
Nordic Journal of Computing

Block Sorting: A Characterization and some Heuristics

Meena Mahajan
The Institute of Mathematical Sciences,

Chennai 600 113, India.
meena@imsc.res.in

Raghavan Rama
Department of Mathematics,

Indian Institute of Technology, Madras,
Chennai 600 036, India.
ramar@iitm.ac.in

S. Vijayakumar
Indian Institute of Science Education and Research,

Pune 411 008, India.
s.vijay@iiserpune.ac.in.

Abstract. Given a permutationπ, the  problem is to find a shortest series
of block moves which, when applied in succession, sortsπ. Here a block is a maximal
substring of successive integers in order, and a block move is the displacement of a block
to a location where it merges with another block.  is an NP-hard optimization
problem [3] and has a factor 2 approximation algorithm [18].In this paper, we present a
combinatorial characterization of optimal solutions of  and use it to prove
various computationally important properties of the problem. In particular, we identify
certain block moves that are provably optimal. We also establish the equivalence of block
sorting and a combinatorial puzzle.

We consider several polynomial-time heuristics for  that are inspired either
by the above-mentioned combinatorial characterization, or by the approach of [18] that
was based on the  problem, or both. Although these heuristics seem to be
promising candidates for improving the approximation ratio (their approximation ratios
are provably at most 2), we show that none of them leads to a better approximation ratio
than 2.

ACM CCS Categories and Subject Descriptors: F.2.2 Analysis of Algorithms and Prob-
lem Complexity

Key words: Block Sorting, Approximation, Heuristics, CombinatorialCharacterization

1. Introduction

Let π be a permutation onn elements,π ∈ Sn, written as a stringπ1π2 . . . πn. A
block is a maximal substring ofπ which is also a substring of the identity permu-
tationidn = 1 2 . . . n. (For example, in the permutation 6 2 3 4 1 5 on 6 elements,
there are four blocks, and2 3 4 is the only block containing more than a single
element.) A block move is the operation of picking a block and placing it adjacent
to its predecessor or successor block so that it merges with it to form a larger block.
(For instance, a block move of 5 in 6 2 3 4 1 5 will result in either 5 6 2 3 4 1 or
6 2 3 4 5 1.) The  problem is to find a shortest series of block moves

Received January 28, 2008.

2 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

which, when applied in succession, sortsπ. The length of this shortest series is
denoted bybs(π) and is called the block sorting distance ofπ.

(Note: In a preliminary version [19] of this paper, as well as in [17] whichis a
preliminary version of [18], blocks are referred to asstrips. We use the term blocks
here to conform with [3], where NP-hardness of the problem is established.)

The   problem was studied in connection with optical character
recognition (OCR); see, for instance, [11, 15]. A recent paper by Bein, Larmore,
Latifi, and Sudborough establishes that the decision version of this problem is NP-
complete [3]. The  problem also gains in importance due to the fact
that it is a nontrivial variant of another well-known sorting problem,Sorting by
Transpositions, , that arises in the study of genome rearrangements. A transpo-
sition is the operation of picking any substring ofπ and placing it elsewhere in the
string. The problem is the problem of finding a shortest series of transpositions
that sorts a given permutationπ; the length of this shortest series is denoted byt(π).
This problem has some 3/2-approximation algorithms, and most recently an 11/8-
approximation has been obtained [7], but its computational complexity remains
unsettled [2, 5, 9, 13, 14]. For related work, see [1, 5, 8, 10, 12, 16, 20].

The   problem has a fairly straightforward 3-approximation algo-
rithm. Let #block(π) denote the number of blocks inπ. It is easy to see that a
block move, and even a transposition, can reduce the number of blocks atmost by
three. And a sorted permutation consists of one block. Thus reducing the num-
ber of blocks to 1 needs at least (#block(π) − 1)/3 transpositions. On the other
hand, the naive algorithm of repeatedly moving the block containing 1 reduces
the number of blocks by at least one in each move; hencebs(π) is no more than
#block(π) − 1. Thus

⌈

#block(π) − 1
3

⌉

≤ t(π) ≤ bs(π) ≤ #block(π) − 1 (1)

It follows that the naive algorithm is a 3-approximation for  (and for
).

The first nontrivial approximation algorithm for  was obtained by
Mahajan, Rama, Raman, and Vijayakumar and achieves a performance ratioof 2
[17, 18]. This is accomplished by introducing a similar problem,,
that is about optimally merging a given set of increasing sequences into onein-
creasing sequence by block moves (see Section 2 for details). A faster 2approxi-
mation algorithm was developed later by Bein, Larmore, Morales, and Sudborough
[4].

In this paper, we continue the task of exploring the combinatorial structure of
optimal solutions of . We show that the problem of block sorting a
givenπ is equivalent to computing a largestcompatible edge setin an associated
order graph Gπ (Theorem 3). We note that one direction of this equivalence is
established in [3] as well, but without defining compatible sets independent of
block move sorting sequences as presented in this paper.

We also establish an optimum-preserving equivalence between  and
the following combinatorial puzzle. Letπ, φ be a pair of permutations of the same

CHARACTERIZING BLOCK SORTING 3

length, viewed as strings, withπ , φ. Suppose we wish to quantify how different
these strings are. One way to do this is the following: identify a substring com-
mon to bothπ andφ and delete it. Repeat this process until the left-over strings
become identical. How many such deletions are needed? We denote the minimum
number of deletions needed bycsr(π, φ), and we define theCommon Substring
Removalsproblem,, as the problem of computingcsr(π, φ) for a givenπ, φ.
For example, consider the pairπ = 3 5 1 4 2 6 andφ = 1 4 3 2 5 6 fromS6.
An optimal common substring removal sequence that makes this pair identical is
(3 5 1 4 2 6, 1 4 3 2 5 6)→ (5 1 4 2 6, 1 4 2 5 6)→ (5 6, 5 6). Theorem 4 estab-
lishes thatcsr(π, φ) = bs(π−1φ). An interesting consequence of this equivalence
is that sorting a permutation via block moves is as hard (or as easy) as sortingits
inverse (Corollary 3).

Using the characterization of block sorting via compatible sets, we establish that
certain block moves are optimal: they necessarily reduce the block sorting distance.
We show that a block move that reduces the number of blocks in the permutationby
2 or 3 is optimal (Theorem 5). We also show as a corollary of a more general result
that if two adjacent blocks are consecutive but out of order, then a block move that
exchanges them is optimal (Theorem 6). Thus, for instance,bs(6 4 7 5 1 2 3)>
bs(6 7 4 5 1 2 3) > bs(6 7 1 2 3 4 5).

Finally, we revisit the problem and consider some heuristics for
  that are inspired either by block merging based approach of [18] or
the combinatorial characterization obtained in this paper, or both. Initially we con-
sider minor refinements of the algorithm of [18], and this leads to the construction
of more robust tight examples for the latter. The major heuristic we discuss tries
to overcome the disadvantage of the idea, used in [18], of breaking permutations
into pieces (increasing runs), while at the same time using the information that may
be gained from the corresponding instances. Despite its promising
outlook, we show that even this heuristic is asymptotically no better than a fac-
tor 2 algorithm. The tight examples constructed to demonstrate this fact naturally
suggest a generalization of the notion of noncrossing sets to strongly compatible
sets. We show that even strong compatible sets cannot, in general, guarantee an
approximation factor any better than 2, and so a heuristic based on these would
be no better. (It is an independent issue that as yet, we do not even know how to
compute largest strongly compatible sets.) But we conjecture that at least one of
π andπ−1 will always have a sufficiently large strong compatible set to ensure a
better approximation forbs(π) = bs(π−1).

This paper is organized as follows. Section 2 briefly reviews notions concerning
 from [17, 18], as these are central to the discussion in this paper.
Section 3 establishes the combinatorial characterization ofbs(π), while Section 4
shows that and  are equivalent. Section 5 uses the characterization
of Section 3 to show optimality of certain block moves. Finally, Section 6 examines
the proposed heuristics and provides tight examples for them all.

4 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

2. Reviewing 

Let S = {S1,S2, . . . ,Sk} be a set of disjoint increasing sequences whose union
is [n], where [n] denotes the set{1,2, . . . ,n}. (Technically,S is a multiset since
more than one sequence could be empty.) A block inS is defined to be a maximal
substring of the identity permutationidn which is also a substring of someSi . A
block move onS consists of removing a block from some sequenceSi and inserting
it into some other sequenceS j so that it merges with some block there to form a
longer block. (Note that consequently, the new sequenceS′j is still an increasing
sequence.)

The  problem can be stated as follows: Given a setS of disjoint
increasing sequences whose union is [n], transformS to the setMn = {idn, ǫ, . . . , ǫ}

via the fewest possible block moves. The number of block moves in such a shortest
series is denoted bybm(S).

For example,S = {1 4 6,2 3 8,5 7} is a valid instance of the prob-
lem. It has three sequences, and seven blocks.2 3 is the only block containing
more than one element. It can be transformed using four block moves, as follows:
Move block 6 to get{1 4,2 3 8,5 6 7}, then move block 2 3 to get{1 2 3 4,8,5 6 7},
then move block 5 6 7 to get{1 2 3 4 5 6 7,8, ǫ}, and finally move block 8 to get
{id8, ǫ, ǫ}.

Given an instanceS of , an associated directed graphG is built as
follows: G hasn vertices numbered 1 throughn. The multisetS havingk sequences
partitions the vertices intok parts, and the edges ofG form a total order on each
part. Formally,

D 1. (D 4.1 [18]) LetS = {S1,S2, . . . ,Sk}. Then
(1) G= (V,E) where V= [n], and E= {(u, v) | u < v, ∃p ∈ [k] : u, v ∈ Sp}.

(2) Edges in E of the form(i, i + 1) are called unit edges.
(3) Distinct edges(i, j) and(k, l) are said tocrossif i ≤ k < j ≤ l or k ≤ i < l ≤ j.

A set E′ ⊆ E is said to be a non-crossing set if no two edges in E′ cross.
(Note that(i, j) and (i, k) cross, but not(i, j) and (k, l) where i< k < l < j.
Also, edges(i, k) and(k, l) do not cross.)

(4) By c(S) we denote the size of the largest non-crossing set in the edge set of G.

Given any non-crossing setC, call a blockα free with respect toC if no edge of
C has exactly one end-point inα. The main idea of [18] is that as long asS , Mn,
a free block can always be found, and moving a free block necessarilyreduces
bm(S). Using this, the following is established:

L 1. (L 4.4 [18]) bm(S) = n− 1− c(S).

T 1. (T 3.3 [18])  is in P.

Any permutationπ can be uniquely decomposed into maximal increasing sub-
strings. Considering each of these substrings as a sequence gives aninstanceSπ of
. The major result from [18] that also we use is thatbm(Sπ) approx-
imatesbs(π).

T 2. (L 5.3 5.4 [18]) bs(π) ≤ bm(Sπ) ≤ 2bs(π).

CHARACTERIZING BLOCK SORTING 5

3. Compatible edge sets and optimal solutions of  

In this section, we define theorder graph Gπ of a permutationπ ∈ Sn and show that
computing optimal solutions for  instances is polynomially equiva-
lent to computing largestcompatiblesubsets of edges in this graph. Compatible
sets of edges is a notion that generalizes the notion of non-crossing edges from
[17, 18], reviewed in the previous section. In [3], sets of “red edges” corresponding
to any block sorting sequence are defined, and some properties of theseedge sets
are described. The red edge sets turn out to be precisely the compatible edge sets
as we define below. The crucial difference in the two approaches is that red edge
sets are defined based on a given sorting sequence, and can consequently be shown
to possess the property of compatibility. On the other hand, compatible edge sets
are substructures within the order graph and yield block sorting sequences. That is,
the property of compatibility is defined independent of any block sorting sequence,
and we can construct a block sorting sequence whose red set is the given compat-
ible set. While [3] only establishes that the size of the red edge set of any block
sorting sequence is at leastn− 1− bs(π), we show that in fact optimal compatible
sets areexactlyof this size. The converse direction can be obtained from the ap-
proach of [3] with considerably more effort. Instead, we present a self-contained
proof of both directions, more in line with the approach of [17, 18].

D 2. The order graph of a permutationπ ∈ Sn is the directed graph Gπ =
(Vπ,Eπ) where Vπ = [n] and Eπ = {(u, v) | (u < v) ∧ (π−1

u < π
−1
v)} = {(πi , π j) | (i <

j) ∧ (πi < π j)}.

D 3. (1) Two distinct edges(u, v) and(w, x) of Eπ are said tointerleave
by valueif u ≤ w < v ≤ x. They are said tointerleave by positionif π−1

u ≤

π−1
w < π

−1
v ≤ π

−1
x . They are said to interleave if they interleave either by value

or by position (or by both).

(2) An edge(u, v) is said tocontainan edge(w, x) of Eπ if u < w < x < v (contain
by value) orπ−1

u < π
−1
w < π

−1
x < π

−1
v (contain by position).

(3) For any C⊆ Eπ, the inclusion graph G(C, π) corresponding to C is the di-
rected graph(C,A) where A= {((u, v), (w, x)) | (u, v) contains(w, x)}.

(4) A set C⊆ Eπ is said to be compatible if no two edges of C interleave and if
G(C, π) is acyclic.

(5) cπ is the size of any compatible set of edges of maximum cardinality.

Figure 1 shows examples of various types of interleaving edge pairs. Figure 2
shows the inclusion graph of an edge set; even though no pair of edges interleave
the underlying edge set is not compatible since the inclusion graph has a cycle.

We note that ifC is a compatible edge set, then the subgraph ([n],C) is a col-
lection of vertex-disjoint directed paths. Also, ifC is a compatible edge set and
C′ ⊆ C, thenC′ is also compatible.

Note that the graph of Definition 1 forSπ, let us call itHπ, is a subgraph ofGπ:
an edge (u, v) of Gπ is included inHπ if and only if the substring fromu to v in π is

6 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

1 2 1 1 2 2 23 3 31 1 42 3 4 43

(a) (b) (c) (d) (e)

Fig. 1: Interleaving edge pairs

(6,7)

(1,4)

(2,3)

(5,8)
? ?

*Y

38527416

C ⊆ Eπ G(C, π)

Fig. 2: An example inclusion graph

an increasing substring. Further, every non-crossing set inHπ is also a compatible
set inGπ, because interleaving by position inHπ implies interleaving by value, and
containment by position inGπ implies containment by value inHπ. However, the
converse is not true: a compatible set inGπ is not necessarily a non-crossing set in
Hπ for the simple reason that it may use an edge not present inHπ. Thus the notion
of compatible sets properly generalizes that of non-crossing sets.

The main result of this section is an analogue of Lemma 1; we relate the size of
the largest compatible set,cπ, to the block sorting distance. The result is established
in Theorem 3. We need to establish several lemmas to prove this theorem.

We call (u, v) a unit edgeif v− u = π−1
v − π

−1
u = 1. Thus unit edges are exactly

those edges of the order graphGπ which link the adjacent elements of a block. The
following is easy to see.

L 2. Every compatible set in Eπ of size cπ contains all unit edges of Gπ.

D 4. For a permutationπ, let C be any compatible subset of Eπ. An edge
e is said totoucha blockα if e has exactly one endpoint inα. The blockα is said
to befreewith respect to C if no edge of C touches it; that is, every edge of C has
neither or both endpoints inα.

D 5. A (sub)block transpositionis the displacement of a (sub)block to an
arbitrary location of the permutation. The block transposition distances(π) of a
permutationπ is the length of a shortest series of block transpositions that sorts it.

Thus a block move is also a block transposition, and sos(π) ≤ bs(π).

CHARACTERIZING BLOCK SORTING 7

L 3. For a permutationπ, let C be a compatible subset of Eπ of size cπ, and
let α be a block ofπ that is free with respect to C. A transposition ofα gives a
permutationσ with cσ ≥ cπ. If the transposition ofα is indeed a block move, then
cσ > cπ.

P. Sinceα is a free block,C is a subset ofEσ as well. Clearly, it has no
edges interleaving by value. No edges interleave by new position either, since even
in the new position no edge has just one endpoint inα. And the graphG(C, σ) is
acyclic as well, since the edges other than those inα form no cycles, and the unit
edges withinα do not contain any other edge by value or by new position. SoC is
a compatible subset ofEσ. Hencecσ ≥ |C| = cπ.

Further, if the transposition ofα is a block move, thenGσ has an extra unit edge
created by this move, which is not even inC. So by Lemma 2,|C| < cσ. Thus
cσ > cπ. ¤

L 4. If σ is obtained fromπ via a block/subblock transposition, then cσ ≥
cπ − 1.
Furthermore, ifσ is obtained fromπ via a block move, then cσ ≥ cπ.

P. Let C be a compatible set of edges inGπ of sizecπ. By Lemma 2, it
contains all the unit edges ofGπ. We now show that there is a compatible edge set
C′ in Gσ with |C′| ≥ |C| − 1.

Let α be the subblock transpositioned in order to obtainσ from π. Let m be the
number of edges ofC touchingα. Clearly,m ∈ {0,1,2}. If m = 0, thenα is a free
block with respect toC, and the result follows from Lemma 3. So now assume that
m> 0.
Case 1: m=1. Let (u, v) be the single edge ofC touchingα. (If α is a proper
subblock, then this is in fact a unit edge.) As argued in the proof of Lemma 3,
C′ = C \ {(u, v)} is a compatible edge set inEπ andEσ, showing thatcσ ≥ cπ − 1.

Further, if the above transposition ofα is a (sub)block move, thenGσ has an
extra unit edge created by this move, which is not inC′. So by Lemma 2,|C′| < cσ
and hencecσ ≥ cπ.
Case 2: m=2. Let α be the (sub)blockv+ 1, v+ 2, . . . , v+ k, with π−1

v+ j = i + j for
j ∈ [k]. SinceC contains all the unit edges ofGπ, the two edges touchingα must
be of the form (u, v + 1) and (v + k,w). Let C′ = C \ {(u, v + 1), (v + k,w)}, and
C′′ = C′ ∪ {(u,w)}. As argued above,C′ is a compatible edge set inGπ and inGσ.
(In particular,G(C′, σ) is acyclic.) We now show thatC′′ is a compatible edge set
in Gσ, proving thatcσ ≥ cπ − 1. (In fact,C′′ is even a compatible set inGπ itself.)
We only need to show that adding (u,w) keeps this set compatible.

C has a pathρ = u, v+1, v+2, . . . , v+k,w which is replaced inC′′ by two paths:
a single-edge pathρ′ = u,w and the pathρ′′ = v + 1, v + 2, . . . , v + k; all other
edges ofC andC′′ are the same. Since no other edge ofC can interleave withρ
by value, it is clear that no other edge ofC′′ can interleave with pathsρ′ andρ′′

by value. Since the relative positions of all elements other thanv+ 1, . . . , v+ k is
unchanged, no edge ofC andC′′ can interleave withρ′ by position either. SoC′′

has no interleaving edges.

8 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

We must now show thatG(C′′, σ) is acyclic. Assume it is not; then any cycle
θ in it must pass through the vertex (u,w), since we already know thatG(C′, σ) is
acyclic. Since the moved unit edges corresponding toα do not contain any edge
by value or by position, none of the corresponding vertices can appearin θ. Let
(x1, y1) be the predecessor and (x2, y2) the successor of (u,w) in θ. Then (x1, y1)
must contain all edges ofρ in Eπ. And either (u, v+ 1) or (v+ k,w), both edges of
ρ, must contain (x2, y2) in Eπ. The remaining edges ofθ are present inG(C, π) as
well. Thus, corresponding toθ, there is a cycleθ′ in G(C, π) as well, contradicting
the compatibility ofC.

Further, if the transposition ofα is a (sub)block move, thenGσ has an extra unit
edge created by this move, which is not inC′′. So by Lemma 2,|C′′| < cσ and
hencecσ ≥ cπ. ¤

L 5. If π is obtained fromσ by a block transposition, then cπ ≤ cσ + 1.

P. Givenσ, let π be obtained through a transposition of some blockα onσ.
Thenα is either a block or a subblock inπ, and so, moving it back to its original
place is a block or subblock transposition fromπ yieldingσ. Now apply Lemma 4.
¤

L 6. Givenπ , idn and a compatible set C⊆ Eπ of size cπ, we can effi-
ciently (in polynomial time) find a block moveρ which, when applied toπ, gives
permutationσ satisfying cσ = cπ + 1.

P. By Lemmas 3 and 5, it suffices to show that there exists a blockα free
with respect toC; finding one is easy. Consider the inclusion graphG(C, π); it is
acyclic by definition. All unit edges ofGπ have zero out-degree inG(C, π). Let C′

be the set of non-unit edges ofC; C′ is also a compatible set. IfC′ = ∅, thenC
consists only of unit edges ofGπ. Therefore, all blocks ofπ are free with respect
to C. Otherwise, consider the subgraphG′ of G(C, π) induced by the vertex setC′.
By heredity,G′ is also acyclic. Choose any vertex (u, v) ∈ C′ of zero out-degree in
G′; let i = π−1

u , j = π−1
v . Let A be the set{u+ 1, . . . , v− 1} ∪ {πi+1, . . . , π j−1}. Since

(u, v) is not a unit edge,A is non-empty. Since (u, v) is of out-degree zero inG′, it
contains no non-unit edge ofC. So the blocks containing any element ofA must
all be free with respect toC. ¤

We now have all the ingredients needed to prove the main theorem of this section.

T 3. For all π ∈ Sn, n ≥ 1, bs(π) = n− 1− cπ = s(π).

P. We will show that (i)s(π) ≥ n− 1− cπ, and (ii)bs(π) ≤ n− 1− cπ. Since
s(π) ≤ bs(π), the result follows.

To prove (i), letρ1, ρ2, . . . , ρk be a series of block transpositions sortingπ. Let
π0 = π, andπi be the permutation obtained by applying block transpositionρi to
πi−1. Let ci denotecπi . By Lemma 5,ci ≤ ci−1 + 1. Sinceπk = idn, and since
cidn

= n− 1, we haven− 1 = ck ≤ ck−1 + 1 ≤ . . . ≤ c1 + (k− 1) ≤ c0 + k = cπ + k,

CHARACTERIZING BLOCK SORTING 9

hencek ≥ n− 1− cπ. This holds for any block transposition sorting sequence; in
particular, it holds for an optimal sequence withk = s(π). Hences(π) ≥ n− 1− cπ.

To prove (ii), repeatedly apply Lemma 6 and note thatcidn
= n− 1. ¤

For completeness, we briefly discuss how to make Theorem 3 constructive. Given
a block sorting sequence of lengthbs(π), a compatible edge set of sizen−1−bs(π)
can be extracted by following the presentation of [3] (Lemma 4); the red edges cor-
responding to the sequence are the desired compatible set. Given a compatible edge
set of sizec, we present in Figure 3 an algorithm that sortsπ in n− 1− c steps.

Block-Sort(π,C)
Input: A permutationπ overn elements, and a compatible setC in the order graph
of π.

While π , idn Do
Find a blockα in π free with respect toC.
(The proof of Lemma 6 shows that such a block always exists.
One can be found by direct inspection of each block with respect toC.)

Let u, v be the first and last elements of this block.
If v < n Then

Moveα to its successor, to get the permutationπ′.
If C has an edge (l, v+ 1) for somel
Then C←− C ∪ {(l,u)} \ {(l, v+ 1)}
EndIf
C′ = C ∪ {(v, v+ 1)}.

Else
Moveα to its predecessor, to get the permutationπ′.
C′ = C ∪ {(u− 1,u)}.

EndIf
π←− π′, C←− C′.

EndWhile

Fig. 3: The algorithm for 

Given a permutationπ, replace each blockx by any one representative element
to obtain a sequenceS. Now, replacing eacha ∈ S by its rank inS, we obtain a
permutation onk elements, wherek is the number of blocks inπ. This permutation
is called the kernel ofπ, denotedker(π). Since blocks are indivisible in block
moves, it follows thatbs(π) = bs(ker(π)). However, blocks are not indivisible in
block transpositions, since a block may be picked up and placed elsewherein the
middle of another existing block. Intuitively, nothing would be gained by sucha
move; formally, this follows from Theorem 3.

C 1. s(π) = s(ker(π)).

10 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

(Note: Corollary 1 is proved in [18] independent ofcπ using completely different
techniques.)

If π ∈ Sn and π , revn = n n − 1 . . . 2 1, then clearlycπ ≥ 1, and hence
bs(π) ≤ n− 2. Forπ = revn, cπ = 0, and sobs(revn) = n− 1. Thus we have:

C 2. D(n) = max{bs(π)|π ∈ Sn} = n− 1.

4.  and   are equivalent

We first obtain an alternative formulation of  and then show that this
alternative formulation is equivalent to. It then follows that sorting a permuta-
tion via block moves is as hard (or as easy) as sorting its inverse.

We say that an increasing substringai . . .a j of a stringS = a1 a2 . . .am of distinct
elements from [n] is tight if there is noi ≤ k ≤ j − 1 such thatak < al < ak+1 for
someal in S. (In other words, if eachal in S is replaced by its rankr(al) in S, then
the substringr(ai) . . . r(a j) is a subblock in the resulting string. In [4], the term
relative blockis used to denote a maximal tight increasing substring.) Letisr(S)
denote the length of a shortest sequence of tight increasing substring removals on
S that leaves behind an increasing subsequence ofS.

For example, consider 3 5 1 4 2. Neither of the increasing substrings〈3,5〉
and 〈1,4〉 is tight, and removing any one element does not make the sequence
increasing, soisr(3 5 1 4 2)> 1. But after deleting 4, the sequence〈3,5〉 is tight,
and deleting it leaves behind an increasing sequence 1 2. Soisr(3 5 1 4 2)= 2.

The following is easy to see; see also [3] and Theorem 2.1 of [4].

L 7. For any permutationπ, isr(π) = bs(π).

Recall thatcsr(π, φ) denotes the length of a shortest sequence of common sub-
string removals that makes the pair identical. Given anyπ, φ ∈ Sn, for any permu-
tationψ ∈ Sn, the pair (ψ−1π, ψ−1φ) is just a consistent relabeling for the pair (π, φ).
Thus csr(π, φ) = csr(ψ−1π, ψ−1φ). In particular,csr(π, φ) = csr(π−1φ, idn) =
csr(φ−1π, idn). But if we considercsr(σ, idn), the common substrings removed
are always tight increasing substrings. Thuscsr(σ, idn) ≥ isr(σ). In fact, we have
equalitycsr(σ, idn) = isr(σ) because the tight increasing substrings removed from
σ are necessarily substrings ofidn. These remarks, along with Lemma 7, establish
the following theorem.

T 4. The common substring removals problem and   are
computationally equivalent.
For π, φ ∈ Sn, csr(π, φ) = bs(π−1φ) = bs(φ−1π). For σ ∈ Sn, bs(σ) = csr(σ, idn).

C 3. For anyπ ∈ Sn, bs(π) = bs(π−1).

(Note: Corollary 3 is independently established in [3].)

CHARACTERIZING BLOCK SORTING 11

5. Some optimal block moves

An important implication of Lemma 4 and Theorem 3 is that a block move never
increases the block sorting distance of a permutation. However, many blockmoves
do not reduce it either. The computational difficulty in block-sorting optimally
lies precisely here: how does one identify, amongst all possible block moves, the
move(s) that actually reduces the block sorting distance? In this section, weiden-
tify some block moves which provably reduce this distance. Thus any heuristic for
block sorting can safely make such moves, if they are possible.

5.1 2-moves and 3-moves are provably optimal

A block move reduces the number of blocks by at least 1 and at most 3. Intuitively,
one wants to reduce the number of blocks as fast as possible (sinceidn has a single
block). Thus it is natural to prefer a block move which reduces the numberof
blocks by 3; such a move ought to be optimal. However, formally proving this is
not easy. We need to argue that local “trade-offs” do not arise: if a reduction of 3
can preclude three subsequent reductions by 2, then the reduction sequence 2,2,2,1
would be better than 3,1,1,1. We show here that indeed such situations do notarise.
Any block move that reduces the number of blocks by 3, or even by 2, necessarily
reduces the block sorting distance.

We first consider the situation when moving a blockα to its predecessor also
joins it with its successor.

L 8. If π ∈ Sn hasπi = u− 1 andπi+1 = v for some i and some u< v, and if
the elements u,u+ 1,u+ 2, . . . , v− 1 form a blockα of π, then the permutationσ
obtained fromπ by movingα to between u and v hasbs(σ) < bs(π).

P. From Theorem 3 and Corollary 1,bs(π) = bs(ker(π)). In ker(π), α is a
single element. So it suffices to prove the lemma when|α| = 1, i.e.v = u+ 1 and
α = u.

By Lemma 3 and Theorem 3, it suffices to prove that there is some compatible
edge set of sizecπ with respect to which the block containingu is free.

Let C be any compatible subset ofEπ of size cπ. If u is free with respect to
C there is nothing to prove. Otherwise, without loss of generality, assume that
k = π−1

u > i + 1; the situation wherek < i is symmetric. There are three cases.
Case 1: There is a single edge inC touchingu, and it is of the form (u,w). Then
C has no edge of the form (x,u+ 1), since such an edge interleaves by value with
(u,w). If C does not have any edge (u − 1, x), then letC′ = C \ {(u,w)} ∪ {(u −
1,u + 1)}. (see Figure 4(a)). Otherwise let (u − 1, x) be an edge inC and lety be
the rightmost endpoint of the path inC containingu + 1. (Figure 4(b),(c)). Let
C′ = C \ {(u,w), (u − 1, x)} ∪ {(u − 1,u + 1), (y, x)}. It can be seen thatC′ is a
compatible subset ofEπ of sizecπ. And u is free with respect toC′.
Case 2: There is a single edge inC touchingu, and it is of the form (w,u).

If w = u− 1, thenC′ = C \ {(u− 1,u)} ∪ {(u− 1,u+ 1)} is a compatible subset of
Eπ of sizecπ, in whichu is free.

12 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

(a) (b) (c)

u−1 u+1 ... u u−1 u−1u+1 u+1u uw wxww y y x...

Fig. 4: Case 1 of Lemma 8.

If w , u− 1, then (u− 1, y) cannot be inC for anyy. If C has no edge with right
endpointu+1, then the setC′ = C \ {(w,u)}∪ {(u−1,u+1)} is a compatible subset
of Eπ of sizecπ, in whichu is free.

Otherwise, let (x,u + 1) be an edge inC. To avoid interleaving by value with
(w,u), we havex < w. So (x,u + 1) contains (w,u) by value. Ifπ−1

w < π
−1
x , then

(w,u) contains (x,u+ 1) by position, creating a cycle inG(C, π).; see Figure 5(a).
Soπ−1

w > π
−1
x . But if π−1

w < i, then (x,u+1) and (w,u) would interleave by position.
So the relative ordering of these elements must bex,u−1,u+1,w,u. (Figure 5(b)).
Now the setC′ = C \ {(w,u), (x,u+ 1)} ∪ {(x,u− 1), (u− 1,u+ 1)} is a compatible
subset ofEπ of sizecπ, andu is free with respect toC′.

(a)

w x u−1 u+1 u.... wx u−1 u+1 u....

(b)

Fig. 5: Case 2 of Lemma 8.

Case 3: There are two edges touchingu, (w,u) and (u, x). There can be no edge
into u+1 inC since any such edge will interleave with (u, x) by value. There can be
no edge out ofu− 1 in C since any such edge will interleave with (w,u) by value,
unlessw = u−1. If w = u−1, setC′ = C \ {(u−1,u), (u, x)} ∪ {(u−1,u+1), (y, x)}
wherey is the rightmost endpoint of the path inC containingu+ 1. Otherwise set
C′ = C \ {(w,u), (u, x)} ∪ {(u − 1,u + 1), (w, x)}. Either way,C′ is a compatible
subset ofEπ of sizecπ, andu is free with respect toC′. ¤

We now consider the situation when moving a block (to either its predecessor or
its successor) results in the blocks on either side of it joining up.

L 9. If a permutationπ ∈ Sn hasπi−1 = u−1andπ j = u for some i, j ≥ i+1,u,
and if the elementsπi , πi+1, πi+2, . . . , π j−1 form a blockα of π, then the permutation
σ obtained fromπ by a block move ofα hasbs(σ) < bs(π).

P. As in Lemma 8, without loss of generality, assume that|α| = 1, and hence
j = i + 1.

Let π haveπi−1 = u − 1, πi+1 = u, andπi = v. By Lemma 3 and Theorem 3, it
suffices to prove that there is some compatible edge set of sizecπ with respect to
which the block containingv is free.

Let C be a compatible edge set ofGπ of sizecπ. If v is free with respect toC,
there is nothing to prove.

CHARACTERIZING BLOCK SORTING 13

If C has a single edgee touchingv, then (u− 1,u) cannot be inC since it inter-
leaves withe by position. IfC has no edge (other than possiblye itself) into u or
out ofu−1 (it cannot have both anyway), then letC′ be the setC\ {e}∪ {(u−1,u)}.
Otherwise, supposeC contains (y,u). Thene must be of the form (w, v). Now set
C′ = C \ {(w, v), (y,u)} ∪ {(u − 1,u), (y,u − 1)}. On the other hand, ifC contains
(u − 1, z), thene must be of the form (v, x), and we setC′ to beC \ {(v, x), (u −
1, z)} ∪ {(u− 1,u), (u, z)}. In all these cases,C′ is a compatible set ofGπ of sizecπ,
andv is free with respect to it.

If C has two edges (w, v), (v, x) touchingv, then we do the following. Remove
(w, v), (v, x) from C and add (u − 1,u). Further, ifw = u − 1, add (u, x), if x = u,
add (w,u− 1), otherwise, add (w, x), and let the resulting set beC′. Then it can be
seen thatC′ is a compatible set ofGπ of sizecπ, andv is free with respect to it.¤

With the results we have seen, we can formalize the intuition described at the
beginning of this subsection. Define anx-move to be a block move that results in a
permutation withx fewer blocks. Since a 2-move satisfies the assumption of either
Lemma 8 or Lemma 9, and since a 3-move satisfies the assumptions of both, we
now have the main result of this section:

T 5. If a 2-move or a 3-move applied toπ givesσ, thenbs(σ) < bs(π).

5.2 Certain 1-moves are provably optimal

In this subsection we show that if a block is preceded by its successor block, then
joining it with its successor provably reduces the block sorting distance. Note that
such a move may not even be a 2-move; thus this result includes cases not covered
in the previous subsection. To prove this, we establish an interesting property,
which we calladditivity, of the functionbs(π), and then we use Theorem 3.

T 6. If a permutationπ has adjacent blocksα, β, with βα being a substring
of idn, and ifφ is the permutation obtained fromπ by exchangingα andβ (which
is a block move ofα or β), thenbs(φ) < bs(π).

P. Let the substringβα be u + 1 u + 2 . . . u + t for someu, t, and let
it occur in positionsi + 1, i + 2, . . . , i + t of φ for somei. If πi = u or if
πi+t+1 = u + t + 1, then exchangingα andβ in π is a 2-move or a 3-move, and
hence, by Theorem 5, reduces the block move distance. So now let us assume that
πi , u andπi+t+1 , u + t + 1. Clearly, one way to sortπ is to exchangeα andβ
and then sortφ; thusbs(π) ≤ 1 + bs(φ). We show that this is in fact an equality,
by defining a notion ofcompletesubstrings and establishing a more general result
concerning them. The proof follows from the statement of Lemma 10 below and
the fact thatαβ forms a maximal complete substring inπ. ¤

D 6. A substringπi+1 . . . πi+t is completeif {πi+1, . . . , πi+t} = {u + 1,u +
2, . . . ,u + t} for some u. That is, the t consecutive positions i+ 1, i + 2, . . . , i + t

14 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

hold t consecutive integers, though not necessarily in sorted order. If, furthermore,
πi , u andπi+t+1 , u+ t + 1, then the substring is said to bemaximal complete.

The block move distance for the complete substringπi+1 . . . πi+t is defined to be
the minimum number of block moves needed to sort it i.e. to transform it into u+

1 . . .u+ t.

L 10. If π contains a maximal complete substringα with bs(()α) = q, then
bs(π) = q+ bs(σ), whereσ is the permutation obtained fromπ by replacingα, in
place, with its sorted version.

P. Sinceα is maximal complete, it is clear thatbs(π) ≤ q + bs(σ). So we
only need to show thatbs(π) ≥ q+ bs(σ). By Theorem 3, it suffices to show that
cσ ≥ q+ cπ.

Let α = πi+1 . . . πi+t where{πi+1, . . . , πi+t} = [u+ 1, u+ t] for someu. Let C be
any compatible edge set ofGπ of sizecπ. PartitionC into four subsets as follows:

C1 = {(v,w) | v,w ∈ [u+ 1, u+ t]} both endpoints in [u+ 1, u+ t]
C2 = {(v,w) | π−1

v ≤ i,w ∈ [u+ 1, u+ t]} right endpoint in [u+ 1, u+ t]
C3 = {(v,w) | v ∈ [u+ 1, u+ t], π−1

w > i + t} left endpoint in [u+ 1, u+ t]
C4 = C \ (C1 ∪C2 ∪C3) no endpoint in [u+ 1, u+ t]

It follows from Theorem 3 that|C1| ≤ cα = t − 1 − q; i.e. t − 1 − |C1| ≥ q.
If |C2| ≤ 1 and |C3| ≤ 1, we construct a compatible set inEσ of the required
size as follows: LetC5 be the set oft − 1 unit edges obtained after sortingα;
C5 = {(u+ i,u+ i +1) | i ∈ [t−1]}. DefineC′ = C4∪C5. ThenC′ is a subset ofEσ,
and it is easy to see thatC′ is compatible. IfC2 ∪C3 = ∅, then|C1| + |C4| = cπ, so
C′ is the desired set. Otherwise,C′′ = C′ ∪ {(v,u+ 1) | (v,u+ i) ∈ C2 for somei ∈
[t]} ∪ {(u+ t,w) | (u+ j,w) ∈ C3 for somej ∈ [t]} is the desired set; compatibility
and size bounds are easily seen to hold.

i3 i2 i1 i + 1 j1 k1 j2 k2 j3 p3 r2 p2 r1 p1 i + t q1 q2 q3
¾ -

α = πi+1 . . . πi+t

Fig. 6: A compatible set ofGπ with α complete: a=3; b=3.

If either |C2| or |C3| exceeds 1, we show how to construct another compatible
subset ofEπ of sizecπ, in which the corresponding subsets|C2| and |C3| are both
of size at most 1. Then we can use the above argument.

Assume that|C2| = a ≥ 2. Let the edges ofC2 be (πi1, π j1), (πi2, π j2), . . . ,
(πia, π ja), where j1 < j2 < . . . < ja. By compatibility considerations, we have
ia < . . . < i2 < i1 < j1 < j2 < . . . < ja. Let the unique path inC containingπ jh end

CHARACTERIZING BLOCK SORTING 15

at the right atπkh. From compatibility considerations and the completeness ofα, it
can be argued that (πkh, π jh+1) ∈ Eπ. We defineC′2 = {(πi1, π j1)} ∪ {(πkh, π jh+1) | h ∈
[a− 1]}.

If |C3| = b ≥ 2, then a setC′3 of the same size is constructed in a symmetric way.
Let the edges ofC3 be (πp1, πq1), (πp2, πq2), . . . , (πpr , πpr), wherepb < . . . < p2 <

p1. By compatibility considerations, we havepb < . . . < p2 < p1 < q1 < q2 <

. . . < qb. Let the unique path inC containingπph end at the left atπrh. Again,
we can argue that the edges (πph+1, πrh) are indeed present inEπ, and we define
C′3 = {(πp1, πq1)} ∪ {(πph+1, πrh) | h ∈ [b− 1]}.

If both a,b ≥ 2, then it must be thatja < pb, since otherwise there will be edges
in C interleaving by position.

Clearly,C′2∪C′3 is of the same size asC2∪C3, and is disjoint fromC1∪C4. We
now show thatC′ = C1 ∪C′2 ∪C′3 ∪C4 is also a compatible subset ofEπ.

It is easy to see that none of the edges ofC′2 ∪C′3 interleave by position. Neither
do edges ofC1∪C4. And by our choice ofC′, an edge ofC′2∪C′3 will not interleave
by position with an edge ofC1 ∪C4.

If edges ofC′ interleave by value, then the corresponding edges ofC can simi-
larly be shown to interleave by value, sinceα is a complete substring.

It can be argued that if the inclusion graphG(C′, π) has a cycle, then so does
G(C, π), contradicting compatibility ofC. ¤

Note: The above result can be shown to hold even ifα is complete but not maximal;
however, the proved form is enough for our purpose.

6. Heuristics for the   problem

We revisit the 2-approximation algorithm of [18] and consider some heuristics in-
spired by it, especially in conjunction with the characterization of optimal solutions
of   in terms of compatible edge sets.

6.1 Minor refinements of the heuristic

We begin by looking at the examples presented for establishing the tightness of the
performance ratio in [18].

E 1. (a) For the permutationπ on 2n elements whereπ2k−1 = k andπ2k =

n+ k, we havebs(π) = n− 1 andbm(Sπ) = 2n− 2.
(e.g. 1 5 2 6 3 7 4 8.)

(b) For φ on [2n] such thatφi = 2i − 1 for i ≤ n andφi = 2i − n for i > n,
bs(φ) = n− 1 while bm(Sφ) = n.
(e.g. 1 3 5 7 2 4 6 8.)

(c) Forrevn, bs(revn) = n− 1 = bm(Srevn).

The permutationπ in Example 1(a) shows why the approximation
is bad; the approximate solution is twice as long as the optimal. Thus if we stop at
reportingn−1−bm(Sπ), we cannot do better than a factor of 2. However, we could

16 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

perhaps do better by actually constructing the solution of, mimick-
ing it onπ to get a block sorting sequence, and reporting the length of this sequence.
This length could be shorter thanbm(Sπ) because in the mimicking, some merge
moves become redundant. (For instance, consider the optimal solu-
tion to Sπ where we first moven+ 1,n+ 2, . . . ,2n− 1 to successors sequentially,
then we move 1,2, . . . ,n−1 to successors sequentially. Mimicking this with block
moves onπ, we find that the lastn− 1 moves are redundant; though the sequences
are not merged, the permutation is sorted after the firstn − 1 moves itself.) This
suggests the first heuristic.

Heuristic-1: Compute an optimal solution toSπ. Convert this to a
block sorting sequence onπ and remove redundant moves. Report this sequence.

Another noteworthy point aboutπ is that it can be sorted using the provably-
optimal moves of Section 5, which are easy to detect. So using the

solution without even trying to detect provably optimal moves is a mistake. This
suggests the next heuristic.

Heuristic-2: While there are provably-optimal moves (from Theorems 5, 6), per-
form these moves. Then apply Heuristic-1.

Further, note that the permutationφ in Example 1(b) is exactlyπ−1. And for φ,
the approximation via itself works very well. Sincebs(π) = bs(π−1)
(Corollary 3), this suggests the third heuristic.

Heuristic-3: Apply Heuristic-2 onπ andπ−1. Report the minimum.

The question is, do any of these heuristics have a performance ratio betterthan
2? Unfortunately, the answer is No. We find an example that nullifies all of the
above expectations.

E 2. Consider the sequence of the first 2n+ 1 odd numbers 1,3, . . . ,4n+ 1.
Insert the even numbers 2n+ 2,2n+ 4, . . . ,4n,2,4, . . . 2n, in this order between 1
and 3, between 3 and 5, and so on, and between 4n−1 and 4n+1. Let the resulting
permutation be denotedσ.
(e.g. forn = 2, we get 1 6 3 8 5 2 7 4 9. Forn = 4, see Figure 7.)
Thenσ−1 = σ, bs(σ) = 2n, andbm(Sσ) = 4n− 1.

An instance of the type of Example 2, with a largest compatible set, is depicted
in Figure 7.

1 10 3 12 5 14 7 16 9 2 11 4 13 6 15 8 17

Fig. 7: An alternative tight example with a largest compatible set

In the permutations of Example 2, going over to the inverse permutation does not
help. There are no provably optimal moves to begin with. And there are optimal
merging sequences onSσ which yield no redundant moves. (This is not to say
that no optimal merging sequence has redundant moves. But we only knowhow
to come up with some merging solution. We do not know how to explicitly search

CHARACTERIZING BLOCK SORTING 17

for one with many redundant moves.) Thus, Heuristic-3 on this example has an
approximation factor of 2.

Another, slightly weaker, scenario worth considering is whether largestnoncross-
ing setsC andC′ computed for the input permutation and its inverse together con-
tain a large enough compatible set to ensure a better than factor 2 approximation
ratio for  . Searching for such a compatible set inC ∪ C′ could be
easier, since there are fewer edges to begin with. Of course, Example 2 kills this
hope as well, sinceσ = σ−1.

6.2 A New Heuristic based on

The last heuristic considered in the previous subsection uses twice,
possibly after some preprocessing to remove provably optimal moves. However,
once a solution is found, it is used essentially as is, with some minor
preprocessing to remove redundant moves. In this section, we introducea heuristic
that uses repeatedly in a non-trivial way.

The exorbitant cost for block merging compared to block sorting in Example 2
is due to the fact that the permutation is broken up into many substrings in an
inconvenient way. It appears advisable that we keep a given permutation π as
such and somehow detect a preferred block move. This gives rise to the following
heuristic, defined formally in Figure 8.

Heuristic-4: Let the application of a block moveρ to π result in a permutation
denotedπ.ρ. Repeatedly choose the block moveρ that maximizes the difference
bm(Sπ) − bm(Sπ.ρ).

(1) Setπ0 = π.

(2) For j = 1 to#block(πi), move thejth block ofπi to its predecessor to obtain
πi, j and computebm(Sπi, j).

(3) Setπi+1 = πi, j if bm(πi, j) = min j{bm(Sπi, j)}. (Break ties by choosing the
largestj.)

(4) Repeat steps 2 and 3 untilπi+1 = idn.

Fig. 8: A heuristic for  based on 

(Note that we don’t gain anything by letting the heuristic check moves to succes-
sor as well, because the two permutations resulting from the move of any blockto
its predecessor and to its successor will both have the same kernel.)

It is clear that we can always find a block moveρ on π for which bm(Sπ) −
bm(Sπ.ρ) ≥ 1. Thus the above heuristic takes no more thanbm(Sπ) steps to sort,
and so it follows from [18] that the heuristic is obviously no worse than a factor
2 algorithm for . The question is, is its approximation factor better
than 2?

The heuristic behaves well on many test cases. In particular, it sorts all examples
presented so far in this paper optimally. In fact, finding permutations for which the

18 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

heuristic needs more thanbs(π) moves is itself non-trivial. Despite such favorable
evidence, we show that this heuristic is no better than a 2-approximation algorithm.
But the permutations we construct to establish this fact differ from the tight exam-
ples presented so far in that the worst case is attained only for asymptoticallylarge
permutations. Since the examples we construct appear to be typical of adversaries,
it may be hoped that the heuristic will be of some practical value nonetheless.

6.3 Tight Examples for the Heuristic

We show that the worst-case performance ratio of Heuristic-4 (the heuristic in Fig-
ure 8) is 2. The tight examples we provide for this purpose have long sequences
in the associated merging instances, in contrast to the tight examples we have en-
countered so far. As mentioned above, the only way to get an approximationfactor
better than 2 is to often find block moves wherebm(Sπ)−bm(Sπ.ρ) strictly exceeds
1. But note that this difference can be greater than 1 only if (and even then not
always) the block moved byρ is at the extreme end of some maximal increasing
substring ofπ. We use this intuition in constructing our examples.

We begin with a description of the permutations we are going to construct. The
lengths of the permutations will ben = (2p + 2)q = 2pq+ 2q, p,q ≥ 2. (The
associated instance will consist ofq increasing sequences of length
p andq increasing sequences of lengthp+2.) The construction is formally defined
below. However, the reader may find the equivalent description of Figure 9 more
insightful, as it highlights how pairs of elements are placed so as to make block
merging difficult. Figures 10 and 11 illustrate the construction for the case of
p = q = 3.

D 7. For any p,q ≥ 2, let n= (2p+ 2)q = 2pq+ 2q. Define the following
sequences for1 ≤ i, j ≤ q:

(1) wi = i,q+ i,2q+ i, . . . , (p− 1)q+ i.

(2) xj = pq+ j, pq+ q+ j, pq+ 2q+ j, . . . , pq+ (p− 1)q+ j.

(3) zi = 2pq+ i,2pq+ q+ i.
Then the permutationπ(p,q) is defined by the sequence
w1 z1 xq w2 z2 xq−1 . . . wq zq x1.

Considera(π(p,q)), the number of block moves needed by Heuristic-4 onπ(p,q).
In the next three lemmas, we show thatbm(Sπ(p,q)) is roughly 2pq, thata(π(p,q)) =
bm(Sπ(p,q)), and thatbs(π(p,q)) is roughly pq. Together, these results give Theo-
rem 7, namely, that the approximation factor of Heuristic-4 is no better than 2.

L 11. bm(Sπ(p,q)) = 2(pq− p+ q) − 1.

P. Let π = π(p,q), with the corresponding instanceSπ. From
Lemma 1, it suffices to show thatc(S) = 2p. We decomposeHπ into two graphs:
A is the induced subgraph on nodes labeled from the set{1,2, . . . , pq} ∪ {2pq+
1, . . . ,2pq+ 2q}, andB is the induced subgraph on the rest. (A is the restriction

CHARACTERIZING BLOCK SORTING 19

(1) Use the elements 1,2,3, . . . ,2pq − 1,2pq to form pq nested intervals
(1,2pq), (2,2pq− 1), (3,2pq− 2), . . . , (pq− 1, pq+ 2), (pq, pq+ 1).

(2) Partition these intervals intoq groups ofp intervals each so that theith group
consists of everyjth interval, j (mod q) = i.

(3) Nest the intervals in each of theq groups in the natural way to formq disjoint
subsequences of 1,2,3, . . . ,2pq− 1,2pqof length 2p each.

(4) Insert the pair of elements 2pq+ i,2pq+ q+ i, 1 ≤ i ≤ q, afterp elements in
the sequence corresponding to theith group of intervals.

(5) Concatenate the above sequences derived from the first, second, . . . ,qth
group of intervals in order to obtain a permutation of length 2pq+ 2q.

Fig. 9: Construction of tight examplesπ(p,q) from Definition 7 for Heuristic-4 (Figure 8)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 10: The construction forp = 3, q = 3

of Hπ to the substringswizi , B is the restriction to substringsx j .) SinceHπ has no
edges with one endpoint inA and one inB, these induced subgraphs completely
coverHπ.

Our first observation is that no edge fromA crosses any edge fromB. So we
can independently find largest non-crossing sets in these two graphs and put them
together. We will show that largest noncrossing sets inA andB have sizes exactly
p+ 1 andp− 1 respectively, proving the lemma.

We first show the lower bound: we exhibit noncrossing sets of sizep + 1 and
p− 1 in A andB respectively. But this is easy; all edges linking adjacent elements

1 4 7 19 22 12 15 18 52 8 20 23 11 14 17 63 9 21 24 10 13 16

Fig. 11: The structure ofπ(3,3) and its largest compatible set

20 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

in anywizi or anyx j gives the required set.
Now we come to the upper bound, which is highly non-trivial. We considerA

first. If we arrange the nodes ofA in increasing order, we can group them into
p+ 2 groups each containingq elements. Thelth groupgl has elementsql+ 1,ql+
2, . . . ,ql + q for 0 ≤ l ≤ p − 1, while the groupsgp and gp+1 have elements
2pq+ 1, . . . ,2pq+ q and 2pq+ q+ 1, . . . ,2pq+ 2q, respectively. The edges ofA
connect elements across groups if their position within the group is the same. Let
us denote byBl the boundary between groupsgl−1 andgl , for 1 ≤ l ≤ p + 1. An
edge originating in groupgl and ending in groupgk spans boundariesBl+1, . . . , Bk.
We now analyze how edges in a noncrossing set can cross boundaries.

Given any noncrossing setC in A, consider the directed graphGC = (C, F),
where (e, f) ∈ F if e containsf by value and there is nof ′ ∈ C distinct frome, f
such thatecontainsf ′ and f ′ containsf . Now, our argument is as follows:

(1) GC is acyclic, with each component being a rooted tree.
(This is obvious; we cannot have directed cycles based on containment by
value.)

(2) The sets of boundaries spanned by roots of distinct trees are disjoint. Also,
the sets of boundaries spanned by siblings are disjoint.
(This follows from the fact that if the set of boundaries spanned bye intersects
the set of boundaries spanned byf , then eithere must containf or f must
containeor eand f must cross.)

(3) At each nodee of GC, the corresponding edge spans at least one boundary
not spanned by the edges of any of its children.
(Suppose not. Lete originate in groupgl and end in groupgl+k, so it spans
boundariesBl+1, . . . , Bl+k. Saye is (ql + i,q(l + k) + i) for somei. SinceBl+1

is spanned by a child, the first child must originate ingl ; since it does not
crosse, it must originate “to the right” ofe, atql+ j for somej > i. The next
child must originate in the same group that the first child ends, otherwise a
boundary will be left unspanned. So it must also originate to the right ofe.
Continuing this way, the edge corresponding to every child ofe originates to
the right ofe. But this means that the last child cannot spanBl+k; to do so,
it would have to reach a node in groupgl+k to the right ofq(l + k) + i, thus
crossinge.)

(4) A leaf spans at least one boundary.
(This is because there are no edges ofA within a group; all edges span at least
one boundary.)

(5) The number of nodes in the subtree rooted ate is at most the number of
boundaries spanned bye.
(This follows from straightforward induction on the height ofe in GC. (4)
above is the base case, and (3) carries the induction through.)

It now follows from (2) and (5) above that the number of vertices in the entire forest
is at most the number of boundaries, which isp+ 1. But the number of vertices in
the forest is|C|, the size of the non-crossing set. Hence|C| ≤ p+ 1.

CHARACTERIZING BLOCK SORTING 21

Now consider the induced subgraphB. Its structure is isomorphic to that ofA,
the only difference being that it hasp groups, notp+ 2, and sop− 1 boundaries.
It follows that a largest noncrossing set inB has size at mostp− 1. ¤

L 12. a(π(p,q)) = bm(Sπ(p,q)).

P. Let π denoteπ(p,q). We know that a block moveρ satisfiesbm(Sπ) −
bm(Sπ.ρ) > 1 only if it leads to a permutation with a larger increasing substring.
A straightforward inspection shows that there are no such block moves possible in
π. Therefore the heuristic moves the last block ofπ. The resultant permutation,
sayπ′, also hasbm(Sπ′) − bm(Sπ′.ρ) = 1 for every block moveρ. So the heuristic
again moves the last block ofπ′. In fact, the heuristic moves the last block in each
of the subsequent steps, all the way until the permutation is sorted. At no point
along the way does it reach a permutationφ on which there is a block moveρ with
bm(Sφ) − bm(Sφ.ρ) > 1.

Since at no step doesbm(.) drop by more than one, and sincebm(.) drops by one
at each stage, it follows that this sequence is of lengthbm(Sπ). (In fact, one can
also directly see that this sorting sequence is an optimal merging sequence for Sπ.)
¤

L 13. bs(π) ≤ pq+ 2q− 2.

P. Let π = π(p,q), p, andq be as given. In the construction ofπ, the pq
intervals inA = {(1,2pq), (2,2pq−1), (3,2pq−2), . . . , (pq−1, pq+2), (pq, pq+1)}
are partitioned intoq groups each of sizep, and the intervals in each group are so
nested and placed inπ so that they constitute a compatible set of edges in the
associated graphG[π].

The remaining elements 2pq+ 1,2pq+ 2, . . . ,2pq+ 2q occur as adjacent pairs
2pq+ i, 2pq+ q + i, 1 ≤ i ≤ q, in the permutation. The corresponding edges
(2pq+ i,2pq+ q+ i), 1 ≤ i ≤ q, of G[π] interleave mutually. But none of theseq
edges interleaves with any of the edges inA. Thus exactly one of these edges can
be added toA to get a compatible set of size|A| + 1 = pq+ 1.

Hencecπ ≥ pq+ 1, and so from Theorem 3, it follows thatbs(π) ≤ pq+ 2q− 2.
A more direct way to see this is to exhibit a sorting sequence of this length. Here

is one such sequence, corresponding to the compatible setA∪ {(2pq+ 1,2pq+ 2)}
described above. First, collect the elements 2pq+ q+ 1, . . . ,2pq+ 2q together at
the location of 2pq+ q+ 1; this needsq− 1 moves. Second, collect the elements
2pq+ 1, . . . ,2pq+ q together at the location of 2pq+ 1; this needsq − 1 moves.
Now we have the elements 2pq + 1, . . . ,2pq + 2q in a single block, sayz, and
we move it to the end. So we have the sequencew1xqw2xq−1 . . .wqx1z. Thewqx1

part shows thatpq, pq+ 1 are in a single block. Repeatedly move this block to its
predecessor. It will also join up with its successor. Thus inpq− 1 such moves, the
whole sequence is sorted. Overall, we used (q−1)+(q−1)+1+(pq−1) = pq+2q−2
moves.¤

22 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

T 7. Heuristic-4 (given in Figure 8) is a factor 2 approximation algorithm
for  . For any 0 < ǫ ≤ 1, the approximation factor achieved by
Heuristic-4 exceeds2− ǫ.

P. That the approximation factor for the heuristic is no worse than 2 is clear.
To see that it is no better, let us consider the ratioa(π)

bs(π) , whereπ = π(p,q) is as

defined in Definition 7 and Figure 8.

a(π)
bs(π)

=
bm(Sπ)
bs(π)

≥
2(pq− p+ q) − 1

pq+ 2q− 2
= 2

1− 1
q +

1
p −

1
2pq

1+ 2
p −

2
pq

= F(p,q)

Clearly, for anyǫ, we can choosep,q large enough so thatF(p,q) > 2 − ǫ.
In fact, for anyǫ, and for anyq > 2/ǫ, we can choosep large enough so that
F(p,q) > 2− ǫ. ¤

6.4 An Alternative Method

The examples we constructed seem to imply that the heuristic fails to perform well
simply because of the way it breaks ties in step 3 of Figure 8. It fails to detect
series of 2 or morebad blocks moving all of which effects a huge reduction in
the block merging distance. (In the above example, moving out thezi blocks first
brings down the merging distance; forπ′ = w1xq . . .wqx1, it is easy to see that
bm(Sπ′) = bs(π′) = pq− 1.) Since “huge reductions” translates to huge increases
in the number of “noncrossing edges” in the corresponding merging instance, we
propose the strategy of removing all bad blocks at once. This is equivalent to find-
ing a subsequenceπ′ of π which maximizes, over the choice of all subsequences,
the size of the largest noncrossing set in the corresponding merging instance. We
note that this method computes the optimal solutions themselves for at least the
counterexamples constructed in Subsection 6.3. On the other hand, this method is
not tractable, since the number of subsequences over which we wish to maximize
a choice is exponentially large.

We observe that by suitably generalizing to permutations the notion of noncross-
ing sets of edges defined for instances of, we can obtain a larger
compatible set than the one obtainable from the method described above. One
characterizing property of noncrossing sets viewed as compatible edge sets is that
every inclusion by position implies inclusion by value as well. Let us define a
strongly compatible setto be compatible set which satisfies this property: i.e., if
an edge includes another edge by position, then it includes it by value as well.
This property ensures the acyclicity of the inclusion graph. See for instance Fig-
ure 12. Thus, every noncrossing set inHπ is a strongly compatible set inGπ, and
every strongly compatible set inGπ is also compatible. This raises two questions:
(1) Does the length of a sorting sequence based on a largest strongly compatible
set have a better approximation tobs(π) than 2? and (2) Can largest strongly com-
patible sets be computed efficiently?

CHARACTERIZING BLOCK SORTING 23

1 9 17 2 10 18 3 11 19 22 14 6 23 15 7 24 16 8 4 12 520 13 21

Fig. 12: Different strong compatible sets of largest cardinality

We do not know the answers to these questions. It appears that the computa-
tion of largest strong compatible sets may be difficult: it lacks optimal substruc-
ture property and so straightforward application of dynamic programming does not
work. Also, it appears that for the inverses of the permutationsπ(p,q), a largest
strong compatible set is quite small (we are unable to construct one larger than
p+1), whereas there are compatible sets of sizepq+1 (as follows from Lemma 13).
So the ratio of the approximate solution value to the optimal value again approaches
2 asp,q become large.

It is interesting to note that a largest strong compatible set seems to be large for
at least one ofπ andπ−1. Thus it becomes worthwhile to analyze the ratio of the
corresponding approximate solution values tobs(π) = bs(π−1).

6.5 Other Heuristics

For completeness, we briefly discuss other approaches, not necessarily based on
. Some fast heuristics for block sorting are discussed in [11, 15].
However, these heuristics do not even have an upper bound of 2 on their approx-
imation ratio, so we do not consider them here. (Our focus here is on explaining
why attempts to beat the ratio 2 have not succeeded.)

A 2-factor approximation not based on is proposed in [4]. This
algorithm is based on absolute block deletion: given a sequenceπ of distinct inte-
gers, repeatedly delete a block until a monotone sequence is left behind. Let the
length of the shortest such sequence be denotedabd(π) (or tabd(π) if the empty
sequence is to be left behind). It is shown in [4] thatbs(π) ≤ abd(π) ≤ 2bs(π) and
thatabd(π) is efficiently computable, giving the desired approximation.

There are instances on which absolute-block-deletion outperforms blockmerg-
ing; in the concluding section of [4], an example 3 7 9 4 8 1 5 2 6 is presented
where the former leads to a sequence of 4 moves (delete 2, 8, 1, 4 5 6) whileblock
merging needs 6 moves (move in that order 2, 3, 4, 6, 8, then 7 8 9). Also, for the
permutationsπ of Example 1,abd(π) = bs(π) = n − 1, while bm(π) = 2n − 2.
On the other hand, Example 3 shows that block merging can outperform absolute-
block-deletion by a multiplicative factor tending to 2.

24 M. MAHAJAN, R. RAMA, S. VIJAYAKUMAR

E 3. Consider the sequenceσ(0,n) = 1 3 5 . . . (2n − 1) 2 4 6 . . . (2n −
2) on 2n − 1 elements, and the sequencesσ(p,n) obtained by translating each
element ofσ(0,n) by p(2n − 1). For each pair of positive integersm,n, con-
struct the permutationτ(m,n) on m(2n− 1) elements by stringing togetherσ(m−
1,n), σ(m − 2,n), . . . , σ(1,n), σ(0,n). For instance,σ(0,3) = 1 3 5 2 4, and
τ(2,3) = σ(1,3)σ(0,3) = 6 8 10 7 9 1 3 5 2 4.

It is straightforward to see thatbs(σ(0,n)) = bm(σ(0,n)) = abd(σ(0,n)) = n−1.
To perform block merging onτ(m,n), we can merge eachσ(i,n), i = 0,1, . . . , k−

1, withn−1 steps. Then we havemnon-empty lists of blocks, which can be trivially
merged inm−1 more moves. Thusbm(τ(m,n)) = (n−1)m+m−1 = mn−1. Also,
the first (n− 1)m block merge moves are optimal block moves by Theorem 5, and
they leave behind a permutation with kernelrevm, needingm− 1 block moves to
sort. Hencebs(τ(m,n)) = bm(τ(m,n)) = mn− 1.

Via absolute block deletion, it is easy to see that the final monotone sequenceleft
behind can have elements from at most oneσ(i,n). All otherσ(j,n) must be totally
deleted. For eachj, we havetabd(σ(j,n)) = 2n− 2 andabd(σ(j,n)) = n− 1. Thus
we getabd(τ(m,n)) = (2n− 2)(m− 1)+ n− 1 = 2mn− 2m− n+ 1.

Thus, asm,n tend to infinity,abd(τ(m,n)) tends to 2bm(τ(m,n)) = 2bs(τ(m,n)).

We note that for the inverses of the permutations presented in Example 3,abd(π)
in fact equalsbs(π). But this seemingly dual nature of absolute block deletion and
block merging does not go too far. For the permutationsπ(p,q) of Section 6.3 as
well as their inverses, it can be verified that bothabd(π(p,q)) andbm(π(p,q)) get
arbitrarily close to 2bs(π(p,q)) with increasing values of the parametersp andq.

7. Conclusion

The combinatorial characterization of optimal solutions of  has nat-
urally triggered many computationally relevant explorations. The theorems about
good moves prompted the search for nontrivial tight examples for the approxima-
tion algorithm of [18]. The heuristic inspired by the problem and
its tight examples ultimately leads to the identification of a natural intermediary
between noncrossing sets and compatible sets called strong compatible sets. This
little understood concept opens a definite new window for further research on the
  problem.

Acknowledgments

The results of Sections 3, 4 and 5 appear in a preliminary version titled “Towards
constructing optimal block move sequences”[19] in the Proceedings of the10th
International Computing and Combinatorics Conference, COCOON 2004.

This work was done when the third author was with the Department of Mathe-
matics, IIT Madras, India, and then with the Institute of Mathematical Sciences,
Chennai, India.

CHARACTERIZING BLOCK SORTING 25

References

[1] B, V.  P, P.. 1996. Genome rearrangements and sorting by reversals.SIAM
Journal on Computing 25, 272–289.

[2] B, V.  P, P.. 1998. Sorting by transpositions.SIAM Journal on Discrete
Mathematics 11, 2 (may), 224–240.

[3] B, W. W., L, L. L., L, S.,  S, I. H. 2003. Block Sorting is
Hard. International Journal of Foundations of Computer Science 14, 3 (june), 425–437.

[4] B, W.W., L, L.L., M, L.,  S, I.H. 2005. A Faster and Sim-
pler 2-Approximation Algorithm for Block Sorting. InProc. of 15th InternationalSympo-
sium on Fundamentals of Computation Theory, LNCS 3623. Springer, 115–124.

[5] C, D. A. 1999.Genome Rearrangement Problems. PhD thesis, Univ. of Glasgow.
[6] E, I.  H, T. 2005. A 1.375 approximation algorithm for sorting by transposi-

tions. InProc. 5th International Workshop on Algorithms in Bioinformatics WABI, LNCS
3692. Springer.

[7] E, I.  H, T. 2006. A 1.375 approximation algorithm for sorting by trans-
positions. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3, 4,
369–379.

[8] E, N.. 2002. 1+ ǫ approximation for sorting by reversals and transpositions.Theo-
retical Computer Science 289, 517–529.

[9] E, H., E, K., K, J., S, L., W̈, J.. 2001. Sorting
a bridge hand.Discrete Mathematics 241, 289–300.

[10] G, W. H.  P, C. H. 1979. Bounds for sorting by prefix reversals.Dis-
crete Mathematics 27, 47–57.

[11] G, R., L, S.,  B., W.W. 2000. Adaptive sorting algorithms for evaluation
of automatic zoning employed in OCR devices. InProceedings of the 2000 International
Conference on Imaging Science, Systems, and Technology. CSREA Press, 253–259.

[12] G, Q. P., P, S., S, H. 1999. A 2-approximation algorithm for genome
rearrangements by reversals and transpositions.Theoretical Computer Science 210, 2,
327–339.

[13] H, T.. 2003. A simpler 1.5 approximation algorithm for sorting by transpositions.
In Proceedings of 14th Annual Symposium on Combinatorial Pattern Matching, LNCS
2676. Springer-Verlag, 156–169.

[14] H, T.  S, R.. 2006. A simpler and faster 1.5-approximation algorithm for
sorting by transpositions.Information and Computation 204, 2, 275–290.

[15] K, J., R, S.V.,  N., T.A. 1995. Automatic evaluation of OCR zoning.
IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 86–90.

[16] K, J. S, D. 1995. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement.Algorithmica 13, 180–210.

[17] M, M., R, R., R, V.,  V, S. 2003. Merging and sorting by
strip moves. InProceedings of the 23rd Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS), LNCS 2914. Springer-Verlag, 314–325.

[18] M, M., R, R., R, V.,  V., S. 2006. Approximate block sort-
ing. International Journal of Foundations of Computer Science 17, 2, 337–355.

[19] M, M., R, R.,  V, S. 2004. Towards constructing optimal block
move sequences. InProceedings of the 10th International Computing and Combinatorics
Conference, (COCOON), LNCS 3106. Springer-Verlag, 33–42.

[20] V, J. P. C. 1997.Sorting by Bounded Permutations. PhD thesis, Virginia Polytech-
nique Institute and State University.

