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Abstract
The VP versus VNP question, introduced by Valiant, is probably the most important open ques-
tion in algebraic complexity theory. Thanks to completeness results, a variant of this question,
VBP versus VNP, can be succinctly restated as asking whether the permanent of a generic mat-
rix can be written as a determinant of a matrix of polynomially bounded size. Strikingly, this
restatement does not mention any notion of computational model. To get a similar restatement
for the original and more fundamental question, and also to better understand the class itself, we
need a complete polynomial for VP. Ad hoc constructions yielding complete polynomials were
known, but not natural examples in the vein of the determinant. We give here several variants of
natural complete polynomials for VP, based on the notion of graph homomorphism polynomials.
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1 Introduction

One of the most important open questions in algebraic complexity theory is to decide whether
the classes VP and VNP are distinct. These classes, first defined by Valiant in [13, 12], are
the algebraic analogues of the Boolean complexity classes P and NP, and separating them
is essential for separating P from NP (at least non-uniformly and assuming the generalised
Riemann Hypothesis, over the field C, [3]). Valiant established that the family of polynomials
computing the permanent is complete for VNP under a suitable notion of reduction which
can be thought of as a very strong form of polynomial-size reduction. The leading open
question of VP versus VNP is often phrased as the permanent versus the determinant, as
the determinant is complete for VP. However, the hardness of the determinant for VP is
under the more powerful quasi-polynomial-size reductions. Under polynomial reductions, the
determinant is complete for the possibly smaller class VBP. This naturally raises the question
of finding polynomials which are complete for VP under polynomial-size reductions. Ad hoc
families of generic polynomials can be constructed that are VP-complete, but, surprisingly,
there are no known natural polynomial families that are VP-complete. Since complete
problems characterise complexity classes, the existence of natural complete problems lends
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added legitimacy to the study of a class. The determinant and the permanent make the
classes VBP, VNP interesting; analogously, what characterises VP?

Our results and techniques
In this paper, we provide the first instance of natural families of polynomials that (1) are
defined independently of the circuit definition of VP, and (2) are VP-complete. The families we
consider are families of homomorphism polynomials. Formal definitions appear in Section 2,
but here is a brief description. For graphs G and H, a homomorphism from “source graph”
G to “target graph” H is a map from V (G) to V (H) that preserves edges. If G and H are
directed, a directed homomorphism must preserve directed edges. Additionally, if the vertices
of G and H are coloured, a coloured homomorphism must also preserve colours. Placing
distinct variables on the vertices (X variables) and edges (Y variables) of the target graph H,
we can associate with each homomorphism from G toH a monomial built using these variables.
The homomorphism polynomial associated with G and H is the sum of all such monomials.
Various variants can be obtained by (1) summing only over homomorphisms of a certain type
H, e.g., directed, coloured, injective,. . . (2) setting non-negative weights α on the vertices of G
and using these weights while defining the monomial associated with a homomorphism. Thus
the general form of a homomorphism polynomial is fG,H,α,H(X,Y ). We show that over fields
of characteristic zero, with respect to constant-depth oracle reductions, the following natural
settings, in order of increasing generality, give rise to VP-complete families (Theorem 19):
1. G is a balanced alternately-binary-unary tree with n leaves, with a marker gadget added

to the root, and with edge directions chosen in a specific way; H is the complete directed
graph on n6 nodes; α is 1 everywhere; H is the set of directed homomorphisms.

2. G is an undirected balanced alternately-binary-unary tree with n leaves; H is the complete
undirected graph on n6 nodes; α is 1 everywhere; the vertices are coloured with 5 colours
in a specific way; H is the set of coloured homomorphisms.

3. G is a balanced binary tree with n leaves; H is a complete graph on n6 nodes; α is 1 for
every right child in G and 0 elsewhere; H is the set of all homomorphisms from G to H.

There seems to be a trade-off between the ease of describing the source and target graphs
and the use of weights α. The first family above does not use weights (α is 1 everywhere),
but G needs a marker gadget on a naturally defined graph. The second family also does
not use weights (α is 1 everywhere), but the colouring of H is described with reference to
previously known universal circuits. The third family has very natural source and target
graphs, but requires non-trivial α. Ideally, we should be able to show VP-completeness with
G and H as in the third family and with trivial weights as in the first two families; our
hardness proofs fall short of this. Note however that the weights we use are 0-1 valued. Such
0-1 weights are commonly used in the literature, see, e.g., [2].

A crucial ingredient in our hardness proofs is the fact that VP circuits can be depth-reduced
[14] and made multiplicatively disjoint [8] so that all parse trees are isomorphic to balanced
binary trees. Another crucial ingredient is that homogeneous components of a polynomial
p can be computed in constant depth and polynomial size with oracle gates for p. The
hardness proofs illustrate how the monomials in the generic VP-complete polynomial can be
put in correspondence with a carefully chosen homogeneous component of the homomorphism
polynomial (equivalently, with monomials associated with homomorphisms and satisfying
some degree constraints in certain variables). Extracting the homogeneous component is
what necessitates an oracle-reduction (constant depth suffices) for hardness. The coloured
homomorphism polynomial is however hard even with respect to projections, the stricter
form of polynomial-size reductions which is more common in this setting.
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For all the above families, membership in VP is shown in a uniform way by showing that a
more general homomorphism polynomial, where we additionally have a set of variables Z for
each pair of nodes V (G)× V (H), is in VP, and that the above variants can be obtained from
this general polynomial through projections. The generalisation allows us to partition the
terms corresponding to H into groups based on where the root of G is mapped, factorise the
sums within each group, and recurse. A crucial ingredient here is the powerful Baur-Strassen
Lemma 3 ([1]) which says that for a polynomial p computed by a size s circuit, p and all its
first-order derivatives can be simultaneously computed in size O(s).

We also show that when G is a path (instead of a balanced binary tree), the homomorphism
polynomial family is complete for VBP. On the other hand, using the generalised version
with Z variables, and letting G,H be complete graphs, we get completeness for VNP.

Previous related results

As mentioned earlier, very little was previously known about VP-completeness. In [3],
Bürgisser showed that a generic polynomial family constructed recursively while controlling
the degree is complete for VP (Bürgisser showed something even more general; completeness
for relativised VP). The construction directly follows a topological sort of a generic VP circuit.
In [10] (see also [11]), Raz used the depth-reduction of [14] to show that a family of “universal
circuits” is VP-complete; any VP computation can be embedded into it by appropriately
setting the variables. Both these VP-complete families are thus directly obtained using the
circuit definition / characterization of VP. In [9], Mengel described a way of associating
polynomials with constraint satisfaction programs CSPs, and showed that for CSPs where
all constraints are binary and the underlying constraint graph is a tree, these polynomials
are in VP. Further, for each VP-polynomial, there is such a CSP giving rise to the same
polynomial. This means that for the CSP corresponding to the generic VP polynomial or
universal circuit, the associated polynomial is VP-complete. The unsatisfactory element
here is that to describe the complete polynomial, one again has to fall back to the circuit
definition of VP. Similarly, in [4], it is shown that tensor formulas can be computed in VP
and can compute all polynomials in VP. Again, to put our hands on a specific VP-complete
tensor formula, we need to fall back to the circuit characterisation of VP.

For VBP, on the other hand, there are natural known complete problems, most notably
the determinant and iterated matrix multiplication.

A somewhat different homomorphism polynomial was studied in [5]; for a graph H, the
monomials of the polynomial fHn encode the distinct graphs of size n that are homomorphic
to H. The dichotomy result established there gives completeness for VNP or membership in
Valiant’s analogue of AC0; it does not capture VP.

Finally, a considerable number of works have been done during the last years on the
related subject of counting graph homomorphisms (but mostly in the non uniform settings —
i.e., when the target graph is fixed — see [7]) or counting models of CSP and conjunctive
queries with connections to VP-completeness (see [6]).

Organization of this paper

In Section 2, basic definitions and notations and previous results used are stated. In Section 3
we describe the hardness of various homomorphism polynomials for VP. Membership in VP
is established in Section 4. Completeness for VBP and VNP is discussed in Section 5. Due to
space limitations, detailed proofs had to be omitted.
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2 Preliminaries and Notation

An arithmetic circuit is a directed acyclic graph with leaves labeled by variables or field
elements, internal nodes (called gates) labeled by one of the field operations + and ×, and
designated output gates at which specific polynomials are computed in the obvious way. If
every node has fan-out at most 1 (only one successor), then the circuit is a formula (the
underlying graph is a tree). If at every node labeled ×, the subcircuits rooted at the children
of the node are disjoint, then the circuit is said to be multiplicatively disjoint. Notions of size
and depth are similar to that of classical Boolean circuits. For more details about arithmetic
circuits, see for instance [11].

A family of polynomials {fn(x1, . . . , xt(n))} is p-bounded if t(n) and degree(fn) are nO(1).
A p-bounded family {fn} is in VP if a circuit family {Cn} of size s(n) ∈ nO(1) computes it.

I Proposition 1 ([14, 8]). If {fn} is in VP, then {fn} can be computed by polynomial-size
circuits of depth O(logn) where each × gate has fan-in at most 2. Furthermore, the circuits
are multiplicatively disjoint.

We say that {fn} is a p-projection of {gn} if there is an m(n) ∈ nO(1) such that each fn
can be obtained from gm(n) by setting each of the variables in gm(n) to a variable of fn or to
a field element.

A constant-depth c-reduction from {fn} to {gn}, denoted f ≤c g, is a polynomial-size
constant-depth circuit family with + and × gates and oracle gates for g, that computes f .
(This is akin to AC0-Turing reductions in the Boolean world.)

A family {Dn} of universal circuits computing a polynomial family {pn} is described
in [10, 11]. These circuits are universal in the sense that that every polynomial f(X1, . . . , Xn)
of degree d, computed by a circuit of size s, can be computed by a circuit Ψ such that the
underlying graph of Ψ is the same as the graph of Dm, for m ∈ poly(n, s, d). (In fact, fn
can be obtained as a projection of pm.) With minor modifications to {Dn} (simple padding
with dummy gates, followed by the multiplicative disjointness transformation from [8]), we
can show that there is a universal circuit family {Cn} in the normal form described below:

I Definition 2 (Normal Form Universal Circuits). A universal circuit {Cn} in normal form is
a circuit with the following structure:

It is a layered and semi-unbounded circuit, where × gates have fan-in 2, whereas + gates
are unbounded.
Gates are alternating, namely every child of a × gate is a + gate and vice versa. Without
loss of generality, the root is a × gate.
All the input gates have fan-out 1 and they are at the same level, i.e., all paths from the
root of the circuit to an input gate have the same length.
Cn is a multiplicatively disjoint circuit.
Input gates are labeled by distinct variables. In particular, there are no input gates
labeled by a constant.
Depth (Cn) = 2k(n) = 2cdlogne; number of variables (x̄) = vn; and size (Cn) = sn,
which is polynomial in n.
The degree of the polynomial computed by the universal circuit is n.

We will identify the directed graph of the circuit, where each edge e is labeled by a new
variable Xe, by the circuit itself. Let (fCn(x̄))n be the polynomial family computed by the
universal circuit family in normal form.
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I Lemma 3 ([1]). Let L(p1, p2, . . . , pk) denote the size of a smallest circuit computing the
polynomials pi at k of its nodes. For any f ∈ F[x̄],

L

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
≤ 3L (f) .

The coefficient of a particular monomial in a polynomial can be extracted as described
below. It appears to be folklore, and was noted in [3]; a version appears in [5] (Lemma 2).

I Lemma 4 (Folklore). Let F be any field of characteristic zero.
1. Let p be a polynomial in F (W̄ ), with total degree at most D. Let m be any monomial,

with k distinct variables appearing in it. The coefficient of m in p can be computed by a
O(k)-depth circuit of size O(Dk) with oracle gates for p.

2. Let p be a polynomial in F (X̄, W̄ ), with |W̄ | = n and total degree in W̄ at most D. Let
pd denote the component of p of total degree in W̄ exactly d. Then pd can be computed
by a constant depth circuit of size O(Dn) with O(D) oracle gates for p.

We use (u, v) to denote an undirected edge between u and v, and 〈u, v〉 to denote a
directed edge from u to v.

I Definition 5 (Homomorphisms). Let G = (V (G), E(G)) and H = (V (H), E(H)) be two
undirected graphs. A homomorphism from G to H is a mapping φ : V (G) → V (H) such
that the image of an edge is an edge; i.e., for all (u, v) ∈ E(G), (φ(u), φ(v)) ∈ E(H).

If G,H are directed graphs, then a homomorphism only needs to satisfy for all 〈u, v〉 ∈
E(G), at least one of 〈φ(u), φ(v)〉, 〈φ(v), φ(u)〉 is in E(H). But a directed homomorphism
must satisfy for all 〈u, v〉 ∈ E(G), 〈φ(u), φ(v)〉 ∈ E(H).

If cG, cH are functions assigning colours to V (G) and V (H), then a coloured homomorph-
ism must also satisfy, for all u ∈ V (G), cG(u) = cH(φ(u)).

I Definition 6 (Homomorphism polynomials (see, e.g., [2])). Let G and H be undirected
graphs; the definitions for the directed case are analogous. Consider the set of variables
X ∪ Y where X = {Xu|u ∈ V (H)} and Y = {Yuv|(u, v) ∈ E(H)}. Let α : V (G) 7→ N be a
labeling of vertices of G by non-negative integers. For each homomorphism φ from G to H
we associate the monomial

mon(φ) ,

 ∏
u∈V (G)

X
α(u)
φ(u)

 ∏
(u,v)∈E(G)

Yφ(u),φ(v)


Let H be a set of homomorphisms from G to H. The homomorphism polynomial fG,H,α,H
is defined as follows:

fG,H,α,H(X,Y ) =
∑
φ∈H

mon(φ) =
∑
φ∈H

 ∏
u∈V (G)

X
α(u)
φ(u)

 ∏
(u,v)∈E(G)

Yφ(u),φ(v)


Some sets of homomorphisms we consider are InjDirHom: injective directed homomorph-

isms, InjHom: injective homomorphisms, DirHom: directed homomorphisms, ColHom:
coloured homomorphisms, Hom: all homomorphisms.

I Definition 7 (Parse trees (see, e.g., [8])). The set of parse trees of a circuit C is defined by
induction on its size:

If C is of size 1, it has only one parse tree, itself.
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If the output gate of C is a × gate whose children are the gates α and β, the parse trees
of C are obtained by taking a parse tree of Cα, a parse tree of a disjoint copy of Cβ and
the edges from α and β to the output gate.
If the output of C is a + gate, the parse trees of C are obtained by taking a parse tree of
a subcircuit rooted at one of the children and the edge from the (chosen) child to the
output gate.

Each parse tree T is associated with a monomial by computing the product of the values
of the input gates. We denote this value by mon(T).

I Lemma 8 ([8]). If C is a circuit computing a polynomial f , then f(x̄) =
∑

T mon(T),
where the sum is over the set of parse trees, T, of C.

I Proposition 9 ([8]). A circuit C is multiplicatively disjoint if and only if any parse tree
of C is a subgraph of C. Furthermore, a subgraph T of C is a parse tree if the following
conditions are met:

T contains the output gate of C.
If α is a multiplication gate in T having gates β and γ as children in C, then the edges
〈β, α〉 and 〈γ, α〉 also appear in T .
If α is an addition gate in T , it has only one child in T .
Only edges and gates obtained in this way belong to T .

3 Lower Bounds: VP-hardness

Here we study the question of whether all families of polynomials in VP can be computed
by homomorphism polynomials. Instantiating G, H and α to our liking we obtain a variety
of homomorphism polynomials that are VP-hard. We describe them in increasing order of
generalisation.

I Definition 10. Let ATk be a directed balanced alternately-binary-unary tree with k leaves.
Vertices on an odd layer have exactly two incoming edges whereas vertices on an even layer
have exactly one incoming edge. The first layer has only one vertex called root, and the
edges are directed from leaves towards the root.

I Lemma 11. The parse trees of Cn, the universal circuit in normal form, are subgraphs of
Cn and are isomorphic to ATn.

This observation suggests a way to capture monomial computations of the universal
circuit via homomorphisms from ATk into Cn.

Injective Directed Homomorphism
I Proposition 12. Consider the homomorphism polynomial where

G := ATm.
H is the directed graph corresponding to the universal circuit in normal form Cm.
H := set of injective directed homomorphisms from G to H.
α is 1 everywhere.

Then, the family (fATm,H,α,InjDirHom(X̄, Ȳ ))m, where m ∈ N, is VP-hard for projections.

Proof. (Sketch) We want to express the universal polynomial through a projection. We set
all X variables at leaves to the corresponding variables in Cm, and all other X variables and
all Y variables to 1. The idea is to show that elements in InjDirHom are in bijection with
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parse trees of Cm, and compute the same monomials. It is easy to see that for every parse
tree of Cm, there is a φ ∈ InjDirHom with exactly this image. On the other hand, every
φ ∈ InjDirHom must map the directed paths of length 2 logm in G to directed paths in H;
this fact can be used to show that its image is a parse tree of Cm. J

I Remark. The hardness proof above will work even if H is the complete directed graph on
poly(m) nodes. In the projection, we can set the Ȳ variables to values in {0, 1} such that
the edges with variables set to 1 together form the underlying graph of Cn.

If we follow the proof of the previous proposition and look at the image of a given
homomorphism in layers, we notice that “direction”-respecting homomorphisms basically
ensured that we never fold back (in the image). In particular, the mapping respect layers.
Furthermore “injectivity” helped ensure that vertices within a layer are mapped distinctly.
This raises an intriguing question: can we eliminate either assumption (direction or injectivity)
and still prove VP-hardness? We answer this question positively, albeit under a stronger
notion of reduction.

Injective Homomorphisms
Let ATuk be defined as the alternately-binary-unary tree ATk, but with no directions on edges.

I Proposition 13. Consider the homomorphism polynomial where
G := ATum.
H is a complete graph (undirected) on poly(m), say m6, nodes.
H := set of injective homomorphisms from G to H.
α is 1 everywhere.

Then, the family (fATu
m,H,α,InjHom(X̄, Ȳ ))m is VP-hard for constant-depth c-reductions.

Proof. (Sketch.) Again, we want to express the universal polynomial. Setting some Y
variables to 0 values allows us to pick out Cm from H. To enforce directedness of the injective
homomorphisms, we assign a special variable r on the edges emerging from the root, and
a special variable ` on edges reaching the leaves. (The remaining Y variables are set to
1; the X variables are set as in Proposition 12.) Now the coefficient of `mr2 in f extracts
exactly the contribution of injective directed homomorphisms, and this, by Proposition 12,
is the universal polynomial. The desired coefficient can be extracted by a constant-depth
c-reduction, as described in Lemma 4. J

Directed Homomorphisms
Consider the directed alternately-binary-unary-tree ATk. For every vertex in an odd layer
there are two incoming edges. Flip the direction of the right edge for every such vertex. Note
that the edges coming into the unary vertices at even layers are unchanged. Also connect a
path t1 → t2 → · · · → ts to the root by adding an edge 〈ts, root〉. The vertices t1, . . . , ts are
new vertices. Denote this modified alternately-binary-unary-tree by ATdk,s.

I Theorem 14. Consider the homomorphism polynomial where
G := ATdm,s for sufficiently large s in poly(m), say s = m7.
H is a complete directed graph on poly(m), say m6, nodes.
H := set of directed homomorphisms from G to H.
α is 1 everywhere.

Then, the family (fATd
m,s,H,α,DirHom(X̄, Ȳ ))m is VP-hard for constant-depth c-reductions.
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Proof. (Sketch.) To compute the universal polynomial, we set some Y variables to 0 to pick
out from H the circuit Cm with a tail at the root. We assign special variables r and t on the
first and last edge of the tail, and variable ` on the edges entering leaves of Cm. The idea
is to show that homomorphism monomials with degree exactly 1 in r and in t and degree
exactly m in ` are in bijection with parse trees of Cm (and compute the same corresponding
monomials). The length of the tail and the degree in r and t, ensure that any directed
homomorphism maps the tail in G to the tail attached to Cm, so the root of the copy of ATm
inside G is mapped to the root of Cm. The degree constraint in ` ensures that the leaves of
ATm are mapped to the leaves of Cm, thus preserving layers. An inductive argument based
on layer numbers, beginning from the root, and using the multiplicative disjointness of Cm,
shows that the homomorphisms must also be injective. This gives the bijection. J

Coloured Homomorphisms
In all the above hardness proofs we restricted the set of homomorphisms to be direction-
respecting, or injective, or both. Here we show another restriction, called colour-respecting,
that gives a VP-hard polynomial. Recall that a homomorphism from a coloured graph to
another coloured graph is colour-respecting if it preserves the colour class of vertices.

Consider the following colouring of ATuk with colours brown, left, right, white and green.
The root of ATuk is coloured brown, leaves are coloured green. For every gate on an even
layer, if it is the left (resp. right) child of its parent then colour it left (resp. right). Every
gate on an odd layer, except the root, is coloured white. Denote this coloured alternately-
binary-unary-tree as ATck.

We define a circuit to be properly coloured if the root is coloured brown, leaves are
coloured green, all multiplication gates but the root are coloured white and all addition gates
are coloured left or right depending on whether they are left or right child respectively.

We obtain a properly coloured circuit from the universal circuit Cn as follows. For all
addition gates in Cn we make two coloured copies, one coloured left and the other coloured
right. We add edge connections as follows: for a multiplication gate we add an incoming
edge to it from the left (resp. right) coloured copy of the left (resp. right) child, and for an
addition gate the coloured gates are connected as the original gate in the circuit Cn.

We say that an undirected complete graph H on M nodes is properly coloured if, for all
sn ≤M/2, there is an embedding of the graph that underlies an sn-sized properly coloured
universal circuit, into H.

I Theorem 15. Consider the homomorphism polynomial where
G := ATcm.
H is a properly coloured complete graph (undirected) on poly(m), say m6, nodes.
H := set of coloured homomorphisms from G to H.
α is 1 everywhere.

Then, the family (fATc
m,H,α,ColHom(X̄, Ȳ ))m, where m ∈ N, is VP-hard for projections.

Proof. (Sketch) As before, Y variables pick out Cm from H. The brown and green colours
ensure that the root and the leaves of G are mapped to the root and leaves of Cm respectively.
Injectivity follows from an argument similar to the one used for Theorem 14. J

The generic homomorphism polynomial gives us immense freedom in the choice of G,
target graph H, weights α and the set of homomorphisms H. Until now we used several
modified graphs along with different restrictions onH to capture computations in the universal
circuit. The question here is: can we get rid of restrictions on the set of homomorphisms?
We provide a positive answer, using instead weights on the vertices of the source graph.
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Homomorphism with weights
For k a power of 2, let Tk denote a complete (perfect) binary tree with k leaves.

I Theorem 16. Consider the homomorphism polynomial where
G := Tm.
H is a complete graph (undirected) on poly(m), say m6, nodes.
H := set of all homomorphisms from G to H.
Define α such that,

α(u) =


0 u = root
1 if u is the right child of it’s parent
0 otherwise

Then, the family (fTm,H,α,Hom(X̄, Ȳ ))m is VP-hard for constant-depth c-reductions.

Proof. (Sketch) Since the source graph is complete binary trees, we first need to compact
parse trees and get rid of the unary nodes (corresponding to + gates). We construct from
the universal circuit Cn a graph Jn that allows us to get rid of the alternating binary-unary
parse tree structure while maintaining the property that the compacted “parse trees” are
subgraphs of Jn. The graph Jn has two copies gL and gR of each × gate and input gate of
Cn. It also has two children attached to each leaf node. The edges of Jn essentially shortcut
the + edges of Cn.

As before, we use Y variables to pick out Jn from H. We assign special variables w on
edges from the root to a node gR, and z on edges going from a non-root non-input node u to
some right copy node gR. For an input node g in the “left sub-graph” of Jn, the new left
and right edges are assigned c` and x respectively, where x is the corresponding input label
of g in Cn, and the node at the end of the x edge is assigned a special variable y. In the
right sub-graph, variable cr is used.

We show that homomorphisms whose monomials have degree 1 in w, 2k − 2 in z, 2k−1

each in c` and cr, and 2k in y are in bijection with compacted parse trees in Jn. The
argument proceeds in stages: first show that the homomorphism is well-rooted (using the
degree constraint on w, c`, cr and the 0-1 weights in G), then show that it preserves layers
(does not fold back) (using the degree constraint on c`, cr and y), then show that it is
injective within layers (using the degree constraint in z and the 0-1 weights in G). J

4 Upper Bounds: membership in VP

In this section we will show that most of the variants of the homomorphism polynomial
considered in the previous section are also computable by polynomial size arithmetic circuits.
That is, the homomorphism polynomials are VP-Complete. For sake of clarity we describe
the membership of a generic homomorphism polynomial in VP in detail. Then we explain
how to obtain various instantiations via projections.

We define a set of new variables Z̄ := {Zu,a | u ∈ V (G) and a ∈ V (H)}. Let us generalise
the homomorphism polynomial fG,H,α,H as follows:

fG,H,H(Z̄, Ȳ ) =
∑
φ∈H

 ∏
u∈V (G)

Zu,φ(u)

 ∏
(u,v)∈E(G)

Yφ(u),φ(v)

 .

Note that for a 0-1 valued α, we can easily obtain fG,H,α,H from our generic homomorphism
polynomial fG,H,H via substitution of Z̄ variables, setting Zu,a to Xα(u)

a . (If α can take any
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non-negative values, then we can still do the above substitution. We will need subcircuits
computing appropriate powers of the X̄ variables. The resulting circuit will still be poly-sized
and hence in VP, provided the powers are not too large.)

I Theorem 17. The family of homomorphism polynomials (fm) = fGm,Hm,Hom(Z̄, Ȳ ) where
Gm is Tm, the complete balanced binary tree with m = 2k leaves,
Hm is Kn, complete graph on n = poly(m) nodes,

is in VP.

Proof. (Sketch.) The idea is to group the homomorphisms based on where they send the root
of Gm and its children, and to recursively compute sub-polynomials within each group. The
sub-polynomials in a specific group will have a specific set of variables in all their monomials.
Thus the group can be identified by suitably combining partial derivatives of the recursively
constructed sub-polynomials. (Note: this is why we consider the generalised polynomial with
Z̄ instead of X̄ and α. If for some u, α(u) = 0, then we cannot use partial derivatives to force
sending u to a specific vertex of H.) The partial derivatives themselves can be computed
efficiently using Lemma 3. J

I Remark. In the above theorem and proof, if Gm is ATum instead of Tm, essentially the
same construction works. The grouping of homomorphisms should be based on the images
of the root and its children and grandchildren as well.

If Gm and Hm have directions, again everything goes through the same way.
If we want to consider a restricted set H of homomorphisms DirHom or ColHom

instead of all of Hom, again the same construction works. All we need is that H can be
decomposed into independent parts with a local stitching-together operator. That is, whether
φ belongs to H can be verified locally edge-by-edge and/or vertex-by-vertex, so that this can
be built into the decomposition and the recursive construction.

From Theorem 17, the discussion preceding it and the remark following it, we have:

I Corollary 18. The polynomial families from Proposition 12, Theorems 14, 15, and 16 are
all in VP.

I Remark. It is not clear how to get a similar upper bound for InjDirHom when the target
graph is the complete directed graph (remark following Proposition 12), or for the family
from Proposition 13. We need a way of enforcing that the recursive construction above
respects injectivity. This is not a problem for Proposition 12, though, because there the
target graph is the graph underlying a multiplicatively disjoint circuit. Injectivity at the
root and its children and grandchildren can be checked locally; the recursion beyond that
does not fold back because the homomorphisms are direction-preserving. The construction
may not work if the target graph is the complete directed graph.

From Corollary 18, Proposition 12, and Theorems 14, 15 and 16, we get our main result:

I Theorem 19. 1. The polynomial families from Proposition 12 and Theorem 15 are com-
plete for VP with respect to p-projections.

2. The polynomial families from Theorems 14 and 16 are complete for VP with respect to
constant-depth c-reductions.

5 Characterizing other complexity classes

We complement our result of VP-completeness by showing that appropriate modification of
G can lead to VBP-complete and VNP-complete polynomial families.
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VBP Completeness
VBP is the class of polynomials computed by polynomial-sized algebraic branching programs.
These are layered directed graphs, with edges labeled by field constants or variables, and with
a designated source node s and target node t. For any path ρ in G, the monomial mon(ρ)
is the product of the labels of all edges in ρ. For two nodes u, v, the polynomial puv sums
mon(ρ) for all paths ρ from u to v. The branching program computes the polynomial pst.

A well-known polynomial family complete for VBP is the determinant of a generic matrix.
A generic complete polynomial for VBP is the polynomial computed by an ABP with (1) a
source node s, m − 1 layers of m nodes each, and a target node t, (2) complete bipartite
graphs between layers, and (3) distinct variables x̄ on all edges. This is also the iterated
matrix multiplication polynomial IMM. It is easy to see that st paths play the same role
here as parse trees did in the multiplicatively disjoint circuits.

I Theorem 20. Consider the homomorphism polynomial where
G is a simple path on m+ 1 nodes, (u1, u2, . . . , um+1).
H is a complete graph (undirected) on m2 nodes.
H := set of all homomorphisms from G to H.

Define α such that α(u) =
{

1 u = u1 or u = um+1
0 otherwise

Then, the family (fG,H,α,Hom(X̄, Ȳ ))m, where m ∈ N, is complete for VBP under c-reductions.

Proof. (Sketch.) The hardness proof is very similar to that in Theorem 16. Lemma 3 (and
hence Theorem 17) doesn’t work for branching programs; however we show membership by
direct construction of an ABP. J

VNP Completeness
I Theorem 21. Consider the homomorphism polynomial where

G is the complete graph (undirected) on m nodes.
H is the complete graph (undirected) on m nodes.
H := set of all homomorphisms from G to H.
All Ȳ variables are set to 1.

Then, the family (fG,H,Hom(Z̄))m, where m ∈ N, is complete for VNP under p-projections.

Proof. (Sketch.) This homomorphism polynomial is exactly the perm polynomial. J

6 Conclusion

We have shown that several natural homomorphism polynomials are complete for the algebraic
complexity class VP. Our results are summarised below.

Complexity G H H polynomial type reduction

VP-complete

ATm CmO(1) InjDirHom α = 1 p-projections
ATd

m DKmO(1) DirHom α = 1 O(1)-depth
c-reductions

ATc
m coloured KmO(1) ColHom α = 1 projections

Tu
m KmO(1) Hom 0-1 valued O(1)-depth

VBP-complete Pathm KmO(1) Hom 0-1 valued O(1)-depth
VNP-complete Km Km Hom generalised p-projections

(Z̄ variables)



12 Homomorphism Polynomials complete for VP

It would be interesting to show all the hardness results with respect to p-projections. It
would also be very interesting to obtain completeness while allowing all homomorphisms on
simple graphs and eliminating vertex weights. Another question is extending the completeness
results of this paper to fields of characteristic other than zero.

Perhaps more importantly, it would be nice to get still more examples of natural VP-
complete problems, preferably from different areas. The completeness of determinant or
iterated matrix multiplication for VBP underlies the importance of linear algebra as a source
of “efficient” computations. Finding natural VP-complete polynomials in some sense means
finding computational techniques which are (believed to be) stronger than linear algebra.
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