For com-
pleteness, we include in the appendix a proof, following the arguments from
[26], that these graphs are rigid and pairwise incomparable.

We now observe an important property of rigid graphs and incomparable
graphs. It will be useful in the hardness proof. Given a graph G with n vertices,
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Fig. 1 G1, G2, G3: three rigid pairwise-incomparable graphs

and an n-tuple of natural numbers ` := 〈`1, `2, . . . , `n〉, `i > 0, we consider
the following transformation of G : Attach a simple path with `i edges on
new vertices to the i-th vertex. We denote the obtained graph by G⊕`. In
other words, G⊕ is obtained from G by attaching a path of certain length to
each vertex of G. The following lemma shows that the above transformation
preserves pairwise incomparability and also rigidity in a certain sense.

Lemma 1 For a graph G, let G⊕ denote the graph obtained by the above
transformation on G with respect to some tuple of natural numbers.

1. Let G and H be connected and pairwise incomparable graphs. Then, the
three pairs of graphs {G,H⊕}, {G⊕, H}, and {G⊕, H⊕} are also pairwise
incomparable.

2. Let G be a connected rigid graph. Then, the only homomorphism from G
to G⊕ is the identity map on G.
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Proof All the arguments are similar. We illustrate the argument by showing
that there are no homomorphisms from G to H⊕ if there are no homomor-
phisms from G to H.

We establish the contrapositive. Suppose that there is a homomorphism
from G to H⊕. Then we show how to obtain a homomorphism from G to H.

Consider the following homomorphism from H⊕ to H : Fold each hanging
path off H⊕ into an edge and then map this edge into an edge within H. That
is, let ρ be a path hanging off H⊕ and attached to H⊕ at the vertex u, and let
v be any neighbour of u within H. Mapping vertices of ρ to u and v alternately
preserves all edges and hence is a homomorphism.

Composing the two homomorphisms, G to H⊕ and H⊕ to H, gives a
homomorphism from G to H. ut

3 VNP-intermediate

In [4], Bürgisser showed that unless PH collapses to the second level, an ex-
plicit family of polynomials, called the cut enumerator polynomial, is VNP-
intermediate. He raised the question of whether there are other such natural
VNP-intermediate polynomials. It was recently highlighted again in [23]. In
this section we show that in fact his proof strategy itself can be adapted to
other polynomial families as well. The strategy can be described abstractly as
follows: Find an explicit polynomial family h = (hn) satisfying the following
properties.

M: Membership. The family is in VNP.
E: Ease. Over a field Fq of size q and characteristic p, h can be evaluated in P.

Thus if h is VNP-hard, then we can efficiently compute #P-hard functions,
modulo p.

H: Hardness. The monomials of h encode solutions to a problem that is #P-
hard via parsimonious reductions. Thus if h is in VP, then the number of
solutions, modulo p, can be extracted using coefficient computation.

Then, unless ModpP ⊆ P/poly (which in turn implies that PH collapses to the
second level, [30]), h is VNP-intermediate.

We provide a list of p-families that, under the same condition ModpP 6⊆
P/poly, are VNP-intermediate. All these polynomials are based on basic com-
binatorial NP-complete problems that are complete under parsimonious re-
duction.
(1) The satisfiablity polynomial Satq = (Satqn): For each n, let Cln denote
the set of all possible clauses of size 3 over 2n literals. There are n variables
X̃ = {Xi}ni=1, and also 8n3 clause-variables Ỹ = {Yc}c∈Cln , one for each 3-
clause c.

Satqn :=
∑

a∈{0,1}n

 ∏
i∈[n]:ai=1

Xq−1
i


 ∏

c ∈Cln
a satisfies c

Y q−1
c

 .
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For the next three polynomials, we consider the complete graph Gn on n
nodes, and we have the set of variables X̃ = {Xe}e∈En and Ỹ = {Yv}v∈Vn .
(2) The vertex cover polynomial VCq = (VCq

n):

VCq
n :=

∑
S⊆Vn

( ∏
e∈En : e is incident on S

Xq−1
e

)(∏
v∈S

Y q−1
v

)
.

For an e ∈ En we say that e is incident on S ⊆ Vn if and only if at least one
of the endpoints of e belongs to S.
(3) The clique/independent set polynomial CISq = (CISqn):

CISqn :=
∑
T⊆En

(∏
e∈T

Xq−1
e

)( ∏
v incident on T

Y q−1
v

)
.

We say that v ∈ Vn is incident on T ⊆ En if there exists some e ∈ T such that
e is incident on v.

It may not be obvious what this polynomial has to do with cliques. The
connection is explained after all the definitions below.
(4) The clow polynomial Clowq = (Clowq

n): A clow in an n-vertex graph is
a closed walk of length exactly n, in which the minimum numbered vertex
(called the head) appears exactly once.

Clowq
n :=

∑
w: clow of length n

 ∏
e: edges in w

Xq−1
e


 ∏

v: vertices in w
(counted only once)

Y q−1
v

 .

If an edge e is used k times in a clow, it contributes X
k(q−1)
e to the monomial.

But a vertex v contributes only Y q−1
v even if it appears more than once. More

precisely,

Clowq
n :=

∑
w=〈v0,v1,...,vn−1〉:
∀j>0, v0<vj

∏
i∈[n]

Xq−1
(vi−1,vi mod n)

 ∏
v∈{v0,v1,...,vn−1}

Y q−1
v

 .

(5) The 3D-matching polynomial 3DMq = (3DMq
n): Consider the complete

tripartite hyper-graph, where each part in the partition (An, Bn, Cn) contain
n nodes, and each hyperedge has exactly one node from each part. We have
variables Xe for hyperedge e and Yv for node v.

3DMq
n :=

∑
M⊆An×Bn×Cn

(∏
e∈M

Xq−1
e

) ∏
v∈M

(counted only once)

Y q−1
v

 .

We show that if ModpP 6⊆ P/poly, then all five polynomials defined above
are VNP-intermediate.
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Note that in the polynomials above, the combinatorial object of interest is
encoded in a somewhat non-standard way. For instance, the clique-independent
set polynomial CISq has monomials where the Xe variables correspond to any
subset of edges, not just subsets arising from cliques. The idea is that padding
a polynomial with “useless monomials” can make it easier to compute, hence
avoiding VNP-completeness. At the same time, the padding is carefully chosen
so that the interesting objects can still be retrieved with some overhead. For
instance, the Yu variables in the monomials of CISq allow us to distinguish
between useful and useless monomials. Hence the polynomial does not become
so easy to compute that it lies in VP. Thus the major contribution is identifying
the right amount of padding to achieve both these goals.

Theorem 1 Over a finite field Fq of characteristic p, the polynomial families
Satq, VCq, CISq, Clowq, and 3DMq, are in VNP. Further, if ModpP 6⊆ P/poly,
then they are all VNP-intermediate; that is, neither in VP nor VNP-hard with
respect to c-reductions.

Proof (M) An easy way to see membership in VNP is to use Valiant’s crite-
rion ([43]; see also Proposition 2.20 in [5]); the coefficient of any monomial
can be computed efficiently, hence the polynomial is in VNP. This establishes
membership for all families.

We first illustrate the rest of the proof by showing that the polynomial
Satq satisfies the properties (H), (E).

(H): Assume (Satqn) is in VP, via a polynomial-sized circuit family {Cn}n≥1.
We will use Cn to give a P/poly upper bound for computing the number of
satisfying assignments of a 3-CNF formula, modulo p. Since this question is
complete for ModpP, the upper bound implies ModpP is in P/poly.

Given an instance φ of 3SAT, with n variables and m clauses, consider the
projection of Satqn obtained by setting all Yc for c ∈ φ to t, and all other
variables to 1. This gives the polynomial Satqφ(t) =

∑m
j=1 djt

j(q−1) where dj
is the number of assignments (modulo p) that satisfy exactly j clauses in φ.
Our goal is to compute dm.

We convert the circuit C into a circuit D that computes elements of Fq[t]
by explicitly giving their coefficient vectors, so that we can pull out the de-
sired coefficient. (Note that after the projection described above, C works over
the polynomial ring Fq[t].) Since the polynomial computed by C is of degree
m(q−1), it suffices to compute the coefficients of all intermediate polynomials
only upto degree m(q − 1). Replacing + by gates performing coordinate-wise
addition, × by a sub-circuit performing (truncated) convolution, and sup-
plying appropriate coefficient vectors at the leaves gives the desired circuit.
Since the number of clauses, m, is polynomial in n, the circuit D is also of
polynomial size. Given the description of C as advice, the circuit D can be
evaluated in P, giving a P/poly algorithm for computing #3-SAT(φ) mod p.
Hence ModpP ⊆ P/poly.

(E) Consider an assignment to X̃ and Ỹ variables in Fq. Since all exponents

are multiples of (q − 1), it suffices to consider 0/1 assignments to X̃ and Ỹ .
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Each assignment a contributes 0 or 1 to the final value; call it a contributing
assignment if it contributes 1. So we just need to count the number of con-
tributing assignments. An assignment a is contributing exactly when ∀i ∈ [n],
Xi = 0 =⇒ ai = 0, and ∀c ∈ Cln, Yc = 0 =⇒ a does not satisfy c. These
two conditions, together with the values of the X and Y variables, constrain
many bits of a contributing assignment. For example, Xi = 0 implies that the
i-th bit in any contributing assignment must be 0, and Yc = 0 implies that all
the literals in c must be set to 0 which, in turn, fixes the corresponding bits
in any contributing assignment. An inspection reveals how many (and which)
bits are so constrained. If any bit is constrained in conflicting ways (for exam-
ple, Xi = 0, and Yc = 0 for some clause c containing the literal x̄i), then no
assignment is contributing (either ai = 1 and the X part becomes zero due
to Xai

i , or ai = 0 and the Y part becomes zero due to Yc). Otherwise, some
bits of a potentially contributing assignment are constrained by X and Y , and
the remaining bits can be set in any way. Hence the total sum is precisely
2(# unconstrained bits) mod p.

Now assume Satq is VNP-hard. Let L be any language in ModpP, wit-
nessed via #P-function f . (That is, x ∈ L ⇐⇒ f(x) ≡ 1 mod p.) By the
results of [6,5], there exists a p-family r = (rn) ∈ VNPFp such that ∀n, ∀x ∈
{0, 1}n, rn(x) = f(x) mod p. By assumption, there is a c-reduction from r to
Satq. We use the oracle circuits from this reduction to decide instances of L.
On input x, the advice is the circuit C of appropriate size reducing r to Satq.
We evaluate this circuit bottom-up. At the leaves, the values are known. At +
and × gates, we perform these operations in Fq. At an oracle gate, the para-
graph above tells us how to evaluate the gate. So the circuit can be evaluated
in polynomial time, showing that L is in P/poly. Thus ModpP ⊆ P/poly.

For the other four families, it suffices to show the following, since the rest
is identical as for Satq.

H’. The monomials of h encode solutions to a problem that is #P-hard via
parsimonious reductions.

E’. Over Fq, h can be evaluated in P.

We describe this for the polynomial families one by one.

The vertex cover polynomial VCq = (VCq
n):

VCq
n :=

∑
S⊆Vn

( ∏
e∈En : e is incident on S

Xq−1
e

)(∏
v∈S

Y q−1
v

)
.

(H’): Given an instance of vertex coverA = (V (A), E(A)) such that |V (A)| = n
and |E(A)| = m, we show how VCq

n encodes the number of solutions of
instance A. Consider the following projection of VCq

n. Set Yv = t, for v ∈
V (A). For e ∈ E(A), set Xe = z; otherwise e /∈ E(A) and set Xe = 1. Thus,
we have

VCq
n(z, t) =

∑
S⊆Vn

z(# edges incident on S)(q−1)t|S|(q−1).
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Hence, it follows that the number of vertex cover of size k, modulo p, is the
coefficient of zm(q−1)tk(q−1) in VCq

n(z, t).
(E’): Consider the weighted graph given by the values of X̃ and Ỹ variables.
Each subset S ⊆ Vn contributes 0 or 1 to the total. A subset S ⊆ Vn contributes
1 to VCq

n if and only if every vertex in S has non-zero weight, and every edge
incident on each vertex in S has non-zero weight. That is, S is a subset of
full-degree vertices. (A vertex in the weighted graph is called full-degree if the
number of edges with non-zero weight incident on it equals n− 1.) Therefore,
the total sum is 2(# full-degree vertices) mod p.

The clique/independent set polynomial CISq = (CISqn):

CISqn :=
∑
T⊆En

(∏
e∈T

Xq−1
e

)( ∏
v incident on T

Y q−1
v

)
.

(H’): Given an instance of clique A = (V (A), E(A)) such that |V (A)| = n and
|E(A)| = m, we show how CISqn encodes the number of solutions of instance
A. Consider the following projection of CISqn. Set Yv = t, for v ∈ V (A). For
e ∈ E(A), set Xe = z; otherwise e /∈ E(A) and set Xe = 1. (This is the same
projection as used for vertex cover.) Thus, we have

CISqn(z, t) =
∑
T⊆En

z|T∩E(A)|(q−1)t(# vertices incident on T )(q−1).

Now it follows easily that the number of cliques of size k, modulo p, is the

coefficient of z(
k
2)(q−1)tk(q−1) in CISqn(z, t).

(E’): Consider the weighted graph given by the values of X̃ and Ỹ variables.
Each subset T ⊆ En contributes 0 or 1 to the sum. A subset T ⊆ En con-
tributes 1 to the sum if and only if all edges in T have non-zero weight, and
every vertex incident on T must have non-zero weight. Therefore, we consider
the graph induced on vertices with non-zero weights. Any subset of edges in
this induced graph contributes 1 to the total sum; all other subsets contribute
0. Let ` be the number of edges in the induced graph with non-zero weights.
Thus, the total sum is 2` mod p.

The clow polynomial Clowq = (Clowq
n):

A clow in an n-vertex graph is a closed walk of length exactly n, in which the
minimum numbered vertex (called the head) appears exactly once.

Clowq
n :=

∑
w: clow of length n

 ∏
e: edges in w

Xq−1
e


 ∏

v: vertices in w
(counted only once)

Y q−1
v

 .

(If an edge e is used k times in a clow, it contributes X
k(q−1)
e to the monomial.)
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(H’): Given an instance A = (V (A), E(A)) of the Hamiltonian cycle problem
with |V (A)| = n and |E(A)| = m, we show how Clowq

n encodes the number
of Hamiltonian cycles in A. Consider the following projection of Clowq

n. Set
Yv = t, for v ∈ V (A). For e ∈ E(A), set Xe = z; otherwise e /∈ E(A) and set
Xe = 1. (The same projection was used for VCq and CISq.) Thus, we have

Clowq
n(z, t) =

∑
w: clow of length n

 ∏
e: edges in w∩E(A)

zq−1


 ∏

v: vertices in w
(counted only once)

tq−1

 .

From the definition, it now follows that number of Hamiltonian cycles in A,
modulo p, is the coefficient of zn(q−1)tn(q−1).
(E’): To evaluate Clowq

n on instantiations of X̃ and Ỹ variables, we consider
the weighted graph given by the values to the variables. We modify the edge
weights as follows: if an edge is incident on a node with zero weight, we make
its weight 0 irrespective of the value of the corresponding X variable. Thus, all
zero weight vertices are isolated in the modified graph G. Hence, the total sum
is equal to the number of closed walks of length n, modulo p, in this modified
graph. This can be computed in polynomial time using matrix powering as
follows: Let Gi denote the induced subgraph of G with vertices {i, . . . , n}, and
let Ai be its adjacency matrix. We represent Ai as an n × n matrix with the
first i−1 rows and columns having only zeroes. Now the number of clows with
head i is given by the [i, i] entry of AiA

n−2
i+1 Ai.

The 3D-matching polynomial 3DMq = (3DMq
n):

Consider the complete tripartite hyper-graph, where each partition contain n
nodes, and each hyperedge has exactly one node from each part. As before,
there are variables Xe for hyperedge e and Yv for node v.

3DMq
n :=

∑
M⊆An×Bn×Cn

(∏
e∈M

Xq−1
e

) ∏
v∈M

(counted only once)

Y q−1
v

 .

(H’): Given an instance of 3D-Matching H, we consider the usual projection.
The variables corresponding to the vertices are all set to t. The edges present
in H are all set to z, and the ones not present are set to 1. Then the number
of 3D-matchings in H, modulo p, is equal to the coefficient of zn(q−1)t3n(q−1)

in 3DMq
n(z, t).

(E’): To evaluate 3DMq
n over Fq, consider the hypergraph obtained after re-

moving the vertices with zero weight, edges with zero weight, and edges that
contain a vertex with zero weight (even if the edges themselves have non-zero
weight). Every subset of hyperedges in this modified hypergraph contributes
1 to the total sum, and all other subsets contribute 0. Hence, the evaluation
equals 2(# edges in the modified hypergraph) mod p. ut



14 Meena Mahajan, Nitin Saurabh

It is worth noting that the cut enumerator polynomial Cutq when q = 2,
showed by Bürgisser to be VNP-intermediate over field F2, is shown by de
Rugy-Altherre [40] to be in fact VNP-complete over the rationals. Thus the
above technique is specific to finite fields.

4 Monotone projection lower bounds

Consider the following polynomial families, defined over an n × n symbolic
matrix.

Cliquen :=
∑
S⊆[n]
|S|=b

√
nc

∏
i,j∈S
i<j

xi,j ,

HCn :=
∑
σ∈Sn

σ is a n-cycle

n∏
i=1

xi,σ(i), and

Permn :=
∑
σ∈Sn

n∏
i=1

xi,σ(i).

(A permutation is called an n-cycle if it is a cyclic permutation with the length
of the cycle being n. )

Over the Boolean {∧,∨}-semi-ring, it is known that Clique = (Cliquen)
is a monotone p-projection of HC = (HCn) [43]. In fact, Cliquen is a mono-
tone projection of HC25n2 [1]. Jukna [29] asked whether HC is a monotone
p-projection of Perm. The question is interesting because if this is the case,
then by composing the projections we conclude that Cliquen is also a mono-

tone p-projection of Permn. Thus using the 2n
Ω(1)

lower bound of Alon and

Boppana [1] for Cliquen, we would get a lower bound of 2n
Ω(1)

for Permn. In
fact, any way of showing that Cliquen is a monotone p-projection of Permn

would yield this lower bound for Permn. It is worth noting that the standard
reduction from counting cliques to the permanent is not monotone.

Grochow [23] answered the above question in the negative, showing that
over the Boolean semi-ring (and some other rings too), the Hamiltonian cycle
family HC is not a monotone sub-exponential-size projection of the perma-
nent. Thus, monotone circuit lower bounds for Clique cannot be transferred
to Perm via the Hamiltonian cycle polynomial HC. However, the possibility of
transfer via, say, ‘satisfiability ’ [43], remained open. It is known that Clique,
over the Boolean {∧,∨}-semi-ring, is a monotone polynomial-size projection
of satisfiability (see Section 5 [1]).

Here we extend Grochow’s arguments to directly show that Clique itself
is not a monotone p-projection of Perm. Thus this possibility of transferring
monotone circuit lower bounds for clique to permanent cannot work.

Recall that a polynomial f(x1, . . . , xn) is a projection of a polynomial
g(y1, . . . , ym) if f(x1, . . . , xn) = g(a1, . . . , am), where ai’s are either constants
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or xj for some j. The polynomial f is an affine projection of g if f can be
obtained from g by replacing each yi with an affine linear function `i(x̃). Over
any subring of R, or more generally any totally ordered semi-ring, a monotone
projection is a projection in which all constants appearing in the projection
are non-negative. We say that the family (fn) is a (monotone affine) projec-
tion of the family (gn) with blow-up t(n) if for all sufficiently large n, fn is a
(monotone affine) projection of gt(n).

Theorem 2 Over the reals (or any totally ordered semi-ring), the Clique fam-
ily is not a monotone affine p-projection of the Perm family. Any monotone
affine projection from Perm to Clique must have a blow-up of at least 2Ω(

√
n).

Before giving the proof, we set up some notation. For more details, see [2,
39,23]. For any polynomial p in n variables, let Newt(p) denote the polytope
in Rn that is the convex hull of the vectors of exponents of monomials of p.
The correlation polytope COR(n) is defined as the convex hull of n× n binary
symmetric matrices of rank 1. That is, COR(n) := conv{vvt | v ∈ {0, 1}n}.

For a polytope P , let c(P ) denote the minimal number of linear inequalities
needed to define P . A polytope Q ⊆ Rm is an extension of P ⊆ Rn if there
is an affine linear map π : Rm → Rn such that π(Q) = P . The extension
complexity of P , denoted xc(P ), is the minimum size c(Q) of any extension Q
(of any dimension) of P .

The following facts are straightforward, see for instance [23,20].

Fact 3 1. [23] c(Newt(Permn)) 6 2n.
2. [20] If polytope Q is an extension of polytope P , then xc(P ) 6 xc(Q).

We use the following recent results.

Proposition 1 ([23]) Let f(x1, . . . , xn) and g(y1, . . . , ym) be polynomials over
a totally ordered semi-ring R, with non-negative coefficients. If f is a mono-
tone projection of g, then the intersection of Newt(g) with some linear subspace
is an extension of Newt(f). In particular, xc(Newt(f)) 6 m+ c(Newt(g)).

Proposition 2 ([20]) There exists some constant C > 0 such that for all n,
xc(COR(n)) > 2Cn.

We now show that Cliquen is not a monotone p-projection of Permn. To
establish this we will consider a different family Clique∗ = (Clique∗n) that
enumerates all cliques in a graph, not just those of size

√
n. More formally,

Clique∗n :=
∑
S⊆[n]

∏
i∈S

xi,i
∏
i,j∈S
i<j

xi,j .

We first claim that proving monotone projection lower bounds against
Clique∗ suffices to establish lower bounds against Clique. The proof is basically
the VNP-completeness proof of Cliquen (see [27]).

Lemma 2 (follows from [27]) The family Clique∗ is a monotone p-projection
of the family Clique. In particular, Clique∗n is a monotone projection of Clique(n+1)2 .
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Theorem 4 Over the reals (or any totally ordered semi-ring), the family
Clique∗ is not a monotone affine p-projection of the Perm family. In fact, if
Clique∗n is a monotone affine projection of Permt(n), then t(n) > 2Ω(n).

Proof Let Q be the Newton polytope of Clique∗n. It resides in N :=
(
n
2

)
+ n

dimensions. Furthermore, it is the convex hull of vectors of the form 〈ã, b̃〉
where ã ∈ {0, 1}(

n
2) is the characteristic vector of the set of edges of the

clique over the set of vertices given by b̃ ∈ {0, 1}n, in the complete undirected
graph Kn. We will index a vector in N dimensions by pairs (i, j) such that
1 6 i 6 j 6 n.

Let us now consider the linear map ` : RN → Rn×n, defined as `(A) := B,
where for 1 6 i 6 j 6 n, Bi,j = Bj,i = A(i,j). We now claim that under
the map `, Q is mapped to the correlation polytope COR(n). It suffices to
show that vertices of Q under the map ` are mapped into COR(n), and every
vertex of COR(n) has a pre-image in Q under `. Indeed ` maps the vertices
of Q to the vertices of COR(n) bijectively. It follows from the map that a
vertex 〈ã, b̃〉 of Q is mapped to the vertex b̃b̃t of COR(n). Furthermore, the
pre-image of a vertex b̃b̃t of COR(n) is the clique given by the upper-triangular
and diagonal entries of b̃b̃t. Thus Q is an extension of COR(n), so by Fact 3 (2),
xc(COR(n)) 6 xc(Q).

Suppose Clique∗n is a monotone projection of Permt(n). By Fact 3 (1) and
Proposition 1, xc(Newt(Clique∗n)) = xc(Q) 6 t(n)2 + c(Newt(Permt(n))) 6
O(t(n)2). From the preceding discussion and By Proposition 2, we get 2Ω(n) 6
xc(COR(n)) 6 xc(Q) 6 O(t(n)2). It follows that t(n) is at least 2Ω(n). ut

Proof (of Theorem 2.) Suppose Cliquen is a monotone projection of Permt(n).
From Lemma 2, it follows that Clique∗n is a monotone projection of Permt((n+1)2).

Hence, from Theorem 4 we get t((n+ 1)2) > 2Ω(n). Thus, t(n) > 2Ω(
√
n). ut

Using similar arguments, we now show that Perm also fails to express two of
our intermediate polynomials, Satq and Clowq, via monotone affine projections.

Theorem 5 Over the reals (or any totally ordered semi-ring), for any q, the
families Satq and Clowq are not monotone affine p-projections of the Permanent
family. Any monotone affine projection from Permanent to Satq must have a
blow-up of at least 2Ω(

√
n). Any monotone affine projection from Permanent

to Clowq must have a blow-up of at least 2Ω(n).

First, we set up the required notation and state known results. For any Boolean
formula φ on n variables, let p-SAT(φ) denote the polytope in Rn that is the
convex hull of all satisfying assignments of φ. Let Kn = (Vn, En) denote the
n-vertex complete graph. The travelling salesperson (TSP) polytope is defined
as the convex hull of the characteristic vectors of all subsets of En that define
a Hamiltonian cycle in Kn.

We use the following recent results.

Proposition 3 1. For every n there exists a 3SAT formula φ with O(n) vari-
ables and O(n) clauses such that xc(p-SAT(φ)) > 2Ω(

√
n). [2]
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2. The extension complexity of the TSP polytope is 2Ω(n). [39]

Proof (of Theorem 5.) Let φ be a 3SAT formula with n variables and m clauses
as given by Proposition 3 (1). For the polytope P = p-SAT(φ), xc(P ) is high.

Fix any prime power q and let Q be the Newton polytope of Satqn. It
resides in N dimensions, where N = n + |Cln| = n + 8n3, and is the convex
hull of vectors of the form (q − 1)〈ãb̃〉 where ã ∈ {0, 1}n, b̃ ∈ {0, 1}N−n, and
for all c ∈ Cln, ã satisfies c if and only if bc = 1. By 〈ãb̃〉 we mean the N length
vector obtained by the concatenation of strings ã and b̃. For each ã ∈ {0, 1}n,
there is a unique b̃ ∈ {0, 1}N−n such that (q − 1)〈ãb̃〉 is in Q.

Define the polytope R, also in N dimensions, to be the convex hull of
vectors that are vertices of Q and also satisfy the constraint

∑
c∈φ bc ≥ m.

This constraint discards vertices of Q where ã does not satisfy φ. Thus R is
an extension of P (projecting the first n coordinates of points in R gives a
(q − 1)-scaled version of P ), so by Fact 3 (2), xc(P ) ≤ xc(R). Further, we
can obtain an extension of R from any extension of Q by adding just one
inequality; hence xc(R) ≤ 1 + xc(Q).

Suppose Satq is a monotone affine projection of Permn with blow-up t(n).
By Fact 3 (1) and Proposition 1, xc(Newt(Satq)) = xc(Q) ≤ t(n)2+c(Permt(n)) ≤
O(t(n)2). From the preceding discussion and by Proposition 3 (1), we get
2Ω(
√
n) ≤ xc(P ) ≤ xc(R) ≤ 1 + xc(Q) ≤ O(t(n)2). It follows that t(n) is at

least 2Ω(
√
n).

For the Clowq polynomial, let P be the TSP polytope andQ be Newt(Clowq).

The vertices of Q are of the form (q − 1)ãb̃ where ã ∈ {0, 1}(
n
2) picks a subset

of edges, b̃ ∈ {0, 1}n picks a subset of vertices, and the picked edges form a
length-n clow touching exactly the picked vertices. Define polytope R by dis-
carding vertices of Q where

∑
i∈[n] bi < n. Now the same argument as above

works, using Proposition 3 (2) instead of (1). ut

5 Complete families for VP and VBP

The quest for a natural VP-complete polynomial has generated a significant
amount of research [22,5,36,35,7,15]. The first success story came from [15],
where some naturally defined homomorphism polynomials were studied, and
a host of them were shown to be complete for the class VP. But the results
came with minor caveats. When the completeness was established under pro-
jections, there were non-trivial restrictions on the set of homomorphisms H,
and sometimes even on the target graph H. On the other hand, when all homo-
morphisms were allowed, completeness could only be shown under seemingly
more powerful reductions, namely, constant-depth c-reductions. Furthermore,
the graphs were either directed or had weights on nodes. It is worth noting that
the reductions in [15] actually do not use the full power of generic constant-
depth c-reductions; a closer analysis reveals that they are in fact linear p-
projection. That is, the reductions are linear combinations of polynomially
many p-projections (see Chapter 3, [5]). Still, this falls short of p-projections.
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In this work, we remove all such restrictions and show that there is a simple
explicit homomorphism polynomial family that is complete for VP under p-
projections. In this family, the source graphs G are specific bounded-tree-width
graphs, and the target graphs H are complete graphs. We also show that a
similar family with bounded-path-width source graphs is complete for VBP
under p-projections. Thus, homomorphism polynomials are rich enough to
characterise computations by circuits as well as algebraic branching programs.

The polynomials we consider are defined formally as follows.

Definition 2 Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs.
Consider the set of variables Z̄ := {Zu,a | u ∈ V (G) and a ∈ V (H)} and
Ȳ := {Y(u,v) | (u, v) ∈ E(H)}. Let H be a set of homomorphisms from G
to H. The homomorphism polynomial fG,H,H in the variable set Ȳ , and the

generalised homomorphism polynomial f̂G,H,H in the variable set Z̄ ∪ Ȳ , are
defined as follows:

fG,H,H =
∑
φ∈H

 ∏
(u,v)∈E(G)

Y(φ(u),φ(v))

 .

f̂G,H,H =
∑
φ∈H

 ∏
u∈V (G)

Zu,φ(u)

 ∏
(u,v)∈E(G)

Y(φ(u),φ(v))

 .

Let hom denote the set of all homomorphisms from G to H. If H equals hom,
then we drop it from the subscript and write fG,H or f̂G,H . For φ ∈ H, mon(φ)

denotes either
(∏

(u,v)∈E(G) Y(φ(u),φ(v))

)
or
(∏

u∈V (G) Zu,φ(u)

)(∏
(u,v)∈E(G) Y(φ(u),φ(v))

)
depending on whether we are talking about f or f̂ , respectively.

Note that for every G,H,H, fG,H,H(Ȳ ) equals f̂G,H,H(Ȳ ) |Z̄=1̄. Thus upper

bounds for f̂ give upper bounds for f , while lower bounds for f give lower
bounds for f̂ .

We digress momentarily to point out a relation between the homomor-
phism polynomials and the (counting) homomorphism problem. Observe that
to count the number of homomorphisms from G to H it suffices to evaluate
the polynomial fG,H on a {0, 1}-input encoding H. Since the homomorphism
problem is a fundamental algorithmic problem of significance in many areas
of computer science, it has been studied intensively by several authors [8,
19,26]. In general there are two variants of the (counting) homomorphism
problems: (i) restrictions on the right-hand side graph [25,16,40,18], and (ii)
restrictions on the left-hand side graph [9,12,24,11]. Our results here can be
seen as addressing the second variant of the counting homomorphism problem
in Valiant’s algebraic model.

We show in Theorem 6 that for any p-family (Hm), and any bounded tree-
width (path-width, respectively) p-family (Gm), the polynomial family (fm)

where fm = f̂Gm,Hm is in VP (VBP, respectively). We then show in Theorem 7
that for a specific bounded path-width family (Gm), and for Hm = Km2 , the



Some Complete and Intermediate Polynomials in Algebraic Complexity Theory 19

polynomial family (fGm,Hm) is hard, and hence complete, for VBP with re-
spect to projections. Over fields of characteristic other than 2, VBP-hardness
is obtained for an even simpler family of source graphs Gm, as described in
Theorem 8. Finally, we present our main result in Theorem 9; we show that
for a specific bounded tree-width family (Gm), and for Hm = Km6 , the poly-
nomial family (fGm,Hm) is hard, and hence complete, for VP with respect to
projections.

5.1 Upper Bound

In [15], it was shown that the homomorphism polynomial f̂Tm,Kn where Tm
is a binary tree on m leaves, and Kn is a complete graph on n nodes, is
computable by an arithmetic circuit of size O(m3n3). Their proof idea is based
on recursion: group the homomorphisms based on where they map the root of
Tm and its children, and recursively compute the sub-polynomials within each
group. The sub-polynomials of a specific group have a special set of variables
in their monomials. Hence, the homomorphism polynomial can be computed
by suitably combining partial derivatives of the sub-polynomials. The partial
derivatives themselves can be computed efficiently using the technique of Baur
and Strassen, [3].

Generalizing the above idea to polynomials where the source graph is not
a binary tree Tm but a bounded tree-width graph Gm seems hard. The very
first obstacle we encounter is to generalize the concept of partial derivative to
monomial extension. Combining sub-polynomials to obtain the original poly-
nomial also gets rather complicated.

We sidestep this difficulty by using a dynamic programming approach [13]
based on a “nice” tree decomposition of the source graph. This shows that
the homomorphism polynomial f̂G,H is computable by an arithmetic circuit
of size at most O

(
tw(G) · |V (G)| · |V (H)|tw(G)+1(|V (H)|+ |E(H)|)

)
, where

tw(G) is the tree-width of G.

Let T = (T, {Xt}t∈V (T )) be a nice tree decomposition of G of width τ .
(For a definition of nice tree decompositions, we refer to Section 2.) For each
t ∈ V (T ), let Mt = {φ | φ : Xt → V (H)} be the set of all mappings from
Xt to V (H). Since |Xt| 6 τ + 1, we have |Mt| 6 |V (H)|τ+1. For each node
t ∈ V (T ), let Tt be the subtree of T rooted at node t, Vt :=

⋃
t′∈V (Tt)

Xt′ , and

Gt := G[Vt] be the subgraph of G induced on Vt. Note that Gr = G.

We will build the circuit inductively. For each t ∈ V (T ) and φ ∈ Mt, we
have a gate 〈t, φ〉 in the circuit. Such a gate will compute the homomorphism

polynomial f̂Gt,H,Ht , where Ht is the set of homomorphisms from Gt to H
such that restricted to Xt the mapping is given by φ. That is, we sum over
all homomorphisms that extend the map φ. Furthermore, for each such gate
〈t, φ〉 we introduce another gate 〈t, φ〉′ which computes the quotient of the
polynomial computed at 〈t, φ〉 with respect to the monomial given by φ. These
gates enable us to combine the polynomials at a join node while multiplying
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the contribution from φ exactly once. As we mentioned before, the construction
is inductive, starting at the leaf nodes and proceeding towards the root.

Base case (Leaf nodes): Let ` ∈ V (T ) be a leaf node. Then, X` = {u} such
that u ∈ V (G). Note that any φ ∈ M` is just a mapping of u to some node
in V (H). Hence, the set M` can be identified with V (H). Therefore, for all
h ∈ V (H), we label the gate 〈`, h〉 by the variable Zu,h. The quotient gate
〈`, h〉′ in this case is set to 1.

Introduce nodes: Let t ∈ V (T ) be an introduce node, and t′ be its unique child.
Then, Xt \Xt′ = {u} for some u ∈ V (G). Let N(u) := {v|v ∈ Xt′ and (v, u) ∈
E(Gt)}. Note that there is a one-to-one correspondence between φ ∈ Mt and
pairs (φ′, h) ∈ Mt′ × V (H). Therefore, for all φ = (φ′, h) ∈ Mt such that
∀v ∈ N(u), (φ′(v), h) ∈ E(H), we set

〈t, φ〉 := Zu,h ·

 ∏
v∈N(u)

Y(φ′(v),h)

 · 〈t′, φ′〉 and,

〈t, φ〉′ := 〈t′, φ′〉′,

otherwise we set 〈t, φ〉 = 〈t, φ〉′ := 0.

Forget nodes: Let t ∈ V (T ) be a forget node and t′ be its unique child. Then,
Xt′ \ Xt = {u} for some u ∈ V (G). Again note that there is a one-to-one
correspondence between pairs (φ, h) ∈Mt × V (H) and φ′ ∈Mt′ . Let N(u) :=
{v|v ∈ Xt and (v, u) ∈ E(Gt′)}. Therefore, for all φ ∈Mt, we set

〈t, φ〉 :=
∑

h∈V (H)

〈t′, (φ, h)〉.

In the quotient formula 〈t, φ〉′, we want to compute the quotient when the
polynomial 〈t, φ〉 is divided by the monomial given by φ. We consider all valid
extensions φ′ ∈ Mt′ of φ. For each such extension we consider the quotient
polynomial at the child t′ and multiply it with the contribution given by u
(and, edges incident on u) when mapped according to φ′. We then sum over
all valid extensions to obtain the formula. Thus, for all φ ∈Mt, we set

〈t, φ〉′ :=
∑

h∈V (H) such that
∀v∈N(u),(φ(v),h)∈E(H)

Zu,h ·

 ∏
v∈N(u)

Y(φ(v),h)

 · 〈t′, (φ, h)〉′.
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Join nodes: Let t ∈ V (T ) be a join node, and t1 and t2 be its two children; we
have Xt = Xt1 = Xt2 . To compute 〈t, φ〉, the definition of tree decomposition
suggests that we would like to multiply the polynomials computed at 〈t1, φ〉
and 〈t2, φ〉. But if we simply multiply them we get contributions from φ twice,
namely once from the left child and once from the right child. To get around
this difficulty is exactly why we have been computing the quotient gates.

Thus, for all φ ∈Mt, we set

〈t, φ〉 := 〈t1, φ〉 · 〈t2, φ〉′ (= 〈t1, φ〉′ · 〈t2, φ〉)
〈t, φ〉′ := 〈t1, φ〉′ · 〈t2, φ〉′.

The output gate of the circuit is 〈r, ∅〉. The correctness of the algorithm
is readily seen via induction in a similar way. The bound on the size follows,
since |V (T )| = O(tw(G)|V (G)|), |Mt| 6 |V (H)|τ+1, and implementing each
node may need O(|V (H)|+ |E(H)|) extra gates.

We observe some properties of our construction. First, the circuit con-
structed is a constant-free circuit. This was the case with the algorithm from [15]
too. Second, if we start with a path decomposition, we obtain skew circuits,
since the join nodes are absent. The algorithm from [15] does not give skew
circuits when Tm is a path. (It seems the obstacle there lies in computing
partial-derivatives using skew circuits.)

From the above algorithm and its properties, we obtain the following the-
orem.

Theorem 6 Consider the family of homomorphism polynomials (fm), where

fm = f̂Gm,Hm(Z̄, Ȳ ), and (Hm) is a p-family of complete graphs.

– If (Gm) is a p-family of graphs of bounded tree-width, then (fm) ∈ VP.
– If (Gm) is a p-family of graphs of bounded path-width, then (fm) ∈ VBP.

5.2 VBP-completeness

We now show that homomorphism polynomials can characterize computa-
tion by algebraic branching programs. We establish that there exists a p-
family (Gk) of undirected bounded path-width graphs such that the family
(fGk,Hk(Ȳ )) is VBP-complete with respect to p-projections.

We note that for VBP-completeness under projections, the construction
in [15] required directed graphs. In the undirected setting they could establish
hardness only under linear p-projection, that moreover use 0-1 valued weights.

We use rigid and mutually incomparable graphs in the construction of Gk.
(For their definitions, see Section 2.) Let I := {I1, I2} be two connected, rigid
and incomparable graphs. Arbitrarily pick vertices u ∈ V (I1) and v ∈ V (I2).
Let cIi = |V (Ii)|, and cmax = max{cI1 , cI2}. Consider the sequence of graphs
Gk (Fig. 2); for every k, take the disjoint union of I1, I2, and two new vertices
a and b. Insert a simple path with cmax edges between the vertex u of I1 and
a, and another simple path with cmax edges between the vertex v of I2 and
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I1(u) a b (v)I2

cmax edges k − 1 edges cmax edges

Fig. 2 The graph Gk.

b. Also insert a simple path with k − 1 edges between a and b. It is easy to
observe that the family (Gk) has bounded path-width.

Theorem 7 Over any field, the family of homomorphism polynomials (fk),
where

– Gk is defined as above (see Fig. 2),
– Hk is the undirected complete graph on O(k2) vertices,
– fk(Ȳ ) = fGk,Hk(Ȳ ),

is complete for VBP with respect to p-projections.

Proof Membership: It follows from Theorem 6.
Hardness: Let (gn) ∈ VBP. Without loss of generality, we can assume that
gn is computable by a layered branching program of polynomial size such that
the number of layers, `, is more than the width of the algebraic branching
program. Thus n ∈ O(`2).

Let B′n be the undirected graph underlying the layered branching program
An for gn. Let Bn be the following graph: start with a disjoint union of I1, I2
and B′n. Now the chosen vertex u ∈ I1 is connected to s ∈ B′n via a path with
cmax edges, and t ∈ B′n is connected to the chosen vertex v ∈ I2 via a path
with cmax edges (cf. Fig. 2). The edges in B′n inherit the weight from An, and
the rest of the edges in Bn have weight 1.

Let us now consider the projection of f` when the variables on the edges
of H` are instantiated to values in {0, 1} or variables of gn so that we obtain
Bn as a subgraph of H`. We claim that a valid homomorphism from G` → Bn
must satisfy the following properties:

(P1) I1 in G` must be mapped to I1 in Bn using the identity homomorphism,
(P2) I2 in G` must be mapped to I2 in Bn using the identity homomorphism.

Assuming the claim, it follows that homomorphisms from G` → Bn are
in one-to-one correspondence with s-t paths in An. In particular, the vertex
a ∈ G` is mapped to the vertex s in Bn, and the vertex b ∈ G` is mapped to
the vertex t in Bn. Also, the monomial associated with a homomorphism and
its corresponding path are the same. Therefore, we have,

fG`,Bn = gn.

Since ` is polynomially bounded, we obtain VBP-completeness of (fk) over any
field.

Let us now prove the claim. We first prove that a valid homomorphism from
G` → Bn must satisfy the property (P1). There are three cases to consider.
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– Case 1: Some vertex of V (I1) ⊆ V (G`) is mapped to u in Bn. Since ho-
momorphisms cannot increase distances between two vertices, we conclude
that V (I1) must be mapped within the subgraph of Bn containing I1, s,
and the path between them. But then by Lemma 1 the only homomor-
phism is the identity map on I1. Thus, the homomorphism must map I1
in G` identically to I1 in Bn.

– Case 2: Some vertex of V (I1) ⊆ V (G`) is mapped to v in Bn. Since ho-
momorphisms cannot increase distances between two vertices, we conclude
that V (I1) must be mapped within the subgraph of Bn containing t, I2,
and the path between them. Since I1 and I2 are incomparable graphs, it
follows from Lemma 1 that there are no valid homomorphisms of this type.

– Case 3: No vertex of V (I1) ⊆ V (G`) is mapped to u or v in Bn. Then
V (I1) ⊆ V (G`) must be mapped entirely within one of the following disjoint
regions of Bn: (i) I1 \ {u}, (ii) bipartite graph between vertices u and v,
and (iii) I2 \ {v}. But then we contradict rigidity of I1 in the first case,
non-bipartiteness of I1 in the second case, and incomparability of I1 and
I2 in the last. Thus, there are no valid homomorphisms of this type either.

In a similar way, we could also prove that a valid homomorphism from
G` → Bn must satisfy the property (P2). ut

In the above proof, we crucially used incomparability of I1 and I2 to rule
out flipping an undirected path. It turns out that over fields of characteristic
not equal to 2, this is not crucial, since we can divide by 2. We show that if the
characteristic of the underlying field is not equal to 2, then the sequence (Gk)
in the preceding theorem can be replaced by a sequence of simple undirected
cycles of appropriate length. In particular, we establish the following result.

Theorem 8 Over fields of char 6= 2, the family of homomorphism polynomials
(fk), fk = fGk,Hk , where

– Gk is a simple undirected cycle of length 2k + 1 and,
– Hk is an undirected complete graph on (2k + 1)2 vertices,

is complete for VBP under p-projections.

Proof Membership: As before, it follows from Theorem 6.
Hardness: Let (gn) ∈ VBP. Without loss of generality, we can assume that
gn is computable by a layered branching program of polynomial size satisfying
the following properties:

– The number of layers, ` > 3, is odd; say ` = 2m+ 1. So every path from s
to t in the branching program has exactly 2m edges.

– The number of layers is more than the width of the algebraic branching
program.

Let us consider fm when the variables on the edges of Hm have been set
to 0, 1, or variables of gn so that we obtain the undirected graph underlying
the layered branching program An for gn as a subgraph of Hm. Now change
the weight of the (s, t) edge from 0 to weight y, where y is a new variable
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distinct from all the other variables of gn. Call this modified graph Bm. Note
that without the new edge, Bm would be bipartite.

Let us understand the homomorphisms from Gm to Bm. Homomorphisms
from a simple cycle C to a graph G are in one-to-one correspondence with
closed walks of the same length in G. Moreover, if the cycle C is of odd length,
the closed walk must contain a simple odd cycle of at most the same length.
Therefore, the only valid homomorphism from Gm to Bm are walks of length
` = 2m+ 1, and they all contain the edge (s, t) with weight y. But the cycles
of length ` in Bm are in one-to-one correspondence with s-t paths in An. Each
cycle contributes 2` walks: we can start the walk at any of the ` vertices, and
we can follow the directions from An or go against those directions. Thus we
have,

fGm,Bm = (2(2m+ 1)) · y · gn = (2`) · y · gn.

Let p be the characteristic of the underlying field. If p = 0, we substitute
y = (2`)−1 to obtain gn. If p > 2, then 2` has an inverse if and only if ` has
an inverse. Since ` > 3 is an odd number, either p does not divide ` or it does
not divide ` + 2. Hence, at least one of `, ` + 2 has an inverse. Thus gn is a
projection of fm or fm+1 depending on whether ` or ` + 2 has an inverse in
characteristic p.

Since ` = 2m + 1 is polynomially bounded in n, we therefore show (fk)
is VBP-complete with respect to p-projections over any field of characteristic
not equal to 2. ut

5.3 VP-completeness

Finally, we now establish VP-hardness of the homomorphism polynomials. We
need to show that there exists a p-family (Gm) of bounded tree-width graphs
such that (fGm,Hm(Ȳ )) is hard for VP under projections.

As before, we use rigid and mutually incomparable graphs in the construc-
tion of Gm. Let I := {I1, I2, I3} be a fixed set of three connected, rigid and
mutually incomparable graphs. Note that they are necessarily non-bipartite.
Let cIi = |V (Ii)|. Choose an integer cmax > max {cI1 , cI2 , cI3}. Identify three
distinct vertices {vi`, vir, vip} in Ii. (For instance, we could use the graphs Gi in

Figure 1. The vertices 1 and 16 (blue vertices) could be designated vi`, v
i
r, and

the vertex 7 + i (red vertex) could be designated vip.)
For every m a power of 2, we denote a complete (perfect) binary tree with

m leaves by Tm. We construct a sequence of graphs Gm (Fig. 3) from Tm
as follows: first replace the root by the graph I3, then all the nodes on a
particular level are replaced by either I1 or I2 alternately (cf. Fig. 3). Now
we add edges. Let u be a node in Tm with left child w and right child x, and
suppose u is replaced by a copy of Ii while w, x are replaced by disjoint copies
of Ij . We add an edge between the vertex vi` in u’s copy of Ii and the vertex
vjp in w’s copy of Ij . We also add an edge between the vertex vir in u’s copy

of Ii and the vertex vjp in x’s copy of Ij . Finally, to obtain Gm we expand
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I3

I1 I1

I2 I2 I2 I2

I1 I1 I1 I1 I1 I1 I1 I1

path with cmax vertices

Fig. 3 The graph Gm.

each added edge into a simple path with cmax vertices on it (cf. Fig. 3). That
is, a left-edge connection between two incomparable graphs in the tree looks
like, Ii(v

i
`) − (path with cmax vertices) − (vjp)Ij . Also it is easily seen that the

tree-width of Gm is bounded by a universal constant independent of m.

Theorem 9 Over any field, the family of homomorphism polynomials (fm),
with fm(Ȳ ) = fGm,Hm(Ȳ ), where

– Gm is defined as above (see Fig. 3), and
– Hm is an undirected complete graph on poly(m), say m6, vertices,

is complete for VP under p-projections.

Proof Membership in VP follows from Theorem 6.
We proceed with the hardness proof. The idea is to obtain the VP-complete

universal polynomial from [36] as a projection of fm. This universal polyno-
mial is computed by a normal-form homogeneous circuit with alternating un-
bounded fanin-in + and bounded fan-in × gates. We would like to put its
parse trees in bijection with homomorphisms from G to H. This becomes eas-
ier if we use an equivalent universal circuit in a nice normal form as described
in [15] (see Definition 1). The normal form circuit is multiplicatively disjoint;
sub-circuits of × gates are disjoint (see [34]). This ensures that even though
Cn (see Definition 1) itself is not a formula, all its parse trees are already
subgraphs of Cn even without unwinding it into a formula.

Our starting point is the related graph J ′n in [15]. The parse trees in Cn
are complete alternating unary-binary trees. The graph J ′n is constructed in
such a way that the parse trees are now in bijection with complete binary
trees. To achieve this, we “shortcut” the + gates, while preserving information
about whether a subtree came in from the left or the right. For the sake of
completeness we describe the construction of J ′n from [15].

We obtain a sequence of graphs (J ′n) from the undirected graphs underly-
ing (Cn) as follows. Retain the multiplication and input gates of Cn. Let us
make two copies of each. For each retained gate, g, in Cn; let gL and gR be the
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two copies of g in J ′n. We now define the edge connections in J ′n. Assume g is
a × gate retained in J ′n. Let α and β be two + gates feeding into g in Cn. Let
{α1, . . . , αi} and {β1, . . . , βj} be the gates feeding into α and β, respectively.
Assume without loss of generality that α and β feed into g from left and right,
respectively. We add the following set of edges to J ′n: {(α1L, gL), . . . , (αiL, gL)},
{(β1R, gL), . . . , (βjR, gL)}, {(α1L, gR), . . . , (αiL, gR)} and {(β1R, gR), . . . , (βjR, gR)}.
We now would like to keep a single copy of Cn in these set of edges. So we
remove the vertex rootR and we remove the remaining spurious edges in fol-
lowing way. If we assume that all edges are directed from root towards leaves,
then we keep only edges induced by the vertices reachable from rootL in this di-
rected graph. In [15], it was observed that there is a one-to-one correspondence
between parse trees of Cn and subgraphs of J ′n that are rooted at rootL and
isomorphic to T2k(n) , where k(n) is half the depth of Cn (see Definition 1). The
observation easily follows from the definition of parse trees and the structure
of Cn. We explicitly state the observation.

Fact 10 ([15]) There is a one-to-one correspondence between parse trees of
Cn and subgraphs of J ′n that are rooted at rootL and isomorphic to T2k(n) .

We now transform J ′n using the set I = {I1, I2, I3}. This is similar to
the transformation we did to the balanced binary tree Tm. We replace each
vertex by a graph in I; rootL gets I3 and the rest of the layers get I1 or I2
alternately (as in Fig. 3). Edge connections are made so that a left/right child
is connected to its parent via the edge (vjp, v

i
`)/(v

j
p, v

i
r). Finally we replace each

edge connection by a path with cmax vertices on it (as in Fig. 3), to obtain the
graph Jn. All edges of Jn are labeled 1, with the following exceptions: Every
input node contains the same rigid graph Ii. It has a vertex vip. Each path
connection to other nodes has this vertex as its end point. Label such path
edges that are incident on vip by the label of the input gate.

Let m := 2k(n). The choice of poly(m) is such that 4sn 6 poly(m), where
sn is the size of Jn. The Ȳ variables are set to {0, 1, x̄} such that the non-zero
variables pick out the graph Jn. It follows, from Fact 10, that for each parse tree
p-T of Cn, there exists a homomorphism φ : G2k(n) → Jn such that mon(φ) is
exactly equal to mon(p-T). Recall by mon(·) we mean the monomial associated
with an object. We claim that these are the only valid homomorphisms from
G2k(n) → Jn. We observe the following properties of homomorphisms from
G2k(n) → Jn, from which the claim follows. In the following by a rigid-node-
subgraph we mean a graph in {I1, I2, I3}, that is present as a subgraph.

(i) Any homomorphic image of a rigid-node-subgraph of G2k(n) in Jn, cannot
split across two distinct rigid-node-subgraphs in Jn. That is, there cannot
be two vertices in a rigid subgraph of G2k(n) such that one of them is
mapped into a rigid subgraph say n1, and the other one is mapped into
another rigid subgraph say n2. This follows because homomorphisms do
not increase distance.

(ii) Because of (i), with each homomorphic image of a rigid node gi ∈ G2k(n) ,
we can associate at most one rigid node of Jn, say ni, such that the ho-
momorphic image of gi is a subgraph of ni and the paths (corresponding
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to incident edges) emanating from it. But, by Lemma 1, gi must be of the
same type as ni and the only possible homomorphism is the identity map.
The other scenario, where we cannot associate any ni because gi is mapped
entirely within connecting paths, is not possible since it contradicts non-
bipartiteness of rigid graphs.

Root must be mapped to the root: The rigidity of I3 and Property (ii)
implies that I3 ∈ G2k(n) is mapped identically to I3 in Jn.
Every level must be mapped within the same level: The children of
I3 in G2k(n) are mapped to the children of of I3 in Jn while respecting left-
right behaviour. Firstly, the left child cannot be mapped to the rootL because
of incomparability of the graphs I1 and I3. Secondly, the left child cannot
be mapped to the right child (or vice versa) even though they are the same
graphs, because the minimum distance between the vertex in I3 where the left
path emanates and the right child is cmax + 1 whereas the distance between
the vertex in I3 where the left path emanates and the left child is cmax. So
some vertex from the left child must be mapped into the path leading to the
right child and hence the rest of the left child must be mapped into a proper
subgraph of right child. But this contradicts rigidity of I1. Continuing like this,
we can show that every level must map within the same level and that the
mapping within a level is correct. ut

6 Conclusion

In this paper, we have shown that over finite fields, five families of polynomials
are intermediate in complexity between VP and VNP, assuming the PH does
not collapse. Over rationals and reals, we have established that two of these
families and the Clique polynomial are provably not monotone p-projections
of the permanent polynomials. Finally, we have obtained a natural family of
polynomials, defined via graph homomorphisms, that is complete for VP with
respect to projections; this is the first family defined independent of circuits
and with such hardness. An analogous family is also shown to be complete
for VBP. In a recent update (see [33] Revision 2), we have also shown another
analogous family of homomorphism polynomials to be complete for VNP.

Several interesting questions remain.

The definitions of our intermediate polynomials use the size q of the field
Fq, not just the characteristic p. Can we find families of polynomials with
integer coefficients, that are VNP-intermediate (under some natural complexity
assumption of course) over all fields of characteristic p? Even more ambitiously,
can we find families of polynomials with integer coefficients, that are VNP-
intermediate over all fields with non-zero characteristic? at least over all finite
fields? over fields Fp for all (or even for infinitely many) primes p?

Equally interestingly, can we find an explicit family of polynomials that is
VNP-intermediate in characteristic zero?
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A related question is whether there are any polynomials defined over the
integers, that are VNP-intermediate over Fq (for some fixed q) but that are
monotone p-projections of the permanent.

Can we show that the remaining intermediate polynomials are also not
polynomial-sized monotone projections of the permanent? Do such results have
any interesting consequences, say, improved circuit lower bounds?
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Appendix

In this appendix we prove that the graphsGi, i ∈ {1, 2, 3}, from Fig. 1, are rigid
and pairwise incomparable. We briefly recall the construction of these graphs.
For the graph G, in Fig. 1, there is an edge between i and j if 1 6 |i− j| 6 4.
Further add an edge between 1 and 16. The Gi’s are obtained, as shown in
Fig. 1, by adding an extra edge between 1 and 7+ i. We state some definitions
that will be useful to us in the proof.

Definition 3 A graph H is asymmetric if the only automorphism (isomor-
phism from H to itself) is the identity.

Definition 4 A graph H is a core if every endomorphism (homomorphism
from H to itself) is an isomorphism (and hence an automorphism).

Recall a graph H is rigid if the only endomorphism is the identity. Thus, H is
rigid if and only if it is an asymmetric core.

Let χH denote the chromatic number of H, that is, the least k such that
some map from V (H) to the set of colours [k] gives all adjacent vertices distinct
colours. We say that H is χ(H)-chromatic. A graph H is said to be vertex-
critical if for every u ∈ V (H), χH\{u} < χH . If there is a homomorphism from
G to H, then the definition of homomorphism implies that χ(G) ≤ χ(H). It
follows that every vertex-critical graph is a core.

Claim 1 : Each graph in {G,G1, G2, G3} is a core.

Claim 2 : Each graph in {G1, G2, G3} is asymmetric.

Hence, each Gi is rigid.

Claim 3 : The graphs in {G1, G2, G3} are pairwise incomparable; for i 6= j,
there is no homomorphism from Gi to Gj .

Proof (of Claim 1) We show that G (and hence also each Gi) is not 5-
colourable, while for every u ∈ [16], each Gi \ {u} is 5-colourable. Hence all
four graphs are 6-chromatic vertex-critical.
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Non-5-colourability : The vertices 1 to 5 form a clique and must get distinct
colours, say vertex i gets the colour ci for i ∈ [5]. Now there is a unique way of
extending the colouring sequentially to vertices 6, 7, 8, . . ., if we use only five
colours. But this assigns colour c1 to 16, and vertices 1 and 16 are neighbours.
So no 5-colouring is possible.

5-colourability : Consider Gi \ {u}. Colour node j with colour cj mod 5 if
j < u, with colour c(j−1) mod 5 if j > u. This satisfies all edge constraints: For
a black edge (j, k), 1 ≤ |j − k| ≤ 4, so if both j and k are present, then their
colours are distinct even if j < u < k. If the blue-red edge is present, note that
the red vertex gets colour c2, c3, c4, or c5, while vertex 1 always gets colour
c1. ut

Proof (of Claim 2) Since isomorphisms must preserve degrees vertex-wise,
consider the degrees of vertices in the graphs. First, group the vertices of G
by degree.
degree 5 : {1, 2, 15, 16}
degree 6 : {3, 14}
degree 7 : {4, 13}
degree 8 : {5, 6, 7, 8, 9, 10, 11, 12}.

Similarly, group the vertices of Gi by degree.
degree 5 : {2, 15, 16}
degree 6 : {1, 3, 14}
degree 7 : {4, 13}
degree 8 : {5, 6, 7, 8, 9, 10, 11, 12} \ {the red node 7+i}
degree 9 : the red node 7 + i

Consider an automorphism f on G1. Since only vertex 8 has degree 9, f
must map 8 to 8. Vertex 1 is the only neighbour of 8 with degree 6, so f
must map 1 to 1. Vertex 1 has two degree-5 neighbours, 2 and 16, but 16 has
another degree-5 neighbour 15 while 2 does not have any degree-5 neighbour,
so f cannot swap these degree-5 neighbours of 1. So f maps 2 to 2 and 16 to
16. Proceeding this way based on degree, we see that f must in fact fix every
vertex.

An identical argument works for G2. For G3, one additional twist: The red
vertex 10 gets mapped to 10. Now 10 has two degree-6 neighbours, 1 and 14.
Can f map 1 to 14? No, since 1 has a degree-6 neighbour 3, while 14 has no
degree-6 neighbour. Thus f cannot swap 1 and 14. ut

Proof (of Claim 3) Suppose to the contrary that f : V1 → V2 is a homo-
morphism from G1 to G2 (the argument is similar for other pairs). If f is not
surjective, then by vertex-criticality, G1 has a homomorphism to a 5-colourable
graph, but χ(G1) = 6, a contradiction. So f must be surjective.

Furthermore, f must induce a bijection between the edges of G1 and G2.
If it didn’t, then two edges of G1 are mapped to the same edge of G2. This
implies that two vertices of G1 are mapped to the same vertex of G2, violating
surjectivity.
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Thus the vertex degrees must be preserved exactly: for each u ∈ V1, the
degree of u in G1 is the same as the degree of f(u) in G2.

Since the red vertices are the only vertices with degree 9, f must map
the red vertex of G1, vertex 8, to the red vertex of G2, vertex 9. Now use
the argument as used in Claim 2 to extend this mapping. f must map 1 to
1, 2 to 2, and so on. We thus reach the conclusion that f must map 8 to 8,
contradicting f(8) = 9. Hence no such map f is possible. ut
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