Nordic Journal of Computing

Block Sorting: A Characterization and some Heuristics

Meena Mahajan Raghavan Rama
The Institute of Mathematical Sciences, Department of Mathematics,
Chennai 600 113, India. Indian Institute of Technology, Madras,
meena@imsc.res.in Chennai 600 036, India.

ramar@iitm.ac.in

S. Vijayakumar
Indian Institute of Science Education and Research,
Pune 411 008, India.
s.vijay@iiserpune.ac.in.

Abstract. Given a permutatiorr, the sBLock sorTiNG problem is to find a shortest series
of block moves which, when applied in succession, sert$lere a block is a maximal
substring of successive integers in order, and a block mtheei displacement of a block
to a location where it merges with another bloskock sortinG is an NP-hard optimization
problem [3] and has a factor 2 approximation algorithm [118]this paper, we present a
combinatorial characterization of optimal solutionseobck sorting and use it to prove
various computationally important properties of the peohl In particular, we identify
certain block moves that are provably optimal. We also distathe equivalence of block
sorting and a combinatorial puzzle.

We consider several polynomial-time heuristicsHiosck sortiNG that are inspired either
by the above-mentioned combinatorial characterizatiorhyothe approach of [18] that
was based on theLock MErGING problem, or both. Although these heuristics seem to be
promising candidates for improving the approximationadtheir approximation ratios
are provably at most 2), we show that none of them leads totarkagiproximation ratio
than 2.

ACM CCSCategoriesand Subject Descriptors: F.2.2 Analysis of Algorithms and Prob-
lem Complexity

Key words: Block Sorting, Approximation, Heuristics, Combinator@2taracterization

1. Introduction

Let 7 be a permutation on elementsyr € S, written as a stringrimo ..., A
blockis a maximal substring of which is also a substring of the identity permu-
tationid, =12... n. (For example, in the permutation 6 2 34 1 5 on 6 elements,
there are four blocks, arl@ 3 4| is the only block containing more than a single
element.) A block move is the operation of picking a block and placing it adjacent
to its predecessor or successor block so that it merges with it to formea lalark.

(For instance, a block move of 5in 6234 15 will result in either56 234 1 or
6 23451.) ThesLock sorTiNG problem is to find a shortest series of block moves

Received January 28, 2008.

2 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

which, when applied in succession, sorts The length of this shortest series is
denoted byos(r) and is called the block sorting distancenof

(Note: In a preliminary version [19] of this paper, as well as in [17] whih
preliminary version of [18], blocks are referred tosisps We use the term blocks
here to conform with [3], where NP-hardness of the problem is estallish

The BLock sorTING problem was studied in connection with optical character
recognition (OCR); see, for instance, [11, 15]. A recent paper &in,B.armore,
Latifi, and Sudborough establishes that the decision version of this prablP-
complete [3]. ThesLock sorTiNG problem also gains in importance due to the fact
that it is a nontrivial variant of another well-known sorting probledmrting by
Transpositiongsssr, that arises in the study of genome rearrangements. A transpo-
sition is the operation of picking any substringmoédnd placing it elsewhere in the
string. Thessr problem is the problem of finding a shortest series of transpositions
that sorts a given permutatianthe length of this shortest series is denoted(by.
This problem has somgZ3approximation algorithms, and most recently ay8il
approximation has been obtained [7], but its computational complexity remains
unsettled [2, 5, 9, 13, 14]. For related work, see [1, 5, 8, 10, 12206

The BLock sorTING problem has a fairly straightforward 3-approximation algo-
rithm. Let#block(r) denote the number of blocks in It is easy to see that a
block move, and even a transposition, can reduce the number of bloglasaby
three. And a sorted permutation consists of one block. Thus reducinguthe n
ber of blocks to 1 needs at leagblock(r) — 1)/3 transpositions. On the other
hand, the naive algorithm of repeatedly moving the block containing 1 esduc
the number of blocks by at least one in each move; hés¢e) is no more than
#block(r) — 1. Thus

{#block(n) -1

3 } < t(n) < bs(r) < #block(r) — 1 1)

It follows that the naive algorithm is a 3-approximation saock sortinG (and for
SBT).

The first nontrivial approximation algorithm ferock sorting was obtained by
Mahajan, Rama, Raman, and Vijayakumar and achieves a performancefratio
[17, 18]. This is accomplished by introducing a similar probl@nock MERGING,
that is about optimally merging a given set of increasing sequences intm-one
creasing sequence by block moves (see Section 2 for details). A fazpgrexi-
mation algorithm was developed later by Bein, Larmore, Morales, and Soualjpio
[4].

In this paper, we continue the task of exploring the combinatorial structure o
optimal solutions okrock sorting. We show that the problem of block sorting a
givenr is equivalent to computing a largestmpatible edge séh an associated
order graph G, (Theorem 3). We note that one direction of this equivalence is
established in [3] as well, but without defining compatible sets independent o
block move sorting sequences as presented in this paper.

We also establish an optimum-preserving equivalence betsveek sorting and
the following combinatorial puzzle. Let, ¢ be a pair of permutations of the same

CHARACTERIZING BLOCK SORTING 3

length, viewed as strings, with # ¢. Suppose we wish to quantify howfiirent
these strings are. One way to do this is the following: identify a substring com-
mon to bothr and¢ and delete it. Repeat this process until the left-over strings
become identical. How many such deletions are needed? We denote the minimum
number of deletions needed logr(r, ¢), and we define th&€ommon Substring
Removalsproblem,csr, as the problem of computingsr(r, ¢) for a givenn, ¢.
For example, consider the pair= 351426 andp = 14325 6 fromSg.
An optimal common substring removal sequence that makes this pair identical is
(351426143256)—(51426,14256)— (56,5 6). Theorem 4 estab-
lishes thatcsr(r,) = bs(71¢). An interesting consequence of this equivalence
is that sorting a permutation via block moves is as hard (or as easy) as stating
inverse (Corollary 3).

Using the characterization of block sorting via compatible sets, we establish tha
certain block moves are optimal: they necessarily reduce the block sortiagacis
We show that a block move that reduces the number of blocks in the permuigtion
2 or 3 is optimal (Theorem 5). We also show as a corollary of a more gerstait
that if two adjacent blocks are consecutive but out of order, thenck Inhmve that
exchanges them is optimal (Theorem 6). Thus, for instaimi@,4 5123)>

bs(6745123)>bs(6712345).

Finally, we revisit thesLock MERGING problem and consider some heuristics for
BLOCK SORTING that are inspired either by block merging based approach of [18] or
the combinatorial characterization obtained in this paper, or both. Initiallyome c
sider minor refinements of the algorithm of [18], and this leads to the cotistnuc
of more robust tight examples for the latter. The major heuristic we discuss trie
to overcome the disadvantage of the idea, used in [18], of breaking faioms
into pieces (increasing runs), while at the same time using the information that may
be gained from the correspondiagbck MERGING instances. Despite its promising
outlook, we show that even this heuristic is asymptotically no better than a fac-
tor 2 algorithm. The tight examples constructed to demonstrate this fact naturally
suggest a generalization of the notion of noncrossing sets to stronglyatibiep
sets. We show that even strong compatible sets cannot, in general, tgeaaan
approximation factor any better than 2, and so a heuristic based on thetd wo
be no better. (It is an independent issue that as yet, we do not evenhave to
compute largest strongly compatible sets.) But we conjecture that at leastf on
n andz~! will always have a sfficiently large strong compatible set to ensure a
better approximation fans(r) = bs(z1).

This paper is organized as follows. Section 2 briefly reviews notionssroimg
BLOCK MERGING from [17, 18], as these are central to the discussion in this paper.
Section 3 establishes the combinatorial characterizatidrs(@f), while Section 4
shows thatsr andsrLock sorTING are equivalent. Section 5 uses the characterization
of Section 3 to show optimality of certain block moves. Finally, Section 6 examines
the proposed heuristics and provides tight examples for them all.

4 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

2. Reviewing BLOCK MERGING

LetS = {S1,So,...,Sk} be a set of disjoint increasing sequences whose union
is [n], where] denotes the s€fl, 2,...,n}. (Technically,S is a multiset since
more than one sequence could be empty.) A blockimdefined to be a maximal
substring of the identity permutatiani, which is also a substring of song. A
block move orf consists of removing a block from some sequeBcand inserting
it into some other sequen@ so that it merges with some block there to form a
longer block. (Note that consequently, the new sequejde still an increasing
sequence.)

The BLock MERGING problem can be stated as follows: Given a$eff disjoint
increasing sequences whose uniom]stransforms to the seM,, = {id,, ¢, ..., €}
via the fewest possible block moves. The number of block moves in sudrtesh
series is denoted dym(S).

For exampleS = {14 62 385 7} is avalid instance of theLock MERGING prob-
lem. It has three sequences, and seven bld&8 is the only block containing
more than one element. It can be transformed using four block moved|agsfo
Move block 6 to getl 4,23 85 6 7}, then move block23tog¢1 2348,56 7,
then move block 56 7to g¢l 2 34 5 6 78, €}, and finally move block 8 to get
{idg, €, €}.

Given an instanc8 of BLock MERGING, an associated directed gra@lis built as
follows: G hasnvertices numbered 1 through The multise havingk sequences
partitions the vertices intk parts, and the edges &f form a total order on each
part. Formally,

DeriniTioN 1. (DerintTioN 4.1FroM [18]) LetS = {S1, Sy, ..., Sk}. Then

(1) G=(V,E)where V=[n],and E= {(u,v) [u<v, dpe[K]: u,ve Sp}.

(2) Edges in E of the forrfi, i + 1) are called unit edges.

(3) Distinct edgesi, j) and(k,) are said tocrossifi <k < j<lork<i<l| <.
A set E C E is said to be a non-crossing set if no two edges’iciass.
(Note that(i, j) and (i, k) cross, but no(i, j) and(k,|) where i< k < | < j.
Also, edgesi, k) and(k,) do not cross.)

(4) By dS) we denote the size of the largest non-crossing set in the edge set of G.

Given any non-crossing s€} call a blocka free with respect t€ if no edge of

C has exactly one end-point in The main idea of [18] is that as long &t M,
a free block can always be found, and moving a free block necessadlyces
bm(S). Using this, the following is established:

Lemma 1. (Lemma 4.40F [18]) bm(S) = n—1 - c(S).

TueoreM 1. (THEOREM 3.3 0F [18]) BLOCK MERGING IS in P.

Any permutationr can be uniquely decomposed into maximal increasing sub-
strings. Considering each of these substrings as a sequence ginstaceS, of
BLOCK MERGING. The major result from [18] that also we use is that(S,) approx-
imatesbs(r).

THEOREM 2. (LEMMAS 5.3 AND 5.40F [18]) bs(n) < bm(S;) < 2bs(r).

CHARACTERIZING BLOCK SORTING 5

3. Compatible edge sets and optimal solutions of BLock SORTING

In this section, we define th@der graph G; of a permutatiomr € S, and show that
computing optimal solutions fasLock sorTING instances is polynomially equiva-
lent to computing largestompatiblesubsets of edges in this graph. Compatible
sets of edges is a notion that generalizes the notion of non-crossing &dge

[17, 18], reviewed in the previous section. In [3], sets of “red etigesesponding

to any block sorting sequence are defined, and some properties ottigsasets
are described. The red edge sets turn out to be precisely the compatjblsaid

as we define below. The crucialfiirence in the two approaches is that red edge
sets are defined based on a given sorting sequence, and canumribeloe shown

to possess the property of compatibility. On the other hand, compatible etdge se
are substructures within the order graph and yield block sorting seesiefbat is,

the property of compatibility is defined independent of any block sortingesacg,

and we can construct a block sorting sequence whose red set is ¢émecgmpat-

ible set. While [3] only establishes that the size of the red edge set of aol blo
sorting sequence is at least 1 — bs(r), we show that in fact optimal compatible
sets areexactlyof this size. The converse direction can be obtained from the ap-
proach of [3] with considerably morefert. Instead, we present a self-contained
proof of both directions, more in line with the approach of [17, 18].

DeriniTioON 2. The order graph of a permutatione S;, is the directed graph G=
(Vr, Ex) where V= [n] and E; = {(u,V) | (U <V) A (7" < 7)) = {(mi,) | (<
DA (@ < 7Tj)}.

DerniTion 3. (1) Two distinct edge@y, v) and(w, X) of E; are said tointerleave
by valueif u < w < v < x. They are said tinterleave by positiofif ;! <
gt < nyt < ml. They are said to interleave if they interleave either by value
or by position (or by both).

(2) Anedgdu,V) is said tocontainan edggw, X) of E; if u < w < X < v (contain

by value) orr; < n;t < it < 2yt (contain by position).

(3) For any C C E,, the inclusion graph @C, n) corresponding to C is the di-
rected graph(C, A) where A= {((u, V), (w, X)) | (u, V) contains(w, X)}.

(4) A set CC E, is said to be compatible if no two edges of C interleave and if
G(C, n) is acyclic.

(5) ¢, is the size of any compatible set of edges of maximum cardinality.

Figure 1 shows examples of various types of interleaving edge pairsreFgu
shows the inclusion graph of an edge set; even though no pair of edgdsane
the underlying edge set is hot compatible since the inclusion graph hakea cyc

We note that ifC is a compatible edge set, then the subgraph @) is a col-
lection of vertex-disjoint directed paths. Also,Gfis a compatible edge set and
C’ ¢ C, thenC’ is also compatible.

Note that the graph of Definition 1 f&,, let us call itH,, is a subgraph o&,:
an edgey, v) of G, is included inH,, if and only if the substring fromitovin r is

6 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

A~ N\ /7>\ /5%7\\,A\ N NN

1 3 2 2 1 2 41 3 2 4 21 4 :

@) (b) (© (d) (e)

Fig. 1: Interleaving edge pairs

ﬂn ﬁm
(o {3 dy s
CCE, G(C,7)

Fig. 2. An example inclusion graph

an increasing substring. Further, every non-crossing g6} iis also a compatible
set inG,, because interleaving by positionlty implies interleaving by value, and
containment by position i, implies containment by value iH,. However, the
converse is not true: a compatible seGpis not necessarily a non-crossing set in
H, for the simple reason that it may use an edge not presé#y.ifhus the notion
of compatible sets properly generalizes that of non-crossing sets.

The main result of this section is an analogue of Lemma 1; we relate the size of
the largest compatible set,, to the block sorting distance. The result is established
in Theorem 3. We need to establish several lemmas to prove this theorem.

We call [, v) aunit edgeif v—u = n;1 — 25 = 1. Thus unit edges are exactly
those edges of the order gra@h WhICh link the adjacent elements of a block. The
following is easy to see.

Lemma 2. Every compatible set in fof size ¢ contains all unit edges of &

DeriniTion 4. FOr a permutationr, let C be any compatible subset of.EAn edge

e is said tatoucha blocka if e has exactly one endpointin The blockx is said

to befreewith respect to C if no edge of C touches it; that is, every edge of C has
neither or both endpoints ia.

Derintrion 5. A (sub)block transpositiois the displacement of a (sub)block to an
arbitrarylocation of the permutation. The block transposition distasgg of a
permutationr is the length of a shortest series of block transpositions that sorts it.

Thus a block move is also a block transposition, and(sd < bs(r).

CHARACTERIZING BLOCK SORTING 7

Lemma 3. For a permutationr, let C be a compatible subset of Bf size ¢, and
let o be a block ofr that is free with respect to C. A transposition@fjives a
permutationo- with ¢, > c,. If the transposition of is indeed a block move, then

Co > Cy.

Proor. Sincea is a free blockC is a subset oE, as well. Clearly, it has no
edges interleaving by value. No edges interleave by new position eithes,eamen
in the new position no edge has just one endpoint.ind the graphG(C, o) is
acyclic as well, since the edges other than those form no cycles, and the unit
edges withine do not contain any other edge by value or by new positionC 80
a compatible subset &,. Hencec,- > |C| = c;.

Further, if the transposition af is a block move, the, has an extra unit edge
created by this move, which is not even@n So by Lemma 2|C| < ¢,. Thus
Cr>Cr. O

LemMma 4. If o is obtained fromr via a blocksubblock transposition, then,c>
c,— 1
Furthermore, ifo- is obtained fronr via a block move, then,c> c,.

Proor. Let C be a compatible set of edges @), of sizec,. By Lemma 2, it
contains all the unit edges &f;. We now show that there is a compatible edge set
C’ in G, with |C’| > |C| - 1.

Let a be the subblock transpositioned in order to obtaifiom 7. Let m be the
number of edges df touchinga. Clearly,m e {0,1,2}. If m= 0, thena is a free
block with respect t&, and the result follows from Lemma 3. So now assume that
m> 0.

Case 1: m=1. Let (u,Vv) be the single edge df touchinga. (If « is a proper
subblock, then this is in fact a unit edge.) As argued in the proof of Lemma 3,
C’ =C\ {(u,v)} is a compatible edge set &), andE,, showing that, > c; — 1.

Further, if the above transposition afis a (sub)block move, the@, has an
extra unit edge created by this move, which is na€inSo by Lemma 2/C’| < ¢,
and hence, > c,.

Case2: m=2. Leta be the (sub)block + 1,v+ 2,...,v+ k, with 7r\7+1j =i+ jfor

j € [K]. SinceC contains all the unit edges &, the two edges touching must
be of the form ¢,v + 1) and ¢ + k,w). LetC’ = C\ {(u,v + 1), (v + k,w)}, and
C” = C’ U {(u,w)}. As argued above’ is a compatible edge set &, and inG,,.
(In particular,G(C’, o) is acyclic.) We now show th&” is a compatible edge set
in G, proving thatc, > ¢, — 1. (In fact,C” is even a compatible set @, itself.)
We only need to show that adding, (v) keeps this set compatible.

Chasapath =u,v+1,v+2,...,v+k wwhich is replaced i€ by two paths:

a single-edge patp’ = u,w and the path” = v+ 1,v+ 2,...,v + k; all other
edges ofC andC” are the same. Since no other edge&Catan interleave withp
by value, it is clear that no other edge®f can interleave with paths andp”
by value. Since the relative positions of all elements other thani,...,v+kis
unchanged, no edge GfandC” can interleave with’ by position either. S&”
has no interleaving edges.

8 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

We must now show thaB(C”, o) is acyclic. Assume it is not; then any cycle
@ in it must pass through the vertex, (v), since we already know th&(C’, o) is
acyclic. Since the moved unit edges corresponding tlo not contain any edge
by value or by position, none of the corresponding vertices can app@arLet
(x1,y1) be the predecessor angb(y,) the successor ou(w) in 8. Then 1, y1)
must contain all edges @fin E;. And either (,v+ 1) or (v + k, w), both edges of
p, must containXo, y2) in E;. The remaining edges ofare present its(C, x) as
well. Thus, corresponding # there is a cycl®’ in G(C,) as well, contradicting
the compatibility ofC.

Further, if the transposition af is a (sub)block move, the@, has an extra unit
edge created by this move, which is notGfi. So by Lemma 2|C"”| < ¢, and
hencec, > c;. O

Lemma 5. If 7 is obtained fromo- by a block transposition, then & ¢, + 1.

Proor. Giveno, let be obtained through a transposition of some bledan o.
Thena is either a block or a subblock in, and so, moving it back to its original
place is a block or subblock transposition fraryieldingo. Now apply Lemma 4.
|

Lemma 6. Givennr # idn and a compatible set & E, of size ¢, we can gi-
ciently (in polynomial time) find a block mowewhich, when applied te, gives
permutations satisfying ¢ = ¢, + 1.

Proor. By Lemmas 3 and 5, it flices to show that there exists a blagKree
with respect taC; finding one is easy. Consider the inclusion gr&ic,); it is
acyclic by definition. All unit edges d&,, have zero out-degree ®&(C, 7). LetC’
be the set of non-unit edges 6f C’ is also a compatible set. @’ = 0, thenC
consists only of unit edges @,. Therefore, all blocks ot are free with respect
to C. Otherwise, consider the subgraphof G(C, n) induced by the vertex s€'.
By heredity,G’ is also acyclic. Choose any vertax {) € C’ of zero out-degree in
G’;leti = ngl, j = ;. LetAbe the setu+1,...,v— 1} U {71, ..., mj-1}. Since
(u, V) is not a unit edgeA is non-empty. Sincew V) is of out-degree zero i, it
contains no non-unit edge @f. So the blocks containing any elementAomust
all be free with respect t6. o

We now have all the ingredients needed to prove the main theorem of thigsectio
Tueorem 3. Forall € Sy, n> 1, bs(r) = n—1- ¢, = s(n).

Proor. We will show that (i)s(7) > n— 1 - ¢,, and (ii)bs(r) < n— 1 - c,. Since
s(r) < bs(r), the result follows.

To prove (i), letpo1,p2, ..., pk be a series of block transpositions sortingLet
7% =, andn' be the permutation obtained by applying block transposjticio
-1, Let¢ denotec. By Lemma 5,6 < ¢_1 + 1. SincerX = id,, and since
Cid, = n-1l,wehavehn-1=c<c1+1<...<cp+(k-1)<cp+k=c,+Kk,

CHARACTERIZING BLOCK SORTING 9

hencek > n— 1 - c,. This holds for any block transposition sorting sequence; in
particular, it holds for an optimal sequence whtk: s(r). Hences(r) > n—1-c;,.
To prove (ii), repeatedly apply Lemma 6 and note tth;n =n-1.no

For completeness, we briefly discuss how to make Theorem 3 construginen
a block sorting sequence of lendit(rr), a compatible edge set of sine 1—bs(r)
can be extracted by following the presentation of [3] (Lemma 4); the reelsecly-
responding to the sequence are the desired compatible set. Given a ctevguigéd
set of sizec, we present in Figure 3 an algorithm that sariea n— 1 — c steps.

Block-Sort(r, C)
Input: A permutationr overn elements, and a compatible €kin the order graph
of .

Whilenr # id, Do
Find a blocka in & free with respect t&.
(The proof of Lemma 6 shows that such a block always exists.
One can be found by direct inspection of each block with respect)to
Letu, v be the first and last elements of this block.
If v<nThen
Move « to its successor, to get the permutation
If C has an edgd (v + 1) for somd
ThenC «— CuU{(LLu)}\ {(I,v+ 1)}

Endlf
C' =CuU{(v,v+1).
Else

Move « to its predecessor, to get the permutatton
C' =Cu{(u-1u}.

EndIf

m«—ma,C—C.

EndWhile

Fig. 3: The algorithm fomLock sorRTING

Given a permutatior, replace each block by any one representative element
to obtain a sequence®. Now, replacing each € S by its rank inS, we obtain a
permutation ork elements, wherk is the number of blocks in. This permutation
is called the kernel ofr, denotedker(r). Since blocks are indivisible in block
moves, it follows thabs(r) = bs(ker(r)). However, blocks are not indivisible in
block transpositions, since a block may be picked up and placed elseintbee
middle of another existing block. Intuitively, nothing would be gained by sach
move; formally, this follows from Theorem 3.

CoroLLARY 1. s(7) = s(ker(n)).

10 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

(Note: Corollary 1 is proved in [18] independent of using completely dferent
techniques.)

If € Syandnr # revy = nn—1...2 1, then clearlyc, > 1, and hence
bs(r) < n-2. Form = revy, ¢; = 0, and sds(revy) = n— 1. Thus we have:

CororLaRrY 2. D(n) = maxbs(n)jr € Sy} =n- 1.

4. csr and BLOCK SORTING are equivalent

We first obtain an alternative formulation mfock sorting and then show that this
alternative formulation is equivalent ter. It then follows that sorting a permuta-
tion via block moves is as hard (or as easy) as sorting its inverse.

We say that an increasing substrag. . aj of a stringS = a; a, .. . a of distinct
elements fromi] is tight if there is noi < k < j — 1 such thabk < a < ax,; for
someg in S. (In other words, if eachy in S is replaced by its rank(a) in S, then
the substring (). ..r(a;) is a subblock in the resulting string. In [4], the term
relative blockis used to denote a maximal tight increasing substring.)idcé®)
denote the length of a shortest sequence of tight increasing substriogaks on
S that leaves behind an increasing subsequen&e of

For example, consider 3 5 1 4 2. Neither of the increasing substtB)&s
and(1,4) is tight, and removing any one element does not make the sequence
increasing, sdsr(3 51 4 2)> 1. But after deleting 4, the sequen@5) is tight,
and deleting it leaves behind an increasing sequence 1i8r(8® 1 4 2)= 2.

The following is easy to see; see also [3] and Theorem 2.1 of [4].

Lemma 7. For any permutationr, isr(r) = bs(r).

Recall thatcsr(r, ¢) denotes the length of a shortest sequence of common sub-
string removals that makes the pair identical. Givenarye Sy, for any permu-
tationy € Sy, the pair ¢, y~1¢) is just a consistent relabeling for the pair §).
Thuscsr(n,¢) = csr(y~tm,u~1¢). In particular,csr(r,¢) = csr(r 1, id,) =
csr(¢~1n,idp). But if we considercsr(o, id,), the common substrings removed
are always tight increasing substrings. Tlego, id,) > isr(o). In fact, we have
equalitycsr(o, idy) = isr(o) because the tight increasing substrings removed from
o are necessarily substringsiaf,. These remarks, along with Lemma 7, establish
the following theorem.

Tueorem 4. The common substring removals problesr and BLock sorTING are
computationally equivalent.
For , ¢ € Sy, csr(rr, ¢) = bs(n71¢) = bs(¢~1x). For o € Sy, bs(c) = csr(o, idp).

CoroLLARY 3. For anyn € Sy, bs(n) = bs(n™2).

(Note: Corollary 3 is independently established in [3].)

CHARACTERIZING BLOCK SORTING 11

5. Some optimal block moves

An important implication of Lemma 4 and Theorem 3 is that a block move never
increases the block sorting distance of a permutation. However, manyrolmas

do not reduce it either. The computationaffidulty in block-sorting optimally
lies precisely here: how does one identify, amongst all possible blocksnthwe
move(s) that actually reduces the block sorting distance? In this sectiddene

tify some block moves which provably reduce this distance. Thus any kiediois
block sorting can safely make such moves, if they are possible.

5.1 2-moves and 3-moves are provably optimal

A block move reduces the number of blocks by at least 1 and at most &ivielty
one wants to reduce the number of blocks as fast as possible {gifbas a single
block). Thus it is natural to prefer a block move which reduces the numiber
blocks by 3; such a move ought to be optimal. However, formally proving this is
not easy. We need to argue that local “tradis’odo not arise: if a reduction of 3
can preclude three subsequent reductions by 2, then the reductiensed,2,2,1
would be better than 3,1,1,1. We show here that indeed such situationsatiseot
Any block move that reduces the number of blocks by 3, or even by 2ssadly
reduces the block sorting distance.

We first consider the situation when moving a blacko its predecessor also
joins it with its successor.

LemMma 8. If 7 € Sp haszj = u— 1 andnj.1 = v for some i and some 4 v, and if
the elements,w + 1L, u+ 2,...,v— 1form a blocka of =, then the permutation
obtained fromr by movinge to between u and v has(o) < bs(r).

Proor. From Theorem 3 and Corollary kis(r) = bs(ker(n)). In ker(r), a is a
single element. So it $fices to prove the lemma whén = 1,i.e.v=u+ 1 and
a=u.

By Lemma 3 and Theorem 3, it fiices to prove that there is some compatible
edge set of size, with respect to which the block containings free.

Let C be any compatible subset & of sizec,. If uis free with respect to
C there is nothing to prove. Otherwise, without loss of generality, assume that
k= ngl > i + 1, the situation wherk < i is symmetric. There are three cases.
Case 1. There is a single edge 1@ touchingu, and it is of the form, w). Then
C has no edge of the formx(u + 1), since such an edge interleaves by value with
(u,w). If C does not have any edge £ 1, X), then letC’ = C \ {(u,w)} U {(u —
1,u+ 1)}. (see Figure 4(a)). Otherwise let{ 1, x) be an edge i€ and lety be
the rightmost endpoint of the path @ containingu + 1. (Figure 4(b),(c)). Let
C =C\{(uw),(u-Lx}U{(u-1u+1),(y,x)}. It can be seen thd’ is a
compatible subset d&, of sizec,. And u is free with respect t€’.
Case 2: There is a single edge @ touchingu, and it is of the form\{, u).

Ifw=u-1,thenC’' =C\{(u—1L uw}uU{(u-1,u+1)}is acompatible subset of
E, of sizec,, in whichuis free.

12 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

o o S 0o § o™ 6 6 o & 7B 6 o
u-1 u+l - u -w u=lu+l-y =X U W u=1 u+l -y o W

(@) (b) (c)
Fig. 4: Case 1 of Lemma 8.

% O"l

If w= u-1, then 1—1,y) cannot be irC for anyy. If C has no edge with right
endpointu+ 1, then the seE’ = C\ {(w, u)} U{(u—1,u+ 1)} is a compatible subset
of E,; of sizec,, in whichu s free.

Otherwise, let X,u + 1) be an edge il€. To avoid interleaving by value with
(w, u), we havex < w. So (x,u + 1) contains {, u) by value. Ifz;! < n;t, then
(w, u) contains &, u + 1) by position, creating a cycle B(C, x).; see Figure 5(a).
Soryt > ml. Butif rp! < i, then &, u+ 1) and (v, u) would interleave by position.
So the relative ordering of these elements must,lobe- 1, u+ 1, w, u. (Figure 5(b)).
Now the seC’ = C\ {(w, u), (X, u+ 1)} U{(x,u—1),(u-1,u+ 1)} is a compatible
subset of,; of sizec,, andu is free with respect t€’.

i
@ TN (b)

O O O ©
W ..X ... u-1lu+l....u X ...u-1u+l.w

Fig. 5: Case 2 of Lemma 8.

Case 3. There are two edges touchimg (w, u) and (i, X). There can be no edge
intou+1 in C since any such edge will interleave with &) by value. There can be
no edge out ofi — 1 in C since any such edge will interleave with, () by value,
unlessv=u-1. Ifw=u-1,setC’ =C\{(u-1u), (u,X)}U{(u—1,u+1),(y,x)}
wherey is the rightmost endpoint of the path@containingu + 1. Otherwise set
C' = C\{(w,u),(ux)}U{(u-1u+1),(w x)}. Either way,C’ is a compatible
subset ofE,; of sizec,, andu s free with respect t€’. o

We now consider the situation when moving a block (to either its predeceassor o
its successor) results in the blocks on either side of it joining up.

LemMa 9. If a permutationr € Sy hasri_; = u-landrj = uforsome,ij > i+1,u,
and if the elements;, 7,1, 742, . . ., mj—1 form a blocka of r, then the permutation
o obtained fromr by a block move af hasbs(o) < bs(r).

Proor. As in Lemma 8, without loss of generality, assume thpt 1, and hence
j=i+1

Letr haveri_1 = u-1,m;1 = U, andn; = v. By Lemma 3 and Theorem 3, it
sufices to prove that there is some compatible edge set otgsinéth respect to
which the block containing is free.

Let C be a compatible edge set @f, of sizec,. If vis free with respect t&€,
there is nothing to prove.

CHARACTERIZING BLOCK SORTING 13

If C has a single edgetouchingy, then (1 — 1, u) cannot be irC since it inter-
leaves withe by position. IfC has no edge (other than possilalitself) into u or
out ofu—1 (it cannot have both anyway), then &tbe the se€C\ {e} U {(u—1, u)}.
Otherwise, supposé contains ¥, u). Thene must be of the formw, v). Now set
C' =C\{(w,v),(y,u)} U {(u-1,u),(y,u— 1)}. On the other hand, i€ contains
(u-1,2), thene must be of the form\, x), and we seCC’ to beC \ {(v, X), (u —
1,2} u{(u-1,u),(u,2}. In all these cases§; is a compatible set d&, of sizec,,
andv is free with respect to it.

If C has two edges, V), (v, X) touchingv, then we do the following. Remove
(w, V), (v, X) from C and add ¢ — 1, u). Further, ifw =u-1, add (, X), if X = u,
add (v, u — 1), otherwise, addw, x), and let the resulting set l6&f. Then it can be
seen tha€C’ is a compatible set db,; of sizec,, andv is free with respect to itg

With the results we have seen, we can formalize the intuition described at the
beginning of this subsection. Define aimove to be a block move that results in a
permutation withx fewer blocks. Since a 2-move satisfies the assumption of either
Lemma 8 or Lemma 9, and since a 3-move satisfies the assumptions of both, we
now have the main result of this section:

TueoreM 5. If a 2-move or a 3-move applied togiveso, thenbs(o) < bs(r).

5.2 Certain 1-moves are provably optimal

In this subsection we show that if a block is preceded by its successdx; bhen
joining it with its successor provably reduces the block sorting distanck tRat
such a move may not even be a 2-move; thus this result includes cases et
in the previous subsection. To prove this, we establish an interestingrpy,ope
which we calladditivity, of the functionbs(r), and then we use Theorem 3.

TueoreM 6. If a permutationr has adjacent blocks, 8, with Ba being a substring
of id,, and if¢ is the permutation obtained fromby exchangingr andg (which
is a block move af or g), thenbs(¢) < bs(r).

Proor. Let the substringga beu+ 1 u+ 2 ... u+t for someu,t, and let

it occur in positionsi + 1, i + 2, ..., i +t of ¢ for somei. If rj = u or if
mir1 = U+t + 1, then exchanging andg in « is a 2-move or a 3-move, and
hence, by Theorem 5, reduces the block move distance. So now letureathat

7 # uandrmieg # U+t + 1. Clearly, one way to sort is to exchanger andg

and then sord; thusbs(z) < 1 + bs(¢). We show that this is in fact an equality,
by defining a notion o€ompletesubstrings and establishing a more general result
concerning them. The proof follows from the statement of Lemma 10 below and
the fact thatyB forms a maximal complete substringsing

DeriniTION 6. A substringri, 1 ...y is completeif {miy1,..., 7w} = U+ Lu+
2,...,u+t} for some u. That is, the t consecutive positioaslii + 2,...,i +t

14 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

hold t consecutive integers, though not necessarily in sorted ordéurtiiermore,
mi # U andrmi1 # U+t + 1, then the substring is said to Imeaximal complete

The block move distance for the complete substring. . . 7j¢ is defined to be
the minimum number of block moves needed to sort it i.e. to transform it iato u
1...u+t.

Lemma 10. If 7 contains a maximal complete substriagvith bs(()@) = g, then
bs(r) = q + bs(c), whereo is the permutation obtained fromby replacinga, in
place, with its sorted version.

Proor. Sincea is maximal complete, it is clear thhs(r) < g+ bs(o). So we
only need to show thdis(r) > q + bs(c?). By Theorem 3, it sfiices to show that
Cr > Qg+ Cy.

Leta = mj1... i Where{mj 1, ..., w41} = [U+ 1, u+t] for someu. LetC be
any compatible edge set &f; of sizec,. PartitionC into four subsets as follows:

Ci = {(vw)|vwelu+1, u+t]} both endpoints ind + 1, u + t]
C: = {(vww)|rl<i,we[u+1 u+t]) rightendpointin{i+1, u+t]
C: = {(ww)|ve[u+l u+t],zzt >i+t} leftendpointini+1, u+t]
Cs = C\(CLUCyUCy) no endpointin@i + 1, u+1]

It follows from Theorem 3 thalCy| < ¢, =t-1-q;i.e.t—-1-|Cq > Q.

If |Co] < 1 and|Cs| < 1, we construct a compatible set i), of the required
size as follows: LetCs be the set ot — 1 unit edges obtained after sortiag
Cs ={(u+i,u+i+1)|i € [t-1]}. DefineC’ = C4UCs. ThenC’ is a subset oE,,
and it is easy to see th@t is compatible. IfC; U C3 = 0, then|C1| + |C4| = Cy, SO
C’ is the desired set. Otherwigg! = C’ U {(v,u+ 1) | (v,u+i) € C, for somei €
[t} U {(u+t,w)| (u+ j,w) € Csfor somej € [t]} is the desired set; compatibility
and size bounds are easily seen to hold.

i3 i2 i@\wkl 2 ke 3

@ = T+l ... T+t

Fig. 6: A compatible set 06, with « complete: &3; b=3.

If either |Cy| or |C3| exceeds 1, we show how to construct another compatible
subset ofE,; of sizec,, in which the corresponding subsé®@s| and|C3| are both
of size at most 1. Then we can use the above argument.

Assume thafC,| = a > 2. Let the edges o€, be @, nj,), (i, 7j,), ...,
(mi,, mj,), wherej1 < jo < ... < ja. By compatibility considerations, we have
ja<...<li2<i1<]1<j2<...<]a Letthe unique path i€ containingr;, end

CHARACTERIZING BLOCK SORTING 15

at the right atr,,. From compatibility considerations and the completeness if
can be argued that,, j,,,) € E.. We defineC), = {(ni,, 7j,)} U {(7k,, 7j,,,) [h €
[a—1]}.

If |C3l = b > 2, then a se€}, of the same size is constructed in a symmetric way.
Let the edges o€z be (rp,, 1q,), (7p,5 Tqp)s - - - » (T, T,), Wherepy < ... < p2 <
p1. By compatibility considerations, we hayg < ... < p2 < p1 < Q1 < (g <

. < Op. Let the unique path i€ containingrp, end at the left akr,. Again,
we can argue that the edges,(,,r,) are indeed present iB,, and we define
C3 = {(mpy, mq)} U {(mpyogs) [h € [b— 1]

If botha, b > 2, then it must be thajt, < pp, since otherwise there will be edges
in C interleaving by position.

Clearly,C, u Cj is of the same size & U C3, and is disjoint fronC; U C4. We
now show thaC’ = C, U C, U C; U C4 is also a compatible subset Bf.

Itis easy to see that none of the edge€pt) C’ interleave by position. Neither
do edges o€, UC,4. And by our choice o€’, an edge o€/, UC;, will not interleave
by position with an edge o, U C,.

If edges ofC’ interleave by value, then the corresponding edges cin simi-
larly be shown to interleave by value, singeés a complete substring.

It can be argued that if the inclusion gra@{C’, =) has a cycle, then so does
G(C, n), contradicting compatibility o€. o

Note: The above result can be shown to hold evenig complete but not maximal,
however, the proved form is enough for our purpose.

6. Heuristicsfor the BLock sorTING problem

We revisit the 2-approximation algorithm of [18] and consider some hewsistic
spired by it, especially in conjunction with the characterization of optimal solsition
of BLock SORTING in terms of compatible edge sets.

6.1 Minor refinements of the.ock MERGING heuristic

We begin by looking at the examples presented for establishing the tightitess o
performance ratio in [18].

Examrie 1. (@) For the permutatianon 2n elements whergy_1 = kandmy =
n+ k, we havebs(r) = n— 1 andbm(S,) = 2n - 2.
(.0.15263748)
(b) For¢ on [2n] such thaty; = 2i — 1 fori < nand¢; = 2l —nfori > n,
bs(¢) = n— 1 whilebm(Sg4) = n.
(.9.13572468))
(c) Forrevy, bs(revp) = n—1=bm(Srev,)

The permutatiorr in Example 1(a) shows why thock MErGING approximation
is bad; the approximate solution is twice as long as the optimal. Thus if we stop at
reportingn—1-bm(S,), we cannot do better than a factor of 2. However, we could

16 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

perhaps do better by actually constructing the solutiogL.ofk MErGING, Mimick-
ing it onx to get a block sorting sequence, and reporting the length of this sequence
This length could be shorter thaim(S,;) because in the mimicking, some merge
moves become redundant. (For instance, consider the optinta MErGING SOlU-
tion to S, where we first movean + 1,n + 2,...,2n — 1 to successors sequentially,
then we move 12,...,n—-1 to successors sequentially. Mimicking this with block
moves onr, we find that the lash — 1 moves are redundant; though the sequences
are not merged, the permutation is sorted after therirstl moves itself.) This
suggests the first heuristic.

Heuristic-1: Compute an optimalock MERGING Solution toS,. Convert this to a
block sorting sequence anand remove redundant moves. Report this sequence.

Another noteworthy point about is that it can be sorted using the provably-
optimal moves of Section 5, which are easy to detect. So usingLtlo& MERGING
solution without even trying to detect provably optimal moves is a mistake. This
suggests the next heuristic.

Heuristic-2: While there are provably-optimal moves (from Theorems, fes)
form these moves. Then apply Heuristic-1.

Further, note that the permutatigrin Example 1(b) is exactlg~t. And for ¢,
the approximation viaLock MERGING itself works very well. Sincés(r) = bs(r™1)
(Corollary 3), this suggests the third heuristic.

Heuristic-3: Apply Heuristic-2 omr andz~1. Report the minimum.

The question is, do any of these heuristics have a performance ratio thetter
2? Unfortunately, the answer is No. We find an example that nullifies all of the
above expectations.

ExampLE 2. Consider the sequence of the firati2l odd numbers,B,...,4n+ 1.
Insert the even numbers2-2,2n + 4,...,4n,2,4,...2n, in this order between 1
and 3, between 3 and 5, and so on, and betweenldand 4+ 1. Let the resulting
permutation be denoted.

(e.g.forn=2,weget163852749. For= 4, see Figure 7.)

Theno ! = o, bs(o) = 2n, andbm(S,) = 4n— 1.

An instance of the type of Example 2, with a largest compatible set, is depicted
in Figure 7.

R N N N N

1 10 3 12 5 14 7 16 9 2 11 4 13 6 15 8

Fig. 7: An alternative tight example with a largest compatible set

In the permutations of Example 2, going over to the inverse permutation dbes no
help. There are no provably optimal moves to begin with. And there are optimal
merging sequences d) which yield no redundant moves. (This is not to say
that no optimal merging sequence has redundant moves. But we onlyhmew
to come up with some merging solution. We do not know how to explicitly search

CHARACTERIZING BLOCK SORTING 17

for one with many redundant moves.) Thus, Heuristic-3 on this examplerhas a
approximation factor of 2.

Another, slightly weaker, scenario worth considering is whether largestross-
ing setsC andC’ computed for the input permutation and its inverse together con-
tain a large enough compatible set to ensure a better than factor 2 approrimatio
ratio for sLock sorting. Searching for such a compatible setGnu C’ could be
easier, since there are fewer edges to begin with. Of course, Example thik

hope as well, since = o 1.

6.2 A New Heuristic based amock MERGING

The last heuristic considered in the previous subsectionaises MERGING twice,
possibly after some preprocessing to remove provably optimal moves. vidgwe
once aLOCK MERGING Solution is found, it is used essentially as is, with some minor
preprocessing to remove redundant moves. In this section, we intracheagistic
that usesLock MERGING repeatedly in a non-trivial way.

The exorbitant cost for block merging compared to block sorting in Example 2
is due to the fact that the permutation is broken up into many substrings in an
inconvenient way. It appears advisable that we keep a given permutate
such and somehow detect a preferred block move. This gives rise tollnging
heuristic, defined formally in Figure 8.

Heuristic-4: Let the application of a block mopeto = result in a permutation
denotedr.p. Repeatedly choose the block magv¢hat maximizes the flierence
bm(Sﬂ) - bm(Sﬂ.,D)'

(1) Setr® = .

(2) Forj=1 to#block(r'), move thejth block of' to its predecessor to obtain
7"} and computém(S ;).

(3) Setr*! = 7z if bm(x")) = minj{bm(S,.i)}. (Break ties by choosing the
largestj.)

(4) Repeat steps 2 and 3 untit! = id,.

Fig. 8: A heuristic forsLock sorTING based OBLOCK MERGING

(Note that we don’t gain anything by letting the heuristic check moves to succe
sor as well, because the two permutations resulting from the move of anytblock
its predecessor and to its successor will both have the same kernel.)

It is clear that we can always find a block mgweon = for which bm(S,) —
bm(Sr,) > 1. Thus the above heuristic takes no more tharfS,) steps to sort,
and so it follows from [18] that the heuristic is obviously no worse thanctofa
2 algorithm forsLock sortiNG. The question is, is its approximation factor better
than 2?

The heuristic behaves well on many test cases. In particular, it sortcatipes
presented so far in this paper optimally. In fact, finding permutations fortwthie

18 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

heuristic needs more thdus(r) moves is itself non-trivial. Despite such favorable
evidence, we show that this heuristic is no better than a 2-approximatiofthigor
But the permutations we construct to establish this fa@edfrom the tight exam-
ples presented so far in that the worst case is attained only for asymptolécg#y
permutations. Since the examples we construct appear to be typical ofades,

it may be hoped that the heuristic will be of some practical value nonetheless.

6.3 Tight Examples for the Heuristic

We show that the worst-case performance ratio of Heuristic-4 (the kieunigig-

ure 8) is 2. The tight examples we provide for this purpose have longeeegs

in the associated merging instances, in contrast to the tight examples werhave e
countered so far. As mentioned above, the only way to get an approxinfization
better than 2 is to often find block moves where(S,) —bm(S,) strictly exceeds

1. But note that this diierence can be greater than 1 only if (and even then not
always) the block moved by is at the extreme end of some maximal increasing
substring ofr. We use this intuition in constructing our examples.

We begin with a description of the permutations we are going to construct. The
lengths of the permutations will be = (2p + 2)g = 2pg+ 2q, p,q > 2. (The
associatedLock MERGING instance will consist of] increasing sequences of length
p andg increasing sequences of lengih 2.) The construction is formally defined
below. However, the reader may find the equivalent description of &igumore
insightful, as it highlights how pairs of elements are placed so as to make block
merging dificult. Figures 10 and 11 illustrate the construction for the case of

p=9=3.

DeriniTiON 7. FOrany pq = 2, let n= (2p + 2)q = 2pg+ 29g. Define the following
sequencesfat <i, j<q:

Q) w=i,g+i,29+i,...,(p—-1)g+1.
(2) Xj=pa+j,pa+0d+j,pa+2q+j,...,pq+ (p—1)q+ |.
() 2 =2pq+i,2pg+q+i.
Then the permutation(p, q) is defined by the sequence
W121Xq Wy 7o Xq—l WquXl.

Consider(r(p, q)), the number of block moves needed by Heuristic-4@mq).
In the next three lemmas, we show that(S.(p,q) is roughly 2og, thata(z(p, d)) =
bm(Sx(p,), and thatos(x(p, q)) is roughly pg. Together, these results give Theo-
rem 7, namely, that the approximation factor of Heuristic-4 is no better than 2.

LemMa 11. bm(Sx(pg) = 2(pq—-p+0q) — 1.

Proor. Letnr = n(p,), with the correspondingLock MerGING instancesS,. From
Lemma 1, it stfices to show that(S) = 2p. We decomposel, into two graphs:
A is the induced subgraph on nodes labeled from thglsét..., pg U {2pg +

1,...,2pq+ 29}, andB is the induced subgraph on the resA i¢ the restriction

CHARACTERIZING BLOCK SORTING 19

(1) Use the elements, 2, 3,...,2pq — 1,2pq to form pqg nested intervals
(1,2pa), (2,2pq-1),(3,2pq - 2),...,(pPq— 1, pa+ 2), (pg, pq+ 1).

(2) Partition these intervals intpgroups ofp intervals each so that thi group
consists of everyth interval,j (modq) =i.

(3) Nestthe intervals in each of tlyggroups in the natural way to foromdisjoint
subsequences 0f2,3,...,2pg - 1, 2pqof length 2 each.

(4) Insert the pair of elementpg +i,2pq+q+i, 1 <i < q, afterp elements in
the sequence corresponding to itilegroup of intervals.

(5) Concatenate the above sequences derived from the first, secongth
group of intervals in order to obtain a permutation of lengpig 2 2q.

Fig. 9: Construction of tight examplegp,) from Definition 7 for Heuristic-4 (Figure 8)

Fig. 10: The construction fop=3,q=3

of H to the substringsiz, B is the restriction to substringg.) SinceH, has no
edges with one endpoint iA and one inB, these induced subgraphs completely
coverH;,.

Our first observation is that no edge frofncrosses any edge frol. So we
can independently find largest non-crossing sets in these two graghmiathem
together. We will show that largest noncrossing set& andB have sizes exactly
p + 1 andp — 1 respectively, proving the lemma.

We first show the lower bound: we exhibit noncrossing sets of gizel and
p - 1in AandB respectively. But this is easy; all edges linking adjacent elements

1 47 192212 1518 58 2023 11 14173 69 21 24 10 131

Fig. 11: The structure oft(3, 3) and its largest compatible set

20 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

inanyw;z or anyx; gives the required set.

Now we come to the upper bound, which is highly non-trivial. We consider
first. If we arrange the nodes &fin increasing order, we can group them into
p+ 2 groups each containirggelements. Théh groupg, has elementgl + 1, gl +
2,...,9l+qfor0 < | < p- 1, while the groups), andgp,1 have elements
2pq+1,...,2pg+gand pqg+qg+1,...,2pq+ 2q, respectively. The edges &f
connect elements across groups if their position within the group is the sahe. L
us denote by, the boundary between grougs; andg,, for1 <1 < p+1. An
edge originating in groug, and ending in grougk spans boundarie® 1, . .., Bk.

We now analyze how edges in a noncrossing set can cross boundaries

Given any noncrossing s€t in A, consider the directed grapgb: = (C,F),
where €, f) € F if e containsf by value and there is n& € C distinct frome, f
such that containsf’ and f” containsf. Now, our argument is as follows:

(1) Gc is acyclic, with each component being a rooted tree.

(This is obvious; we cannot have directed cycles based on containmpent b
value.)

(2) The sets of boundaries spanned by roots of distinct trees are disjdéo,
the sets of boundaries spanned by siblings are disjoint.
(This follows from the fact that if the set of boundaries spanneglibiersects
the set of boundaries spanned hythen eithere must containf or f must
containe or eand f must cross.)

(3) At each nodee of G¢, the corresponding edge spans at least one boundary
not spanned by the edges of any of its children.
(Suppose not. Let originate in groupy and end in grou;.k, SO it spans
boundarieB, 1, ..., Bk Sayeis (gl +1i,q(l + k) + i) for somei. SinceB,1
is spanned by a child, the first child must originateginsince it does not
crosse, it must originate “to the right” o€, atql + j for somej > i. The next
child must originate in the same group that the first child ends, otherwise a
boundary will be left unspanned. So it must also originate to the rigkt of
Continuing this way, the edge corresponding to every childaiginates to
the right ofe. But this means that the last child cannot sfBay; to do so,
it would have to reach a node in grogpy to the right ofg(l + k) + i, thus
crossinge.)

(4) Aleaf spans at least one boundary.
(This is because there are no edgeAwfithin a group; all edges span at least
one boundary.)

(5) The number of nodes in the subtree rootee & at most the number of
boundaries spanned lay
(This follows from straightforward induction on the heightein G¢. (4)
above is the base case, and (3) carries the induction through.)
It now follows from (2) and (5) above that the number of vertices in thigeforest
is at most the number of boundaries, whiclpis 1. But the number of vertices in
the forest i9C|, the size of the non-crossing set. Heffte< p + 1.

CHARACTERIZING BLOCK SORTING 21

Now consider the induced subgraph Its structure is isomorphic to that &,
the only diference being that it hgsgroups, notp + 2, and sop — 1 boundaries.
It follows that a largest noncrossing setBrhas size atmogt— 1. o

Lemma 12. a(z(p, Q) = bm(Sx(p,q))-

Proor. Letn denoter(p,q). We know that a block movg satisfiesom(S,) —
bm(Sr,) > 1 only if it leads to a permutation with a larger increasing substring.
A straightforward inspection shows that there are no such block moessyein
n. Therefore the heuristic moves the last blockrofThe resultant permutation,
sayn’, also hasm(S,) — bm(Sy ,) = 1 for every block move. So the heuristic
again moves the last block af. In fact, the heuristic moves the last block in each
of the subsequent steps, all the way until the permutation is sorted. Atinb po
along the way does it reach a permutatigoon which there is a block moyewith
bm(Sy) — bm(Sy,) > 1.

Since at no step dodsn(.) drop by more than one, and sinoe(.) drops by one
at each stage, it follows that this sequence is of legtkS,). (In fact, one can
also directly see that this sorting sequence is an optimal merging sequeggé fo
i

Lemma 13. bs(r) < pg+ 29— 2.

Proor. Letr = n(p,q), p, andq be as given. In the construction of the pq
intervals inA = {(1, 2pQ), (2, 2pg-1), (3,2pg-2), ..., (pg—1, pg+2), (pg, pg+1)}

are partitioned int@ groups each of sizp, and the intervals in each group are so
nested and placed im so that they constitute a compatible set of edges in the
associated grapB[n].

The remaining elementspd + 1, 2pq+ 2,...,2pg+ 2q occur as adjacent pairs
2pg+1i, 2pg+q+i, 1 <i < q, in the permutation. The corresponding edges
(2pg+1i,2pg+q+i), 1 <i < q, of G[x] interleave mutually. But none of these
edges interleaves with any of the edgeg@\inThus exactly one of these edges can
be added ta\ to get a compatible set of siz& + 1 = pg+ 1.

Hencec, > pq+ 1, and so from Theorem 3, it follows thla$(r) < pg+ 2q - 2.

A more direct way to see this is to exhibit a sorting sequence of this lengtle. Her
is one such sequence, corresponding to the compatibfelseé@pg+ 1, 2pq+ 2)}
described above. First, collect the elementg 2 g+ 1,...,2pq+ 2q together at
the location of g+ q + 1; this needg] — 1 moves. Second, collect the elements
2pg+1,...,2pq+ g together at the location ofg?) + 1; this needs] — 1 moves.
Now we have the elementsg + 1,...,2pqg + 29 in a single block, say, and
we move it to the end. So we have the sequemOWaXg-1 . .. WgX1Z. Thewgxy
part shows thapg, pg+ 1 are in a single block. Repeatedly move this block to its
predecessor. It will also join up with its successor. Thupdn- 1 such moves, the
whole sequence is sorted. Overall, we uspdl()+(q—1)+1+(pg-1) = pg+29—2
moves.o

22 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

Tueorem 7. Heuristic-4 (given in Figure 8) is a factor 2 approximation algorithm
for BLock sorTING. FOr any 0 < € < 1, the approximation factor achieved by
Heuristic-4 exceed2 — e.

Proor. That the approximation factor for the heuristic is no worse than 2 is clear.
To see that it is no better, let us consider the r%%%)?;, wherenr = n(p, Q) is as

defined in Definition 7 and Figure 8.

1
a(m) _bm(Sy) _2(pq-p+-1_,173
bs(x) bs(xr) ~ pg+2q-2 1+
Clearly, for anye, we can choos, g large enough so thd(p,q) > 2 — e.
In fact, for anye, and for anyq > 2/e, we can choos@ large enough so that
F(p,q) >2-€.10

6.4 An Alternative Method

The examples we constructed seem to imply that the heuristic fails to perfdim we
simply because of the way it breaks ties in step 3 of Figure 8. It fails to detect
series of 2 or mordad blocks moving all of which fects a huge reduction in
the block merging distance. (In the above example, moving out; thiecks first
brings down the merging distance; fof = wixy...WgXy, it is easy to see that
bm(S,/) = bs(n’) = pg— 1.) Since “huge reductions” translates to huge increases
in the number of “noncrossing edges” in the corresponding merging testare
propose the strategy of removing all bad blocks at once. This is equivalénd-

ing a subsequence of © which maximizes, over the choice of all subsequences,
the size of the largest noncrossing set in the corresponding mergingdasté/e
note that this method computes the optimal solutions themselves for at least the
counterexamples constructed in Subsection 6.3. On the other hand, thigirisetho
not tractable, since the number of subsequences over which we wish bmizex

a choice is exponentially large.

We observe that by suitably generalizing to permutations the notion of resicro
ing sets of edges defined for instancesaick MErRGING, We can obtain a larger
compatible set than the one obtainable from the method described above. One
characterizing property of noncrossing sets viewed as compatible etigis hat
every inclusion by position implies inclusion by value as well. Let us define a
strongly compatible séb be compatible set which satisfies this property: i.e., if
an edge includes another edge by position, then it includes it by valuelas we
This property ensures the acyclicity of the inclusion graph. See for iostBiy-
ure 12. Thus, every noncrossing seHp is a strongly compatible set @,, and
every strongly compatible set @, is also compatible. This raises two questions:
(1) Does the length of a sorting sequence based on a largest stromghatble
set have a better approximationtts(rr) than 2? and (2) Can largest strongly com-
patible sets be computedheiently?

CHARACTERIZING BLOCK SORTING 23

1 917 2 10 183 111922 146 23157 24168 4 22 83 2]

Fig. 12: Different strong compatible sets of largest cardinality

We do not know the answers to these questions. It appears that the teempu
tion of largest strong compatible sets may bfficlilt: it lacks optimal substruc-
ture property and so straightforward application of dynamic programmiag dot
work. Also, it appears that for the inverses of the permutati{psq), a largest
strong compatible set is quite small (we are unable to construct one larger tha
p+1), whereas there are compatible sets of pigel (as follows from Lemma 13).

So the ratio of the approximate solution value to the optimal value again appach
2 asp, g become large.

It is interesting to note that a largest strong compatible set seems to be large fo
at least one of andz~1. Thus it becomes worthwhile to analyze the ratio of the
corresponding approximate solution value®$¢r) = bs(r™2).

6.5 Other Heuristics

For completeness, we briefly discuss other approaches, not nélgelsaaed on
BLOCK MERGING. Some fast heuristics for block sorting are discussed in [11, 15].
However, these heuristics do not even have an upper bound of 2 iompipeox-
imation ratio, so we do not consider them here. (Our focus here is onigxgla
why attempts to beat the ratio 2 have not succeeded.)

A 2-factor approximation not based @nock MERGING iS proposed in [4]. This
algorithm is based on absolute block deletion: given a sequentdistinct inte-
gers, repeatedly delete a block until a monotone sequence is left betehdhel
length of the shortest such sequence be denaiteldr) (or tabd(r) if the empty
sequence is to be left behind). It is shown in [4] thafr) < abd(r) < 2bs(r) and
thatabd(r) is efficiently computable, giving the desired approximation.

There are instances on which absolute-block-deletion outperforms blead-
ing; in the concluding section of [4], an example 37948 15 2 6 is presented
where the former leads to a sequence of 4 moves (delete 2, 8, 1, 4 5 6blacike
merging needs 6 moves (move in that order 2, 3, 4, 6, 8, then 7 8 9). Alsthe
permutationsr of Example 1,abd(r) = bs(r) = n— 1, while bm(x) = 2n - 2.

On the other hand, Example 3 shows that block merging can outperfowtutdss
block-deletion by a multiplicative factor tending to 2.

24 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

ExamrLE 3. Consider the sequeneg0,n) = 135... (2n-1)246... (2n—
2) on h — 1 elements, and the sequeneg®, n) obtained by translating each
element ofc(0,n) by p(2n — 1). For each pair of positive integem, n, con-
struct the permutation(m, n) on m(2n — 1) elements by stringing togethe{m —
1Ln),oc(m-2n),...,0(1,n),0(0,n). Forinstancers(0,3) = 1352 4, and
7(2,3)=0(1,3)0(0,3)=68107913524.

Itis straightforward to see thas(o(0, n)) = bm(o (0, n)) = abd(c(0, n)) = n—1.

To perform block merging on(m, n), we can merge eaceh(i,n),i =0,1,..., k-

1, withn-1 steps. Then we havenon-empty lists of blocks, which can be trivially
merged ifm— 1 more moves. Thusm(r(m,n)) = (n—1)m+m-1 = mn-1. Also,

the first fi — 1)m block merge moves are optimal block moves by Theorem 5, and
they leave behind a permutation with kermek,, needingm— 1 block moves to
sort. Henceéos(r(m, n)) = bm(r(m,n)) = mn- 1.

Via absolute block deletion, it is easy to see that the final monotone sedeénce
behind can have elements from at most offien). All other o(j, n) must be totally
deleted. For each we havetabd(o(j, n)) = 2n—2 andabd(o(j,n)) = n—1. Thus
we getabd(r(m,n)) = (2n-2)(m-1)+n—-1=2mn-2m-n+ 1.

Thus, agn, ntend to infinity,abd(r(m, n)) tends to Bm(r(m, n)) = 2bs(r(m, n)).

We note that for the inverses of the permutations presented in Exangiid(z)
in fact equalss(r). But this seemingly dual nature of absolute block deletion and
block merging does not go too far. For the permutatiofjs q) of Section 6.3 as
well as their inverses, it can be verified that batiu(z(p, q)) andbm(z(p, g)) get
arbitrarily close to Bs(n(p, g)) with increasing values of the parametgrandg.

7. Conclusion

The combinatorial characterization of optimal solutionsmafck sorting has nat-
urally triggered many computationally relevant explorations. The theoremg ab
good moves prompted the search for nontrivial tight examples for thesippa-

tion algorithm of [18]. The heuristic inspired by tleock MerciNg problem and

its tight examples ultimately leads to the identification of a natural intermediary
between noncrossing sets and compatible sets called strong compatiblehgets. T
little understood concept opens a definite new window for further rekear the
BLOCK SORTING problem.

Acknowledgments

The results of Sections 3, 4 and 5 appear in a preliminary version titled f@swa
constructing optimal block move sequences’[19] in the Proceedings dfGtie
International Computing and Combinatorics Conference, COCOON 2004.

This work was done when the third author was with the Department of Mathe-
matics, IIT Madras, India, and then with the Institute of Mathematical Sciences
Chennai, India.

CHARACTERIZING BLOCK SORTING 25

References

[1] Barna, V. anp Pevzner, P.. 1996. Genome rearrangements and sorting by reve&al8/
Journal on Computing 2272-289.

[2] Barna, V. anp Pevzner, P.. 1998. Sorting by transpositionsSIAM Journal on Discrete
Mathematics 112 (may), 224—240.

[3] BeN, W. W., Larmoreg, L. L., LariFi, S., anp SubsorouaH, |. H. 2003. Block Sorting is
Hard. International Journal of Foundations of Computer Science81fine), 425-437.

[4] Bew, W.W., LaARMORE, L.L., MoraLEs, L., aNp SupsoroucH, I.H. 2005. A Faster and Sim-
pler 2-Approximation Algorithm for Block Sorting. IRroc. of 15th Internationa&8ympo-
sium on Fundamentals of Computation Theory, LNCS 3&8inger, 115-124.

[5] Curistie, D. A. 1999. Genome Rearrangement ProbleR&D thesis, Univ. of Glasgow.

[6] Ewias, |. aNp HarRTMAN, T. 2005. A 1.375 approximation algorithm for sorting by transposi-
tions. InProc. 5th International Workshop on Algorithms in Bioinformatics WABNCS
3692 Springer.

[7] Euas, I. anp HarTMmAN, T. 2006. A 1.375 approximation algorithm for sorting by trans-
positions. IEEE/ACM Transactions on Computational Biology and Bioinformatic#3
369-379.

[8] Eriksen, N.. 2002. 1+ € approximation for sorting by reversals and transpositiofteeo-
retical Computer Science 28917-529.

[9] Erikson, H., Eriksson, K., KARLANDER, J., S/ENssON, L., anp WAsTLuND, J.. 2001. Sorting
a bridge handDiscrete Mathematics 24289-300.

[10] Gares, W. H. anp Papapivrtriou, C. H. 1979. Bounds for sorting by prefix reversal¥is-
crete Mathematics 2A7-57.

[11] Gosr, R., LatiF, S., anp Bemwv., W.W. 2000. Adaptive sorting algorithms for evaluation
of automatic zoning employed in OCR devices. Aroceedings of the 2000 International
Conference on Imaging Science, Systems, and TechnoGBREA Press, 253-259.

[12] Gu, Q. P., Rng, S.,anp SupBoroucH, H. 1999. A 2-approximation algorithm for genome
rearrangements by reversals and transpositioRBeoretical Computer Science 21D,
327-339.

[13] HarrMman, T.. 2003. A simpler 1.5 approximation algorithm for sorting by trangjurss.

In Proceedings of 14th Annual Symposium on Combinatorial Pattern MatchiNCS
2676. Springer-Verlag, 156-169.

[14] HartMan, T. aAND SHAMIR, R.. 2006. A simpler and faster 1.5-approximation algorithm for
sorting by transpositiondnformation and Computation 202, 275-290.

[15] Kanar, J., Rcg, S.V,, anp Nartker., T.A. 1995. Automatic evaluation of OCR zoning.
IEEE Transactions on Pattern Analysis and Machine Intelligenc8&-70.

[16] KececiocrLu, J. anp Sankorr, D. 1995. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangeméfgorithmica 13 180-210.

[17] Manaian, M., Rama, R., RamaN, V., anp Viavakumar, S. 2003. Merging and sorting by
strip moves. InProceedings of the 23rd Conference on Foundations of Softwatedkc
ogy and Theoretical Computer Science (FSTTCS), LNCS 28p#nger-Verlag, 314-325.

[18] Manaian, M., Rama, R., Raman, V., anp Viavakumar., S. 2006. Approximate block sort-
ing. International Journal of Foundations of Computer Scienc&1337-355.

[19] Manaian, M., Rama, R., aNp ViavakuMmar, S. 2004. Towards constructing optimal block
move sequences. lRroceedings of the 10th International Computing and Combinatorics
Conference, (COCOON), LNCS 31086pringer-Verlag, 33—-42.

[20] VErGaARra, J. P. C. 1997 Sorting by Bounded PermutatianBhD thesis, Virginia Polytech-
nigue Institute and State University.

