GENERAL ARTICLE

Depth-2 threshold circuits

Provable limitations

Meena Mahajan

Circuits with linear threshold functions as primitives are a
natural model for computation in the brain. Small threshold
circuits of depth two cannot compute most functions, but how
do we prove such a statement? And how do we lay our hands
on explicit functions that they cannot compute? This article
gives an overview of the landscape.

Introduction

In a world increasingly driven by technology, better (faster, or
more efficient, or better in some other way) algorithms are often
the key to opening up new possibilities. But when does one stop
trying to devise a better algorithm for a task? When the algorithm
at hand is already “optimal” and cannot be improved. A cen-
tral goal of computational complexity theory is to provide these
“stopping” criteria — to establish lower bounds on the amount of
resource (time, space, circuit size, ...) required to solve problems.
Thus we seek a better understanding of the capabilities, and the
limitations, of various computation models. This article focuses
on one specific model: circuits with linear threshold functions as
the primitive operation.

1. The Computation Model

Linear threshold functions

The primitive operations we use are linear threshold functions,
LTFs. Such a function evaluates to the value 1 if a certain linear
combination of the input values exceeds a certain threshold, and
otherwise evaluates to 0. (All input and output values are Boolean

Meena Mahajan works in the
theoretical computer science
group at the Institute of
Mathematical Sciences
(IMSc, HBNI) in Chennai.
Her research is in the area of
computational complexity.
She is particularly interested
in questions concerning
circuit complexity - how
much circuitry is needed to
compute a function, and in
proof systems - how hard is it
to prove that a false statement
is indeed false.

Keywords
computation, circuits, threshold
functions, complexity

-

RESONANCE | March 2019

GENERAL ARTICLE

Notice that the GT
function is defined for
each natural number 7.
This is typical in
complexity theory; we
are interested in
quantifying how the
amount of resource
needed to solve a
problem grows as the

input size increases.

Figure 1. Some 2-variable
LTFs. The functions are 1 at
the blue points and 0 at the
red points. The separating 2-
dimensional hyperplanes are
lines.

—eitherOor 1.)

Here’s an example. The GreaterThan function on 2n arguments,
GT, : {0,1}* x {0, 1} — {0, 1}, is defined as follows:

1 ifX>Y

GTu(x1, %2, 3 Xy Y1,¥2, 0% 5 Yn) = i
(X1, x2 Xns> Y152 Yn) {0 otherwise

where X and Y are the numbers whose representation in binary
are the bit strings ¥ = x;xp---x, and y = y;yp---y,. This is an
LTF, as can be seen from the identity

GT (%) = 1 &= [Z 2"—"x,~] - (Z 2"—fy,-] > 1.

i=1 i=1

In general, a Boolean function f : {0,1}" — {0, 1} is an LTF if

there exist real numbers wg, wy, - -+ ,w, such that for every x €
{0, 1}, f(x) = 1if and only if }}; w;x; > wg. The weights w; are
said to realise the function f. If we consider the discrete set of
points {0, 1}" in R”, then the hyperplane), w;x; = wq separates
the Os and 1s of f.

Threshold circuits

The basic model we consider is that of circuits. These are directed
acyclic graphs, or networks, with Boolean (zero or one) values
travelling along every edge or wire. At each node, the values
along the incoming edges are combined according to the primi-
tive operation at that node, and the resulting value travels along

4\/\/\/\/\N RESONANCE | March 2019

GENERAL ARTICLE

all outgoing edges. In threshold circuits, each node computes an
LTF, though the specific functions at different nodes could be dif-
ferent. A simple example is shown alongside. You can verify
that f(x,y) = 1 exactly when x # y.

The complexity measure

The size of a threshold circuit is the number of nodes (and edges)
in it. The depth is the longest directed path in the circuit; equiva-
lently, the maximum number of nodes an input value has to “flow
through” before reaching the output wire. In the above example,
the size is three (ten if we also count edges) and the depth is two.

Threshold circuits are essentially the same as neural networks.
A single LTF node i.e. a depth-1 circuit, is a neuron; a depth-
2 threshold circuit is a shallow neural network (a perceptron); a
depth-d threshold circuit is a neural network with d — 1 hidden
layers.

Where we stand today

Every function can be computed by threshold circuits. In fact,
every function can be computed by a threshold circuit of depth
2. (Can you figure out why?) But the size of the circuit may be
very large; it may be exponential in n. For efficient computation,
we’d like circuits of polynomial size. As we will see below, we do
know, provably, that there are functions that cannot be computed
by depth-2 threshold circuits of polynomial size. An example?
We don’t have one! We can prove that hard functions exist, but
we do not yet know how to lay our hands on one explicitly de-
scribed function that is hard! So depth-2 threshold circuits are at
the current frontier of lower bounds. Let us see what it took even
to reach this frontier.

2. A single gate

Recall the “separating hyperplane” description of LTFs. For 2-bit
functions, we want a separating line. The 1s of the 2-bit function

Tf (x,y)

RESONANCE | March 2019 4\/\/\/\/\N

GENERAL ARTICLE

y no separating line

)(

A counting argument: If
set A is larger than set B,

then there must be
objects in A but not in B.

x # y cannot be separated from the Os by any line in the plane R
More generally, the PARITY function, defined as

PARITY , (x1,x2, -+ , x,) = 1 & x1+x2+--- x,, is an odd number

is not an LTF. (The x # y function is just PARITY;.) So not all
functions are LTFs.

Actually, the situation is much more extreme; most functions are
not LTFs. To see this, we can use a useful fact about LTFs: ev-
ery LTF bits can be realized by a weight vector of integers, and
furthermore, for the n-bit function, the integers are no more than
2¢n10g in magnitude, for some absolute constant c.

Why? Let f be an LTF realised by a real vector w. The system of
2" linear inequalities in unknowns W;, i € [n],

YiWixi>1 forie f1(1),
i Wix; <0 forie f1(0)

certainly has a solution, obtained by suitably shifting and scaling
w. But this solution is not unique. If we use linear programming
techniques such as the Simplex algorithm, we will obtain a ra-
tional solution where the entries are not too large in magnitude,
because all coefficients in the system are O or 1. (Recall, we con-
sider only Boolean functions.) Clearing the denominators gives
the desired integer weight vector realising f.

How does this fact help us? Well, now we know that the number
of n-bit LTFs is bounded by the number of weight vectors of this
magnitude. Each of the n + 1 weights w; can be any integer in
the range —2°1°27 ... _1,0,1,--- 21027 g0 there are at most
(26” logn+1 4 1)n+1 such vectors. But the number of Boolean func-
tions is much much more; 22*; so most functions are not LTFs.

A natural question that would arise at this point is, why do we
even allow integer weights as large as 2"1°¢"? Shouldn’t we
also restrict weights to have polynomial magnitude? We cer-
tainly could, and then we would get a class of functions that
we could denote LTF. Small weights means we can duplicate
wires and eliminate weights altogether, and use the most natural

4\/\/\/\/\N RESONANCE | March 2019

GENERAL ARTICLE

threshold function, namely the Majority function Maj. For exam-
ple, the LTF that checks 3x — 2y + z > 27 can be expressed as
Maj(x, x, x,¥,9,z,0). (Note, ¥ denotes the negation of y; that is,
1 —y. We will consider negating a Boolean value as a free oper-
ation.) If the weights are large, the duplications are large and we
may end up with more than polynomially-many wires. That’s a
good reason to look for small-weight realisations. And that’s why
we will simply say MAJ when referring to the class LTF .

It turns out not all LTFs are in the class MAJ. A concrete example
is the function GT we saw earlier. Why isn’t it a small-weight
LTF? (If you haven’t seen this earlier, PAUSE reading this now!
Spend a few minutes thinking of how you would prove this. If you
succeed, great; in any case, then read on!) For any f : {0, 1}" X
{0,1}" — {0, 1}, we can set up a square matrix M of order 2"
with 0-1 entries as follows: there is a row for each assignment to
the variables ¥, and a column for each assignment to the variables
y. The entry My|a, b] is just f(a,b). Analysing this matrix is
crucial in many lower bound arguments. For a function in MAJ,
say realized as (W, X) + (W', y) > t with small integers, the number
of distinct values taken by (W, X) is small, at most a polynomial
in n (even though there are 2" settings to X). So there are distinct
%, x’ with the same weighted sum. The corresponding rows in M
must then be the same. But for the GT function, all rows of the
matrix are distinct; hence it is not an MAJ.

3. Depth-2 circuits

Let’s move on to depth-2 circuits. Recall, we counted Boolean
functions and showed that this number is much more than the
number of LTFs. More or less the same argument shows that
this number is also larger than the number of depth-2 threshold
circuits of polynomial size. Not just larger, but much larger. In
fact, if we pull out an n-bit function uniformly at random from
all n-bit functions, then with overwhelmingly high probability it
has no polynomial-size depth-2 threshold circuit. So finding one
such function is like searching for not the proverbial needle in the

M is called the
communication matrix
of f. Imagine that Akbar
and Birbal are trying to
compute f, but Akbar
only knows x, and Birbal
only knows y, and
communication is costly.
They study M to figure
out the minimum
communication that can
let them compute f. See
[KN97] for an
introduction to
communication
complexity.

RESONANCE | March 2019 4\/\/\/\/\N

GENERAL ARTICLE

LTF o LTF

MAJ o LTF LTF o MAJ

MAJ o MAJ

haystack but for the hay itself! Why would this be hard? Well,
it is hard because we don’t yet have enough tools to tell apart the
needle from the hay. We need to develop mathematical techniques
that will let us conclude that a function is not easy in this model.

To begin with, let us carefully describe the types of depth-2 thresh-
old circuits. Let AoB denote functions computable by polynomial-
size depth-2 circuits where the top node computes a function from
the class A, and nodes at the bottom layer compute functions from
the class B. We now have four types of circuits: LTF o LTF,
LTF o MAJ, MAJ o LTF, MAJ o MAJ, and the figure alongside
shows which class is contained in which by definition. The good
news is that we do know quite a bit about three of these types.
Let’s see these one by one.

It is known (Theorem 24 in [GHR92]) that every LTF can be com-
puted by a depth-2 threshold circuit with no large weight func-
tions, that is, in MAJ o MAJ. This is quite surprising. (If you don’t
find it surprising, PAUSE, and try to construct a polynomial-size
small-weight depth-2 threshold circuit for the GT function!) This
containment is actually strict; we have already seen that x # y
function is a separating function; it is not an LTF, and we saw a
depth-2 circuit computing it. More generally, let f be any “sym-
metric” Boolean function (for instance, PARITY); then it has a
depth-2 circuit. Here symmetry means that the function value
does not depend on the order amongs the arguments; f(xy, - - - x;)
equals f(xx1), "+ , Xz(n)) for any permutation n. Such a function
in fact is determined entirely by the value of SUM = xj +- - - + x;,.
So it has the form f(x) = 1 & SUM € § for some S C
{0,1,--- ,n}. Now here’s the depth-2 circuit: At the bottom level,
we have 2|S| nodes, computing the MAJ functions [SUM > i?],
[-SUM > —i?] for each i € §. The top node just checks if at least
IS| + 1 of these 2|S| nodes output a 1. Since |§] is at most n, no
large weights are required. Neat, isn’t this?

A notable feature of the proof from [GHR92] that LTF € MAJ o
MAJ is that it is not constructive. It does not give us an algorithm
that can convert an LTF to a depth-2 small-weight threshold cir-
cuit; it only proves that such a circuit exists. Such proofs seem

4\/\/\/\/\N RESONANCE | March 2019

GENERAL ARTICLE

useless to the algorithms designer, but are quite valuable for prov-
ing lower bounds. They typically proceed as follows: construct
an object of the desired type (in this case, a depth-2 small-weight
threshold circuit) “randomly” following some process that uses
randomness - coin flips - in the construction. Carefully analyse
the probability that this random circuit does not compute the de-
sired function. Show that this probability is strictly less than 1.
Ergo, there must be some choice in the random process where the
resulting circuit does compute the desired function. (The analysis
can get quite tricky and intricate, so you need the probability the-
ory toolkit even if you are not specifically looking at randomized
computation!) It is a different matter that subsequently, explicit
constructions have been devised, for instance, [Hof96].

The proof of the above result can be extended to show something
even stronger: not just LTF, but even MAJ o LTF is contained in
MAJ o MAJ (Theorem 26 in [GHR92]). That is, if weights at the
top node are small, then the bottom weights don’t matter.

The above two results are “simulation” results; an LTF node or
circuit can be simulated by a small-weight threshold circuit with
some restrictions. Coming to lower bounds, let’s describe a func-
tion not in MAJ o MAJ. The OddMaxBit function is defined as
follows: OMB,,(z) = 1 if the last 1 in 7 is in an odd-numbered po-
sition. This is an LTF; check if 2'z; —2%2,+23 73—+ - - +(=1)""12",
is positive. Now we use a composition trick often used to pro-
duce hard functions: instead of giving the OMB function its n
bits of input, give 2n input bits %, § and evaluate OMB on the bit
string where each z; is 1 exactly when both x; and y; are 1. We
denote this composed function by OMB,, o AND,. It is clearly
in LTF o MAJ; the bottom layer nodes can compute the z;s as
[x; + y; = 27?], and the top node is the OMB function. The large
weights at the top are essential; this function is provably not in
MAJ o MAJ. The proof of this proceeds as follows: if a function
f has a MAJ o MAJ circuit, then at least one of the LTF functions
from the bottom layer must do a pretty good job of “discriminat-
ing” between the zeros and the ones of f ((HMP*93]). To make
this more precise, let A = {Z | f(z) = 1} and B = {Z | f(z) = O}

A probabilistic
argument.

RESONANCE | March 2019 4\/\/\/\/\N

GENERAL ARTICLE

the discrepancy
technique; very useful in
showing that some
functions have large
communication
complexity.

the sign-rank technique;
also invaluable in
communication
complexity.

For an arbitrary function g, consider the quantity

Ang ') 1Bng (D)
|A] |BI

If g = f, then the first term is 1 and the second is 0, so this quan-
tity is 1. Otherwise, the first quantity could be less than 1; the
second could be more than 0. We say that g is a S-discriminator
if the difference is at least 5. A MAJ o LTF circuit for f gives
a reasonably good discriminator (good means £ is not tiny) that
is itself an LTF. (This will be the case even if we give differ-
ing importance to different inputs — imagine a probability distri-
bution u on the inputs of f, usually it is uniform, all inputs are
equally likely; then as u changes, different LTFs from the bottom
layer may be the appropriate good discriminator.) This means
that in the matrix My, there must be a large submatrix with large
“discrepancy” — large imbalance between 1s and Os. But for the
function OMB,, o AND,, we know that the corresponding matrix
has exponentially small discrepancy — every submatrix is almost
balanced ([BVdWO07]).

Another very recent result is that LTFoMAJ C LTFoLTF ([CM18]).
That is, if weights at the top node are large, then the weights at
the bottom do matter. The separating function is again a com-
posed function: OMB,, o EQ,,. Here, EQ, is the function with
2n arguments that outputs 1 exactly when ¥ = y. So the com-
posed function can be thought of as follows: There is a set of n”
variables arranged in a square matrix X, and a set of n? variables
arranged in a square matrix Y. Find the largest index i € [n], such
that the ith rows of X and Y are identical. (If there is no such
row, set i = 0.) Now output 1 exactly when i is odd. (Stop for a
moment to figure out why this function is in LTF o LTF!) Now for
the lower bound: let’s re-encode the matrix M with —1, 1 instead
of 0, 1. For any matrix M with real entries, its “sign rank” is the
minimum rank of a real-valued matrix each of whose entries has
the same sign as the corresponding entry of M. In [FKL*01],
it is shown that if a function has large sign-rank, then it cannot
have small LTF o MAJ circuits. And in [CM18] it is shown that
the OMB o EQ function indeed has exponentially large sign-rank.

4\/\/\/\/\N RESONANCE | March 2019

GENERAL ARTICLE

Here’s a nice challenging question. The Inner Product function
IP is defined as follows:

1 ifx1y1 + o+ XpYn is odd
0 otherwise

IPu(%,3) = {

It was shown that this function is not in MAJ o MAJ ((HMP*93])
using the discriminator-circuit technique. It was then shown to
be not even in LTF o MAJ ([For02]), by showing that it has large
sign-rank. To this day, we do not know whether it is in LTF o LTF.
Can we prove this? Or can we design a polynomial-size LTFoLTF
circuit computing it?

4. Beyond depth-2

In the foregoing discussion we have only referred to results con-
cerning depth-2 threshold circuits. However, the simulation re-
sults have analogues at larger depths as well. For instance, in
[GHRO92] it is shown that any depth-d threshold circuit with a
small-weight LTF at the top has an equivalent depth-d threshold
circuit, not much larger, where the weights at all nodes are small;
that is, it uses only MAJ nodes. Also, it is shown that every depth-
d threshold circuit with LTF nodes has an equivalent depth-d + 1
threshold circuit, not much larger, with small-weights everywhere
(only MAJ nodes).

Here’s a summary of containments and separations.

MAJ ¢ LTF separated by GT
¢ MAJoLTF separated by PARITY
= MAJoMAJ
¢ LTFoMAJ separated by OMB o AND
¢ LTFolLTF separated by OMB o EQ
C MAJoMAJ o MAJ Is this strict? Not yet known

5. Conclusion

Recall that threshold circuits with depth d > 2 are exactly what
are popularly called deep neural networks with d — 1 > 2 hid-
den layers. Current machine learning algorithms work with deep

RESONANCE | March 2019 4\/\/\/\/\N

GENERAL ARTICLE

neural networks, which seem to give more power, but until and

unless we prove lower bounds for depth-2 circuits, we must keep

in mind that “gaining additional computing power” through deep

networks may be an illusion!

Suggested Reading

[BVdWO07] Harry Buhrman, Nikolay Vereshchagin, and Ronald de Wolf. On com-

[CM18]

[FKL*01]

[For02]

[GHR92]

[HMP*93]

[Hof96]

[KN97]

putation and communication with small bias. In Proceedings of the
Twenty-Second Annual IEEE Conference on Computational Complexity,
CCC 07, pages 24-32. IEEE Computer Society, 2007.

Arkadev Chattopadhyay and Nikhil S. Mande. A short list of equali-
ties induces large sign rank. In Proc. 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS),, 2018. preliminary version in
ECCC TR 2017-083.

Jiirgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam
Mubarakzjanov, Niels Schmitt, and Hans Ulrich Simon. Relations be-
tween communication complexity, linear arrangements, and computa-
tional complexity. In FST TCS 2001: Foundations of Software Tech-
nology and Theoretical Computer Science, 21st Conference, Bangalore,
India, December 13-15, 2001, Proceedings, pages 171-182, 2001.

Jiirgen Forster. A linear lower bound on the unbounded error prob-
abilistic communication complexity. Journal of Computer and System
Sciences, 65(4):612-625, 2002.

Mikael Goldmann, Johan Hastad, and Alexander A. Razborov. Major-
ity gates vs. general weighted threshold gates. Computational Complex-
ity, 2:277-300, 1992.

Andras Hajnal, Wolfgang Maass, Pavel Pudlik, Mario Szegedy, and
Gyorgy Turan. Threshold circuits of bounded depth. Journal of Com-
puter and System Sciences, 46(2):129-154, 1993.

Thomas Hofmeister. A note on the simulation of exponential threshold
weights. In Computing and Combinatorics, Second Annual International
Conference, COCOON 96, Hong Kong, June 17-19, 1996, Proceedings,
pages 136-141, 1996.

Eyal Kushilevitz and Noam Nisan. Communication complexity. Cam-
bridge University Press, 1997.

10

4\/\/\/\/\N RESONANCE | March 2019

