
Seeking a vertex of the planar matching

polytope in NC

Raghav Kulkarni1? and Meena Mahajan2

1 Chennai Mathematical Institute, 92, G.N.Chetty Road, T. Nagar, Chennai 600 017,
India. raghav@cmi.ac.in

2 The Institute of Mathematical Sciences, Chennai 600 113, India.
meena@imsc.res.in

Abstract. For planar graphs, counting the number of perfect matchings
(and hence determining whether there exists a perfect matching) can be
done in NC [4, 10]. For planar bipartite graphs, finding a perfect matching
when one exists can also be done in NC [8, 7]. However in general planar
graphs (when the bipartite condition is removed), no NC algorithm for
constructing a perfect matching is known.

We address a relaxation of this problem. We consider the fractional
matching polytope P(G) of a planar graph G. Each vertex of this poly-
tope is either a perfect matching, or a half-integral solution: an assign-
ment of weights from the set {0, 1/2, 1} to each edge of G so that the
weights of edges incident on each vertex of G add up to 1 [6]. We show
that a vertex of this polytope can be found in NC, provided G has at
least one perfect matching to begin with. If, furthermore, the graph is
bipartite, then all vertices are integral, and thus our procedure actually
finds a perfect matching without explicitly exploiting the bipartiteness
of G.

1 Introduction

The perfect matching problem is of fundamental interest to combinatorists, al-
gorithmists and complexity-theorists for a variety of reasons. In particular, the
problems of deciding if a graph has a perfect matching, and finding such a
matching if one exists, have received considerable attention in the field of par-
allel algorithms. Both these problems are in randomized NC [5, 2, 9] but are not
known to be in deterministic NC. (NC is the class of problems with parallel al-
gorithms running in polylogarithmic time using polynomially many processors.)
For special classes of graphs, however, there are deterministic NC algorithms.

In this work, we focus on planar graphs. These graphs are special for the
following reason: for planar graphs, we can count the number of perfect match-
ings in NC ([4, 10], see also [3]), but we do not yet know how to find one, if one
exists. This counters our intuition that decision and search versions of problems

? Part of this work was done when this author was visiting the Institute of Mathe-
matical Sciences, Chennai on a summer student programme.

2 Raghav Kulkarni and Meena Mahajan

are easier than their counting versions. In fact, for the perfect matching problem
itself, while decision and search are both in P, counting is #P-hard and hence
is believed to be much harder. But for planar graphs the situation is curiously
inverted.

We consider a relaxation of the search version and show that it admits a
deterministic NC algorithm. The problem we consider is the following: For a
graph G = (V, E) with |V | = n vertices and |E| = m edges, consider the m-
dimensional space Qm. A point 〈x1, x2, . . . , xm〉 in this space can be viewed as
an assignment of weight xi to the ith edge of G. A perfect matching in G is such
an assignment (matched edges have weight 1, other edges have weight 0) and
hence is a point in this space.

Consider the polytope P(G) defined by the following equations.

xe ≥ 0 ∀ e ∈ E (1)

∑

e incident on v

xe = 1 ∀ v ∈ V (2)

Clearly, every perfect matching of G (i.e. the corresponding point in Qm)
lies in P(G). Standard matching theory (see for instance [6]) tells us that every
perfect matching of G is a vertex of P(G). In fact, if we denote by M(G) the
convex hull of all perfect matchings, then M(G) is a facet of P(G). In the case
of bipartite graphs, the perfect matchings are in fact the only vertices of P(G);
P(G)= M(G). Thus for a bipartite graph it suffices to find a vertex of P(G) to
get a perfect matching. Furthermore, for general graphs, all vertices of P(G) are
always half-integral (in the set {0, 1/2, 1}m). For any vertex w of P(G), if we
pick those edges of G having non-zero weight in w, we get a subgraph which is
a disjoint union of a partial matching and some odd cycles.

For instance, Figure 1 shows a graph where M(G) is empty, while P(G) has
one point shown by the weighted graph alongside. Figure 2 shows a graph where
M(G) is non-empty; furthermore, the weighted graph in Figure 2(b) is a vertex
of P(G) not in M(G).

1/2 1/2

1/2

1/2

1/2

G A vertex of P(G)

Fig. 1. An Example Graph with
empty M(G), and a point in P(G)

G

1/2

1/2

1/2

0 1/2

1/2

1/2

A vertex of P(G)

not in M(G)

Fig. 2. An Example Graph with non-empty
M(G), and a point in P(G) −M(G)

We show in this paper that finding a vertex of P(G) is in NC when G is a
planar graph with at least one perfect matching. If, furthermore, the graph is

Seeking a vertex of the planar matching polytope in NC 3

bipartite, then all vertices are integral, and thus our procedure actually finds a
perfect matching, without explicitly exploiting the bipartiteness of G.

Our approach is as follows. In [7], an NC procedure is described to find a point
p inside P(G), using the fact that counting the number of perfect matchings in
a planar graph is in NC. Then, exploiting the planarity and bipartiteness of the
graph, an NC procedure is described to find a vertex of P(G) by constructing
a path, starting from p, that never leaves P(G) and that makes measurable
progress towards a vertex. We extend the same approach for general planar
graphs. In fact, we start at the same point p found in [7]. Then, using only
planarity of G, we construct a path, starting from p and moving towards a
vertex of P(G). Our main contribution, thus, is circumventing the bipartite
restriction. We prove that our algorithm indeed reaches a vertex of P(G) and
can be implemented in NC.

This paper is organised as follows. In Section 2 we briefly describe the
Mahajan-Varadarajan algorithm [7]. In Section 3 we describe our generalisation
of their algorithm, and in the subsequent two sections we prove the correctness
and the NC implementation of our method.

2 Reviewing the Mahajan-Varadarajan algorithm

The algorithm of Mahajan & Varadarajan [7] is quite elegant and straight-
forward and is summarised below.

For planar graphs, the number of perfect matchings can be found in NC [4,
10]. Using this procedure as a subroutine, and viewing each perfect matching as
a point in Qm, obtain the point p which is the average of all perfect matchings;
clearly, this point is inside M(G). Now construct a path from p to some vertex
of M(G), always staying inside M(G).

The Algorithm

– Find a point p ∈ M(G): ∀e ∈ E, assign xe = (#G − #Ge)/#G, where #G
denotes the number of perfect matchings in G and Ge denotes the graph
obtained by deleting edge e from G. Delete edges of 0 weight.

– While the graph is not acyclic,

• Get cf edge-disjoint cycles (where f is the number of faces in a planar
embedding of G) using the fact that the number of edges is less than
three times the number of vertices. (Here c is a constant c = 1/24. We
consider that subgraph of the dual containing faces with fewer than 12
bounding edges. A maximal independent set in this graph is sufficiently
large, and gives the desired set of edge-disjoint cycles.) Since the graph
is bipartite, all the cycles are of even length.

• Destroy each of these cycles by removing the smallest weight edge in it.
To stay inside the polytope, manipulate the weights of the remaining
edges as follows: in a cycle C, if e is the smallest weight edge with
weight xe, then add xe to the weight of edges at odd distances from e

4 Raghav Kulkarni and Meena Mahajan

and subtract xe from the weights of edges at even distances from e. Thus
the edge e itself gets weight 0. Delete all 0-weight edges.

– Finally we get an acyclic graph and we are still inside the polytope. It’s easy
to check that any acyclic graph inside M(G) must be a perfect matching
(integral).

Since we are destroying cf faces each time, within log f iterations of the while
loop we will end up with an acyclic graph. Hence, for bipartite planar graphs
finding a perfect matching is in NC.

3 Finding a half-integral solution in a planar graph in NC

The following result is a partial generalization of the previous result.

Theorem 1. For planar graphs, a vertex of the fractional matching polytope
P(G) (i.e. a half-integral solution to the equations defining P(G), with no even
cycles) can be found in NC, provided that the perfect matching polytope M(G)
is non-empty.

Our starting point is the same point p computed in the previous section;
namely, the arithmetic mean of all perfect matchings of G. Starting from p, we
attempt to move towards a vertex. The basic strategy is to find a large set S
of edge-disjoint faces. Each such face contains a simple cycle, which we try to
destroy. Difficulties arise if the edges bounding the faces in S do not contain
even length simple cycles, since the method of the previous section works only
for even cycles. We describe mechanisms to be used successively in such cases.

We first describe some basic building blocks, and then describe how to put
them together.

Building block 1: Simplify, or Standardise, the graph G.
Let G be the current graph, let x : E −→ Q be the current assignment of

weights to edges, and let y be the partial assignment finalised so far. The final
assignment is y : E −→ {0, 1/2, 1}.

Step 1.1 For each e = (u, v) ∈ E(G), if xe = 0, then set ye = 0 and delete e
from G.

Step 1.2 For each e = (u, v) ∈ E(G), if xe = 1, then set ye = 1 and delete u
and v from G.
(This step ensures that all vertices of G have degree at least 2.)

Step 1.3 Obtain connected components of G.
If a component is an odd cycle C, then every edge on C must have weight
1/2. For each e ∈ C, set ye = 1/2. Delete all the edges and vertices of C
from G.
If a component is an even cycle C, then for some 0 < a < 1, the edges on
C alternately have weights a and 1 − a. For each e ∈ C, if xe = a then set
ye = 1 and if xe = 1− a then set ye = 0. Delete all the edges and vertices of
C from G.

Seeking a vertex of the planar matching polytope in NC 5

Step 1.4 Let E′ be the set of edges touching a vertex of degree 2 in G. Con-
sider the subgraph of G induced by E ′; this is a disjoint collection of paths.
Collapse each such even path to a path of length 2 and each such odd path
to a path of length 1, reassigning weights as shown in Figure 3. Again, we
stay within the polytope of the new graph, and from any assignment here,
a point in P(G) can be recovered in a straightforward way.
This step ensures that no degree 2 vertex has a degree 2 neighbour.

x

y

a x

y

a s

tt

b a s

x

y

a bx

y

a ab b s

t t

s

Fig. 3. Transformation assuring that no two consecutive vertices are of degree 2

Step 1.5 For each v ∈ V (G), if v has degree more than 3, then introduce some
new vertices and edges, rearrange the edges touching v, and assign weights as
shown in Figure 4. This assignment in the new graph is in the corresponding
polytope of the new graph, and from any assignment here, a point in P(G)
can be recovered in a straightforward way. (This gadget construction was in
fact first used in [1].)
This step ensures that all vertices have degree 2 or 3.

a

cd

b
e

a

b e

d

c

c+d+e a+b d+e a+b+c

Fig. 4. Transformation to remove vertices of degree greater than 3

6 Raghav Kulkarni and Meena Mahajan

Note that Steps 1.4 and 1.5 above change the underlying graph. To recover
the point in P(G) from a point in the new graph’s polytope, we can initially
allocate one processor per edge. This processor will keep track of which edge in
the modified graph dictates the assignment to this edge. Whenever any trans-
formation is done on the graph, these processors update their respective data,
so that recovery at the end is possible.

We will call a graph on which the transformations of building block 1 have
been done a standardised graph.

Building Block 2: Process an even cycle. This is as in [7], and is described in
Section 2.

Building Block 3: Process an odd cycle connected to itself by a path. Let C be
such an odd cycle, with path P connecting C to itself. We first consider the case
when P is a single edge, i.e. a chord. The chord (u, v) cuts the cycle into paths
P1, P2. Let Ci denote the cycle formed by Pi along with the chord (u, v). Exactly
one of C1, C2 is even; process it as in Building Block 2.

If instead of a chord, there is some path Pu,v connecting u and v on C, the
same reasoning holds and so this step can still be performed.

Building Block 4: Process a pair of edge-disjoint odd cycles connected by a path.
Let C1 and C2 be the odd cycles and P the path connecting them. Note that

if G is standardised, then P cannot be of length 0. Let P connect to C1 at u
and to C2 at v. Then the traversal of C1 beginning at u, followed by path P
going from u to v, then the traversal of C2 beginning at v, followed by the path
P going from v to u, is a closed walk of even length. We make two copies of P ,
one for each direction of traversal. For edge e on P , assign weight xe/2 to each
copy. Now treating the two copies as separate, we have an even cycle which can
be processed according to building Block 2. For each edge e ∈ P , its two copies
are at even distance from each other, so either both increase or both decrease in
weight. It can be seen that after this adjustment, the weights of the copies put
together is still between 0 and 1.

This step is illustrated in Figure 5. The edge on the path has weight a is split
into two copies with weight a/2 each. The dotted edge is the minimum weight
edge; thus w ≤ a/2.

The Algorithm The idea is to repeatedly identify large sets of edge-disjoint
faces, and then manipulate them, in the process destroying them. The faces are
identified as in [7], and a simple cycle is extracted from each face. Even cycles are
processed using Building Block 2. By the building blocks 3 and 4, odd cycles can
also be processed provided we identify paths connecting the cycles to themselves
or other cycles. However, to achieve polylogarithmic time, we need to process
several odd cycles simultaneously, and this requires that the odd cycles and the
connecting paths be edge-disjoint.

We use the following definition: A path P is said to be a 3-bounded path if
the number of internal vertices of P with degree 3 is at most 1. Note that in a
standardised graph, a 3-bounded path can have at most 3 internal vertices.

Seeking a vertex of the planar matching polytope in NC 7

−

+

++

+

+

w−w
a/2−w

a/2−w

w
a

a−2w
−

Fig. 5. Manipulating a closed walk of even length

The algorithm can be described as follows:

1. Find a point p ∈ M(G) and initialise xe accordingly.

2. Standardise G (Building block 1; this builds a partial solution in y).

3. While G is not empty, repeat the following steps, working in parallel on each
connected component of G:

(a) Find a collection S of edge-disjoint faces in G, including at least 1/24 of
the faces from each component. Extract a simple cycle from the edges
bounding each face of S, to obtain a collection of simple cycles T .

(b) Process all even cycles (Building block 2). Remove these cycles from T .
Re-standardise.

(c) Define each surviving cycle in T to be a cluster. (At later stages, a cluster
will be a set of vertices and the subgraph induced by this subset.)

While T is non-empty, repeat the following steps:

i. Construct an auxiliary graph H with clusters as vertices. H has
an edge between clusters D1 and D2 if there is a 3-bounded path
between some vertex of D1 and some vertex of D2 in G.

ii. Process all clusters having a self-loop in H . (Building Block 3). Re-
move these clusters from T . Re-standardise.

iii. Recompute H . In H , find a maximal matching. Each matched edge
pairs two clusters, between which there is a 3-bounded path in G.
In parallel, process all these pairs along with the connecting path
using Building Block 4. Remove the processed clusters from T and
re-standardise.

iv. “Grow” each cluster: if D is the set of vertices in a cluster, then first
add to D all degree-2 neighbours of D, then add to D all degree-3
neighbours of D. That is, D = D ∪ {v | d(v) = 2 ∧ ∃u ∈ D, (u, v) ∈ E},

D = D ∪ {v | d(v) = 3 ∧ ∃u ∈ D, (u, v) ∈ E}.

4. Return the edge weights stored in y.

8 Raghav Kulkarni and Meena Mahajan

4 Correctness

The correctness of the algorithm follows from the following series of lemmas:

Lemma 1. The clusters and 3-bounded paths processed in Step 3(c) are vertex-
disjoint.

Proof. Each iteration of the while loop in Step 3(c) operates on different parts of
G. We show that these parts are edge-disjoint, and in fact even vertex-disjoint.
Clearly, this is true when we enter Step 3(c); the cycles are edge-disjoint by our
choice in Step 3(a), and since G has maximum degree 3, no vertex can be on
two edge-disjoint cycles. Changes happen only in steps 3(c)(ii) and 3(c)(iii); we
analyze these separately.

Consider Step 3(c)(ii). If two clusters D1 and D2 have self-loops, then there
are 3-bounded paths ρi from Di to Di, i = 1, 2. If these paths share a vertex
v, it can only be an internal vertex of ρ1 and ρ2, since the clusters were vertex-
disjoint before this step. In particular, v cannot be a degree-2 vertex. But since
G is standardized, deg(v) is then 3, which does not allow it to participate in
two such paths. So ρ1 and ρ2 must be vertex-disjoint. Thus processing them in
parallel via building block 4 is valid. Processing clusters with self-loops merely
removes them from T ; thus the clusters surviving after Step 3(c)(ii) continue to
be vertex-disjoint.

Now consider Step 3(c)(iii). Suppose cluster D1 is matched to D2 via 3-
bounded path ρ, D3 to D4 via 3-bounded path η. Note that Di 6= Dj for i 6= j,
since we are considering a matching in H . Thus, by the same argument as above,
the paths ρ and η must be vertex-disjoint. Thus processing them in parallel via
building block 4 is valid. Processing matched clusters removes them from T ; the
remaining clusters continue to be vertex-disjoint.

Since Step 3(c)(iii) considers a maximal matching, the clusters surviving are
not only vertex-disjoint but also not connected to each other by any 3-bounded
path. ut

Lemma 2. Each invocation of the while loop inside Step 3(c) terminates in
finite time.

Proof. To establish this statement, we will show that clusters which survive
Steps 3(c)(ii) and 3(c)(iii) grow appreciably in size. In particular, they double in
each iteration of the while loop. Clearly, clusters cannot double indefinitely while
remaining vertex-disjoint, so the statement follows. In fact, our proof establishes
that the while loop in Step 3(c) executes O(log n) times on each invocation.

Let G denote the graph at the beginning of Step 3(c). Consider a cluster at
this point. Let D0 be the set of vertices in the cluster. Consider the induced
subgraph GD0 on D0. Notice that each such GD0 contains exactly one cycle,
which is an odd cycle extracted in Step 3(a).

We trace the progress of cluster D0. Let Di denote the cluster (or the asso-
ciated vertex set; we use this notation interchangeably to mean both) resulting
from D0 after i iterations of the while loop of Step 3(c). If D0 does not survive
i iterations, then Di is empty.

Seeking a vertex of the planar matching polytope in NC 9

For any cluster D, let 3-size(D) denote the number of vertices in D whose
degree in G is 3. Let D′ denote the vertices of D whose degree in G is 3 but
degree in D is 1.

We establish the following claim:

Claim. For a cluster D0 surviving i +1 iterations of the while loop of Step 3(c),
GDi contains exactly one cycle, and furthermore,

|Di
′| ≥ b2i−1c

3-size(Di) ≥ 2i

Proof of Claim: As mentioned earlier, GD0 contains exactly one cycle. Thus
3-size|D′

0| = 0 In fact, each GDj , j ≤ i contains just this one cycle, because
if any other cycle were present in GDj , then a self-loop would be found at the
(j + 1)th stage and the cluster would have been processed and deleted from T
in Step 3(c)(ii); it would not grow (i + 1) times.

It remains to establish the claims on the sizes of Di and D′

i. We establish
these claims explicitly for i ≤ 1, and by induction for i > 1.

Consider i = 0. Clearly, 3-size(D0) ≥ 20 = 1, and b2−1c = 0.
Now consider i = 1. We know that D0 has gone through two “Grow” phases,

and that GD1 has only one cycle. Notice that each degree 3 vertex in D0 con-
tributes one vertex outside D0; if its third non-cycle neighbour were also on
the cycle, then the cycle has a chord detected in Step 3(c)(ii) and D0 does
not grow even once. In fact, since D0 grows twice, the neighbours are not only
outside the cycle but are disjoint from each other. Thus for each vertex con-
tributing to 3-size(D0), one degree-3 vertex is added to D1 and these vertices
are distinct. Thus all these vertices are in D′

1
giving |D′

1
| = 3-size(D0) ≥ 1, and

3-size(D1) = 3-size(D0) + |D′

1
| ≥ 2.

To complete the induction, assume that the claim holds for i−1, where i > 1.
In this case, b2i−2c = 2i−2. Thus 3-size(Di−1) ≥ 2i−1, and |D′

i−1
| ≥ 2i−2.

Each u ∈ D′

i−1
has two neighbours, u1 and u2, not in Di−1. These vertices

contributed by each member of D′

i−1
must be disjoint, since otherwise Di−1

would have a 3-bounded path to itself and would be processed at the ith stage;
it would not grow the ith time. Furthermore, if ul is of degree 2, let u′

l denote its
degree-3 neighbour other than u; otherwise let u′

l = ul. By the same reasoning,
the vertices u′

1
, u′

2
contributed by each u ∈ D′

i−1
must also be disjoint. So 2|D′

i−1
|

vertices are added to Di−1 in obtaining Di. All these new vertices must be in
D′

i as well, since otherwise Di would have a 3-bounded path to itself and would
be processed at the (i + 1)th stage; it would not grow the (i + 1)th time. Hence
|D′

i| = 2|D′

i−1
| ≥ 2 · 2i−2 = 2i−1.

Every degree-3 vertex of Di−1 continues to be in Di and contributes to 3-
size(Di). Furthermore, all the vertices of D′

i are not in Di−1 and also contribute
to 3-size(Di). Thus 3-size(Di) = 3-size(Di−1) + |D′

i| ≥ 2i−1 + 2i−1 = 2i. ut

ut

10 Raghav Kulkarni and Meena Mahajan

Lemma 3. The while loop of Step 3 terminates in finite time.

Proof. Suppose some iteration of the while loop in Step 3 does not delete any
edge. This means that Step 3(b) does nothing, so S has no even cycles, and Step
3(c) deletes nothing, so the clusters keep growing. But by the preceding claim,
the clusters can grow at most O(log n) times; beyond that, either Step 3(c)(ii)
or Step 3(c)(iii) must get executed.

Thus each iteration of the while loop of Step 3 deletes at least one edge from
G, so the while loop terminates in finite time.

Lemma 4. After step 2, and after each iteration of the while loop of Step 3, we
have a point inside P(G).

Proof. It is easy to see that all the building blocks described in Section 3 preserve
membership in P(G). Hence the point obtained after Step 2 is clearly inside
P(G). During Step 3, various edges are deleted by processing even closed walks.
By our choice of S, the even cycles processed simultaneously in Step 3(b) are
edge-disjoint. By lemma 1, the even closed walks processed simultaneously in
Steps 3(c)(ii) and 3(c)(iii) are edge-disjoint. Now all the processing involves
applying one of the building blocks, and these blocks preserve membership in
P(G) even if applied simultaneously to edge-disjoint even closed walks. The
statement follows. ut

Lemma 5. When the algorithm terminates, we have a vertex of P(G).

Proof. When G is empty, all edges of the original graph have edge weights in
the set {0, 1/2, 1}. Consider the graph H induced by non-zero edge weights ye.
From the description of Building Block 1, it follows that H is a disjoint union
of a partial matching (with edge weights 1) and odd cycles (with edge weights
1/2). Such a graph must be a vertex of P(G) (see, for instance, [6]). ut

5 Analysis

It is clear that each of the basic steps of the algorithm runs in NC. The proof
of Lemma 2 establishes that the while loop inside Step 3(c) runs O(log n) times.
To show that the overall algorithm is in NC, it thus suffices to establish the
following:

Lemma 6. The while loop of Step 3 runs O(log n) times.

Proof. Let F be the maximum number of faces per component of G at the
beginning of step 3. We show that F decreases by a constant fraction after each
iteration of the while loop of step 3. Since F = O(n) for planar graphs, it will
follow that the while loop executes at most O(log n) times.

At the start of Step 3, connected components of G are obtained, and they
are all handled in parallel. Let us concentrate on any one component. Within
each component, unless the component size (and hence number of faces f in the

Seeking a vertex of the planar matching polytope in NC 11

embedding of this component) is very small, O(1), a set of Ω(f) edge-disjoint
faces (in fact, f/24 faces) and Ω(f) edge-disjoint simple cycles can be found in
NC. This is established in Lemma 3 of [7], which basically shows that a maximal
independent set amongst the low-degree vertices of the dual is the required set
of faces.

So let T be the set of edge-disjoint faces obtained at the beginning of step
3. If |T | ≤ f/24, then the component is very small, and it can be processed
sequentially in O(1) time. Otherwise, note that after one iteration of the while
loop of Step 3, T is emptied out, so all the clusters in T get processed. A single
processing step handles either one cluster (cluster with self-loop) or two (clusters
matched in H), so at least |T |/2 processing steps are executed (not necessarily
sequentially).

Each processing step deletes at least one edge. Let the number of edges
deleted be k ≥ |T |/2. Of these, k1 are not bridges at the time when they are
deleted and k2 = k − k1 are bridges when they are deleted. Each deletion of
a non-bridge merges two faces in the graph. Thus if k1 ≥ |T |/4, then at least
|T |/4 ≥ f/96 faces are deleted; the number of faces decreases by a constant
fraction. If k2 > |T |/4, consider the effect of these deletions. Each bridge deleted
is on a path joining two clusters. Deleting it separates these two clusters into
two different components. Thus after k2 such deletions, we have at least k2 pairs
of separated clusters. Any connected component in the resulting graph has at
most one cluster from each pair, and hence does not have at least k2 clusters.
Since each cluster contains an odd cycle and hence a face, the number of faces
in the new component is at most f − k2 ≤ f − |T |/4 ≤ f − f/96. Hence, either
way, the new F is at most 95F/96, establishing the lemma. ut

6 Discussion

We show that if the perfect matching polytope M(G) of a planar graph is non-
empty, then finding a vertex of P(G) is in NC. Unfortunately, we still do not
know any way of navigating from a vertex of P(G) to a vertex of M(G). Note
that both our algorithm and that of [7] navigate “outwards”, in a sense, from the
interior of P(G) towards an extremal point. To use this to construct a perfect
matching in NC, we need a procedure that navigates “along the surface” from
a vertex of P(G) to a vertex of its facet M(G).

The work of [7] shows that a vertex of M(G) can be found not only for
bipartite planar graphs but also for bipartite small O(log n) genus graphs. The
ideas needed to extend the planar bipartite case to the small-genus bipartite case
apply here as well; thus we have an NC algorithm for finding a vertex of P(G)
for O(log n) genus graphs.

For perfect matchings in general graphs, search reduces to counting, since
search is in P while counting is #P-hard even under NC reductions. We believe
that this holds for many reasonable subclasses of graphs as well; searching for
a perfect matching in a graph reduces, via NC reductions, to counting perfect

12 Raghav Kulkarni and Meena Mahajan

matchings in a related graph from the same subclass. Proving this at least for
planar graphs would be an important first step.

References

1. E Dahlhaus and M Karpinski. Perfect matching for regular graphs is AC0-hard
for the general matching problem. Journal of Computer and System Sciences,
44(1):94–102, 1992.

2. R M Karp, E Upfal, and A Wigderson. Constructing a perfect matching is in
random NC. Combinatorica, 6:35–48, 1986.

3. Marek Karpinski and Wojciech Rytter. Fast parallel algorithms for graph match-
ing problems. Oxford University Press, Oxford, 1998. Oxford Lecture Series in
Mathematics and its Applications 9.

4. P W Kastelyn. Graph theory and crystal physics. In F Harary, editor, Graph
Theory and Theoretical Physics, pages 43–110. Academic Press, 1967.

5. L Lovasz. On determinants, matchings and random algorithms. In L Budach,
editor, Proceedings of Conference on Fundamentals of Computing Theory, pages
565–574. Akademia-Verlag, 1979.

6. L Lovasz and M Plummer. Matching Theory. North-Holland, 1986. Annals of
Discrete Mathematics 29.

7. M. Mahajan and K. Varadarajan. A new NC-algorithm for finding a perfect match-
ing in planar and bounded genus graphs. In Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing (STOC), pages 351–357, 2000.

8. G Miller and J Naor. Flow in planar graphs with multiple sources and sinks. SIAM
Journal on Computing, 24:1002–1017, 1995.

9. K Mulmuley, U Vazirani, and V Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–131, 1987.

10. V Vazirani. NC algorithms for computing the number of perfect matchings in K3,3-
free graphs and related problems. Information and Computation, 80(2):152–164,
1989.

