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Abstract. An arithmetic read-once formula (ROF) is a formula (circuit
of fan-out 1) over +,× where each variable labels at most one leaf. Every
multilinear polynomial can be expressed as the sum of ROFs. In this
work, we prove, for certain multilinear polynomials, a tight lower bound
on the number of summands in such an expression.

1 Introduction

Read-once formulas (ROF) are formulas (circuits of fan-out 1) in which each
variable appears at most once. A formula computing a polynomial that depends
on all its variables must read each variable at least once. Therefore, ROFs com-
pute some of the simplest possible functions that depend on all of their variables.
The polynomials computed by such formulas are known as read-once polynomi-
als (ROPs). Since every variable is read at most once, ROPs are multilinear 1.
But not every multilinear polynomial is a ROP. For example, x1x2+x2x3+x1x3.

We investigate the following question: Given an n-variate multilinear polyno-
mial, can it be expressed as a sum of at most k ROPs? It is easy to see that every
bivariate multilinear polynomial is a ROP. Any tri-variate multilinear polyno-
mial can be expressed as a sum of 2 ROPs. With a little thought, we can obtain
a sum-of-3-ROPs expression for any 4-variate multilinear polynomial. An easy
induction on n then shows that any n-variate multilinear polynomial, for n ≥ 4,
can be written as a sum of at most 3 × 2n−4 ROPs. Also, the sum of two mul-
tilinear monomials is a ROP, so any n-variate multilinear polynomial with M
monomials can be written as the sum of dM/2e ROPs. We ask the following
question: Does there exist a strict hierarchy among k-sums of ROPs? We answer
this affirmatively for k ≤ dn/2e. In particular, for k = dn/2e, we describe an
explicit n-variate multilinear polynomial which cannot be written as a sum of
less than k ROPs but it admits a sum-of-k-ROPs representation.

Note that n-variate ROPs are computed by linear sized formulas. Thus if an
n-variate polynomial p is in

∑k ·ROP, then p is computed by a formula of size
O(kn) where every intermediate node computes a multilinear polynomial. Since
superpolynomial lower bounds are already known for the model of multilinear
formulas [8], we know that for those polynomials (including the determinant and

1 A polynomial is multilinear if the individual degree of each variable is at most one.



the permanent), a
∑k ·ROP expression must have k at least quasi-polynomial in

n. However the best upper bound on k for these polynomials is only exponential
in n, leaving a big gap between the lower and upper bound. On the other hand,
our lower bound is provably tight.

A counting argument shows that a random multilinear polynomial requires
exponentially many ROPs; there are multilinear polynomials requiring k =
Ω(2n/n2). Our general upper bound on k is O(2n), leaving a gap between the
lower and upper bound. One challenge is to close this gap. A perhaps more inter-
esting challenge is to find explicit polynomials that require exponentially large
k in any

∑k ·ROP expression.
A natural question to ask is whether stronger lower bounds than the above

result can be proven. In particular, to separate
∑k−1 ·ROP from

∑k ·ROP, how
many variables are needed? The above hierarchy result says that 2k−1 variables
suffice, but there may be simpler polynomials (with fewer variables) witnessing
this separation. We demonstrate another technique which improves upon the
previous result for k = 3, showing that 4 variables suffice. In particular, we
show that over the field of reals, there exists an explicit multilinear 4-variate
multilinear polynomial which cannot be written as a sum of 2 ROPs. This lower
bound is again tight, as there is a sum of 3 ROPs representation for every 4-
variate multilinear polynomial.

Our results and techniques: We now formally state our results.

Theorem 1. For each n ≥ 1, the n-variate degree n− 1 symmetric polynomial
Sn−1n cannot be written as a sum of less than dn/2e ROPs, but it can be written
as a sum of dn/2e ROPs.

The idea behind the lower bound is that if g can be expressed as a sum
of less than dn/2e ROFs, then one of the ROFs can be eliminated by taking
partial derivative with respect to one variable and substituting another by a field
constant. We then use the inductive hypothesis to arrive at a contradiction. This
approach necessitates a stronger hypothesis than the statement of the theorem,
and we prove this stronger statement in Lemma 3 as part of Theorem 7.

Theorem 2. There is an explicit 4-variate multilinear polynomial f which can-
not be written as the sum of 2 ROPs over R.

The proof of this theorem mainly relies on a structural lemma (Lemma 6)
for sum of 2 read-once formulas. In particular, we show that if f can be written
as a sum of 2 ROPs then one of the following must be true: 1. Some 2-variate
restriction is a linear polynomial. 2. There exist variables xi, xj ∈ Var(f) such
that the polynomials xi, xj , ∂xi

(f), ∂xj
(f), 1 are linearly dependent. 3. We can

represent f as f = l1 ·l2+l3 ·l4 where (l1, l2) and (l3, l4) are variable-disjoint linear
forms. Checking the first two conditions is easy. For the third condition we use the
commutator of f , introduced in [9], to find one of the li’s. The knowledge of one of
the li’s suffices to determine all the linear forms. Finally, we construct a 4-variate



polynomial which does not satisfy any of the above mentioned conditions. This
construction does not work over algebraically closed fields. We do not yet know
how to construct an explicit 4-variate multilinear polynomial not expressible as
the sum of 2 ROPs over such fields, or even whether such polynomials exist.

Related work: Despite their simplicity, ROFs have received a lot of attention
both in the arithmetic as well as in the Boolean world [5, 4, 2, 3, 9, 10]. The most
fundamental question that can be asked about polynomials is polynomial identity
testing (PIT): Given an arithmetic circuit C, is the polynomial computed by C
identically zero? PIT has a randomized polynomial time algorithm: Evaluate the
polynomial at random points. It is not known whether PIT has a deterministic
polynomial time algorithm. In 2004, Kabanets and Impagliazzo established a
connection between PIT algorithms and proving general circuit lower bounds [6].
However, for restricted arithmetic circuits, no such result is known. For instance,
consider the case of multilinear formulas. Even though strong lower bounds are
known for this model, there is no efficient deterministic PIT algorithm. For this
reason, PIT was studied for the weaker model of sum of read-once formulas.
Notice that multilinear depth 3 circuits are a special case of this model.

Shpilka and Volkovich gave a deterministic PIT algorithm for the sum of a
small number of ROPs [10]. Interestingly, their proof uses a lower bound for a
weaker model, that of 0-justified ROFs (setting some variables to zero does not
kill any other variables). In particular, they show that the polynomial Mn =
x1x2 · · ·xn, consisting of just a single monomial, cannot be represented as a sum
of less than n/3 weakly justified ROPs. More recently, Kayal showed that ifMn

is represented as a sum of powers of low degree (at most d) polynomials, then
the number of summands is at most exp(Ω(n/d)) [7]. He used this lower bound
to give a PIT algorithm. Our lower bound from Theorem 1 is orthogonal to both
these results and is provably tight. An interesting question is whether it can be
used to give a PIT algorithm.

Similar to ROPs, one may also study read-restricted formulas. For any num-
ber k, RkFs are formulas that read every variable at most k times. For k > 1,
RkFs for k ≥ 2 need not be multilinear, and thus are strictly more powerful
than ROPs. However, even when restricted to multilinear polynomials, they are
more powerful; in [1], Anderson, Melkebeek and Volkovich show that there is a
multilinear n-variate polynomial in R2F requiring Ω(n) summands when written
as a sum of ROPs.

Organization: The paper is organized as follows. In Section 2 we give the basic
definitions and notations. In Section 3, we establish Theorem 1. showing that
the hierarchy of k-sums of ROPs is proper. In Section 4 we establish Theorem 2,
showing an explicit 4-variate multilinear polynomial that is not expressible as the
sum of two ROPs. We conclude in Section 5 with some further open questions.



2 Preliminaries

For a positive integer n, we denote [n] = {1, 2, . . . , n}. For a polynomial f , Var(f)
denotes the set of variables occurring in f . Further, for a variable xi and a field
element α, we denote by f |xi=α the polynomial resulting from setting xi = α.
Let f be an n-variate polynomial. We say that g is a k-variate restriction of f if g
is obtained by setting some variables in f to field constants and |Var(g)| ≤ k. A
set of polynomials f1, f2, . . . , fk over the field F is said to be linearly dependent
if there exist constants α1, α2, . . . , αk such that

∑
i∈[k] αifi = 0.

The n-variate degree k elementary symmetric polynomial, denoted Skn, is
defined as follows: Skn(x1, . . . , xn) =

∑
A⊆[n],|A|=k

∏
i∈A xi.

A circuit is a directed acyclic graph with variables and field constants labeling
the leaves, field operations +,× labeling internal nodes, and a designated output
node. Each node naturally computes a polynomial; the polynomial at the output
node is the polynomial computed by the circuit. If the underlying undirected
graph is a tree, then the circuit is called a formula. A formula is said to be
read-k if each variable appears as a leaf label at most k times. For read-once
formulas, it is more convenient to use the following “normal form” from [10].

Definition 1 (Read-once formulas [10]). A read-once arithmetic formula
(ROF) over a field F in the variables {x1, x2, . . . , xn} is a binary tree as follows.
The leaves are labeled by variables and internal nodes by {+,×}. In addition,
every node is labeled by a pair of field elements (α, β) ∈ F2. Each input variable
labels at most once leaf. The computation is performed as follows. A leaf labeled
by xi and (α, β) computes αxi + β. If a node v is labeled by ? ∈ {+,×} and
(α, β) and its children compute the polynomials f1 and f2, then v computes
α(f1 ? f2) + β.

We say that f is a read-once polynomial (ROP) if it can be computed by a ROF,

and is in
∑k ·ROP if it can be expressed as the sum of at most k ROPs.

Proposition 1. For every n, every n-variate multilinear polynomial can be writ-
ten as the sum of at most d3× 2n−4e ROPs.

Proposition 2. For every n, every n-variate multilinear polynomial with M
monomials can be written as the sum of at most dM2 e ROPs.

The partial derivative of a polynomial is defined naturally over continuous
domains. The definition can be extended in more than one way over finite fields.
However, for multilinear polynomials, these definitions coincide. We consider
only multilinear polynomials in this paper, and the following formulation is most
useful for us: The partial derivative of a polynomial p ∈ F[x1, x2, . . . , xn] with
respect to a variable xi, for i ∈ [n], is given by ∂xi

(p) , p |xi=1 −p |xi=0. For
multilinear polynomials, the sum, product, and chain rules continue to hold.

Fact 3 ([10]) The partial derivatives of ROPs are also ROPs.



Proposition 3 (3-variate ROPs). Let f ∈ F[x1, x2, x3] be a 3-variate ROP.
Then there exists i ∈ [3] and a ∈ F such that deg(f |xi=a) ≤ 1.

A special case of ROFs, multiplicative ROFs defined below, will be relevant.

Definition 2 (Multiplicative Read-once formulas). A ROF is said to be a
multiplicative ROF if it does not contain any addition gates. We say that f is a
multiplicative ROP if it can be computed by a multiplicative ROF.

Fact 4 ([10] (Lemma 3.10)) A ROP p is a multiplicative ROP if and only if
for any two variables xi, xj ∈ Var(p), ∂xi

∂xj
(p) 6= 0.

Multiplicative ROPs have the following useful property, observed in [10]. (See
Lemma 3.13 in [10]. For completeness, and since we refer to the proof later, we
include a proof sketch here.)

Lemma 1 ([10]). Let g be a multiplicative ROP with |Var(g)| ≥ 2. For every
xi ∈ Var(g), there exists xj ∈ Var(g)\{xi} and γ ∈ F such that ∂xj

(g) |xi=γ= 0.

Proof. Let ϕ be a multiplicative ROF computing g. Pick any xi ∈ Var(g). As
|Var(ϕ)| = |Var(g)| ≥ 2, ϕ has at least one gate. Let v be the unique neighbour
(parent) of the leaf labeled by xi, and let w be the other child of v. We denote
by Pv(x̄) and Pw(x̄) the ROPs computed by v and w. Since v is a × gate and
we use the normal form from Defintion 1, Pv is of the form (αxi + β) × Pw for
some α 6= 0.

Replacing the output from v by a new variable y, we obtain from ϕ another
multiplicative ROF ψ in the variables {y}∪Var(g)\Var(Pv). Let ψ compute the
polynomial Q; then g = Q |y=Pv .

Note that the sets Var(Q), {xi},Var(Pw) are non-empty and disjoint, and
form a partition of {y} ∪ {Var(g)}.

By the chain rule, for every variable xj ∈ Var(Pw) we have:

∂xj (g) = ∂y(Q) · ∂xj (Pv) = ∂y(Q) · (αxi + β) · ∂xj (Pw)

It follows that for γ = −β/α, ∂xj
(g) |xi=γ= 0. ut

Along with partial derivatives, another operator that we will find useful is the
commutator of a polynomial. The commutator of a polynomial has previously
been used for polynomial factorization and in reconstruction algorithms for read-
once formulas, see [9].

Definition 3 (Commutator [9]). Let P ∈ F[x1, x2, . . . , xn] be a multilinear
polynomial and let i, j ∈ [n]. The commutator between xi and xj, denoted 4ijP ,
is defined as follows.

4ijP =
(
P |xi=0,xj=0

)
·
(
P |xi=1,xj=1

)
−
(
P |xi=0,xj=1

)
·
(
P |xi=1,xj=0

)
The following property of the commutator will be useful to us.

Lemma 2. Let f = l1(x1, x2) · l2(x3, x4) + l3(x1, x3) · l4(x2, x4) where the li’s
are linear polynomials. Then l2 divides 412(f).



3 A proper hierarchy in
∑k ·ROP

This section is devoted to proving Theorem 1.

We prove the lower bound for Sn−1n by induction. This necessitates a stronger
induction hypothesis, so we will actually prove the lower bound for a larger class
of polynomials. The upper bound will also hold for this larger class. For any
α, β ∈ F, we define the polynomialMα,β

n = αSnn +βSn−1n . We note the following
recursive structure of Mα,β

n :

(Mα,β
n ) |xn=γ=Mαγ+β,βγ

n−1 ; ∂xn(Mα,β
n ) =Mα,β

n−1 .

We show below that each Mα,β
n is expressible as the sum of dn/2e ROPs

(Lemma 4); however, for any non-zero β 6= 0, Mα,β
n cannot be written as the

sum of fewer than dn/2e ROPs (Lemma 3). At α = 0, β = 1, we get Sn−1n , the
simplest such polynomials, establishing Theorem 1.

Lemma 3. Let F be a field. For every α ∈ F and β ∈ F \ {0}, the polynomial
Mα,β

n = αSnn + βSn−1n cannot be written as a sum of k < n/2 ROPs.

Proof. The proof is by induction on n. The cases n = 1, 2 are easy to see. We
now assume that k ≥ 1 and n > 2k. Assume to the contrary that there are ROPs

f1, f2, . . . , fk over F[x1, x2, . . . , xn] such that f ,
∑
m∈[k]

fm = Mα,β
n . The main

steps in the proof are as follows:

1. Show using the inductive hypothesis that for all m ∈ [k] and a, b ∈ [n],
∂xa

∂xb
(fm) 6= 0.

2. Conclude that for all m ∈ [k], fm must be a multiplicative ROP. That is,
the ROF computing fm does not contain any addition gate.

3. Use the multiplicative property of fk to show that fk can be eliminated
by taking partial derivative with respect to one variable and substituting
another by a field constant. If this constant is non-zero, we contradict the
inductive hypothesis.

4. Otherwise, use the sum of (multiplicative) ROPs representation of Mα,β
n to

show that the degree of f can be made at most (n− 2) by setting one of the
variables to zero. This contradicts our choice of f since β 6= 0.

We now proceed with the proof.

Claim 5 For all m ∈ [k] and a, b ∈ [n], ∂xa
∂xb

(fm) 6= 0.



Proof. Suppose to the contrary that ∂xa
∂xb

(fm) = 0. Assume without loss of
generality that a = n, b = n− 1, m = k, so ∂xn

∂xn−1
(fk) = 0. Then,

Mα,β
n = f =

k∑
m=0

fm (by assumption)

∂xn∂xn−1(Mα,β
n ) =

k∑
m=0

∂xn∂xn−1(fm) (by additivity of partial derivative)

Mα,β
n−2 =

k−1∑
m=0

∂xn∂xn−1(fm) (by recursive structure of Mn,

and since ∂xn
∂xn−1

(fk) = 0)

Thus Mα,β
n−2 can be written as the sum of k − 1 polynomials, each of which is a

ROP (by Fact 3). By the inductive hypothesis, 2(k − 1) ≥ (n − 2). Therefore,
k ≥ n/2 contradicting our assumption. ut

From Claim 5 and Fact 4, we can conclude:

Observation 6 For all m ∈ [k], fm is a multiplicative ROP.

Observation 6 and Lemma 1 imply that for each m ∈ [k] and a ∈ [n], there exist
b 6= a ∈ [n] and γ ∈ F such that ∂xb

(fm) |xa=γ= 0. There are two cases.
First, consider the case when for some m, a and the corresponding b, γ, it

turns out that γ 6= 0. Assume without loss of generality that m = k, a = n− 1,
b = n, so that ∂xn

(fk) |xn−1=γ= 0. (For other indices the argument is symmetric.)
Then

Mα,β
n =

∑
i∈[k]

fi (by assumption)

∂xn
(Mα,β

n ) |xn−1=γ =
∑
i∈[k]

∂xn
(fi) |xn−1=γ (additivity of partial derivative)

Mα,β
n−1 |xn−1=γ =

∑
i∈[k−1]

∂xn
(fi) |xn−1=γ (since γ is chosen from Lemma 1)

Mαγ+β,βγ
n−2 =

∑
i∈[k−1]

∂xn
(fi) |xn−1=γ (recursive structure of Mn)

Therefore, Mαγ+β,βγ
n−2 can be written as a sum of at most k − 1 polynomials,

each of which is a ROP (Fact 3). By the inductive hypothesis, 2(k − 1) ≥ n− 2
implying that k ≥ n/2 contradicting our assumption.

(Note: the termMαγ+β,βγ
n−2 is what necessitates a stronger induction hypoth-

esis than working with just α = 0, β = 1.)
It remains to handle the case when for all m ∈ [k] and a ∈ [n], the corre-

sponding value of γ to some xb (as guaranteed by Lemma 1) is 0. Examining the
proof of Lemma 1, this implies that each leaf node in any of the ROFs can be



made zero only by setting the corresponding variable to zero. That is, the linear
forms at all leaves are of the form aixi.

Since each ϕm is a multiplicative ROP, setting xn = 0 makes the variables
in the polynomial computed at the sibling of the leaf node anxn redundant.
Hence setting xn = 0 reduces the degree of each fm by at least 2. That is,
deg(f |xn=0) ≤ n−2. ButMα,β

n |xn=0 equalsMβ,0
n−1 = βSn−1n−1 , which has degree

n− 1, contradicting the asusmption that f =Mα,β
n . ut

The following lemma shows that the above lower bound is indeed optimal.

Lemma 4. For any field F and α, β ∈ F, the polynomial f = αSnn + βSn−1n can
be written as a sum of at most dn/2e ROPs.

Proof. (Sketch) For n odd, this follows immediately from Proposition 2. For
even n, a small tweak works: combine αSnn with any one pair of monomials from
βSn−1n to get a single ROP. ut

Combining the results of Lemma 3 and Lemma 4, we obtain the following
theorem. At α = 0, β = 1, it yields Theorem 1.

Theorem 7. For each n ≥ 1, any α ∈ F and any any β ∈ F\{0}, the polynomial

αSnn + βSn−1n is in
∑k ·ROP but not in

∑k−1 ·ROP, where k = dn/2e.

4 A 4-variate multilinear polynomial not in
∑2 ·ROP

This section is devoted to proving Theorem 2. We want to find an explicit 4-
variate multilinear polynomial that is not expressible as the sum of 2 ROPs.

Note that the proof of Theorem 1 does not help here, since the polynomials
separating

∑2 ·ROP from
∑3 ·ROP have 5 or 6 variables. One obvious approach

is to consider other combinations of the symmetric polynomials. This fails too;
we can show that all such combinations are in

∑2 ·ROP.

Proposition 4. For every choice of field constants ai for each i ∈ {0, 1, 2, 3, 4},
the polynomial

∑4
i=0 aiS

i
4 can be expressed as the sum of two ROPs.

Instead, we define a polynomial that gives carefully chosen weights to the
monomials of S2

4 . Let fα,β,γ denote the following polynomial:

fα,β,γ = α · (x1x2 + x3x4) + β · (x1x3 + x2x4) + γ · (x1x4 + x2x3).

To keep notation simple, we will omit the superscript when it is clear from the
context. In the theorem below, we obtain necessary and sufficient conditions on
α, β, γ under which f can be expressed as a sum of two ROPs.

Theorem 8 (Hardness of representation for sum of 2 ROPs). Let f be
the polynomial fα,β,γ = α · (x1x2 +x3x4) +β · (x1x3 +x2x4) + γ · (x1x4 +x2x3).
The following are equivalent:

1. f is not expressible as the sum of two ROPs.



2. α, β, γ satisfy all the three conditions C1, C2, C3 listed below.
C1: αβγ 6= 0.
C2: (α2 − β2)(β2 − γ2)(γ2 − α2) 6= 0.
C3: None of the equations X2 − di = 0, i ∈ [3], has a root in F, where

d1 = (+α2 − β2 − γ2)2 − (2βγ)2

d2 = (−α2 + β2 − γ2)2 − (2αγ)2

d3 = (−α2 − β2 + γ2)2 − (2αβ)2

Remark 1. 1. It follows that 2(x1x2 +x3x4) + 4(x1x3 +x2x4) + 5(x1x4 +x2x3)
cannot be written as a sum of 2 ROPs over reals, yielding Theorem 2.

2. If F is an algebraically closed field, then for every α, β, γ, condition C3 fails,
and so every fα,β,γ can be written as a sum of 2 ROPs. However we do
not know if there are other examples, or whether all multilinear 4-variate
polynomials are expressible as the sum of two ROPs.

3. Even if F is not algebraically closed, condition C3 fails if for each a ∈ F, the
equation X2 = a has a root.

Our strategy for proving Theorem 8 is a generalization of an idea used in [11].
While Volkovich showed that 3-variate ROPs have a nice structural property in
terms of their partial derivatives and commutators, we show that the sums of
two 4-variate ROPs have at least one nice structural property in terms of their
bivariate restrictions, partial derivatives, and commutators. Then we show that
provided α, β, γ are chosen carefully, the polynomial fα,β,γ will not satisfy any
of these properties and hence cannot be a sum of two ROPs.

To prove Theorem 8, we first consider the easier direction, 1⇒ 2, and prove
the contrapositive.

Lemma 5. If α, β, γ do not satisfy all of C1,C2,C3, then the polynomial f can
be written as a sum of 2 ROPs.

Proof. C1 false: If any of α, β, γ is zero, then by definition f is the the sum of
at most two ROPs.
C2 false: Without loss of generality, assume α2 = β2, so α = ±β. Then f is
computed by f = α · (x1 ± x4)(x2 ± x3) + γ · (x1x4 + x2x3).
C1 true; C3 false: Without loss of generality, the equation X2 − d1 = 0 has a
root τ . We try to express f as

α(x1 − ax3)(x2 − bx4) + β(x1 − cx2)(x3 − dx4).

The coefficients for x3x4 and x2x4 force ab = 1, cd = 1, giving the form

α(x1 − ax3)(x2 −
1

a
x4) + β(x1 − cx2)(x3 −

1

c
x4).

Comparing the coefficients for x1x4 and x2x3, we obtain the constraints

−α
a
− β

c
= γ; − αa− βc = γ



Expressing a as −γ−βcα , we get a quadratic constraint on c; it must be a root of
the equation

Z2 +
−α2 + β2 + γ2

βγ
Z + 1 = 0.

Using the fact that τ2 = d1 = (−α2 + β2 + γ2)2 − (2βγ)2, we see that indeed
this equation does have roots. The left-hand size splits into linear factors, giving

(Z − δ)(Z − 1

δ
) = 0 where δ =

α2 − β2 − γ2 + τ

2βγ
.

It is easy to verify that δ 6= 0 and δ 6= − γβ (since α 6= 0). Further, define

µ = −(γ+βδ)
α . Then µ is well-defined (because α 6= 0) and is also non-zero. Now

setting c = δ and a = µ, we satisfy all the constraints, and we can write f as
the sum of 2 ROPs as f = α(x1 − µx3)(x2 − 1

µx4) + β(x1 − δx2)(x3 − 1
δx4). ut

Now we consider the harder direction: 2 ⇒ 1. Again, we consider the con-
trapositive. We first show (Lemma 6) a structural property satisfied by every

polynomial in
∑2 ·ROP: it must satisfy at least one of the three properties

C1′, C2′, C3′ described in the lemma. We then show (Lemma 7) that under the
conditions C1, C2, C3 from the theorem statement, f does not satisfy any of
C1′, C2′, C3′; it follows that f is not expressible as the sum of 2 ROPs.

Lemma 6. Let g be a 4-variate multilinear polynomial over the field F which can
be expressed as a sum of 2 ROPs. Then at least one of the following conditions
is true:

C1’: There exist i, j ∈ [4] and a, b ∈ F such that g |xi=a,xj=b is linear.
C2’: There exist i, j ∈ [4] such that xi, xj , ∂xi

(g), ∂xj
(g), 1 are linearly depen-

dent.
C3’: g = l1 · l2 + l3 · l4 where lis are linear forms, l1 and l2 are variable-disjoint,

and l3 and l4 are variable-disjoint.

Proof. Let ϕ be a sum of 2 ROFs computing g. Let v1 and v2 be the children of
the topmost + gate. The proof is in two steps. First, we reduce to the case when
|Var(v1)| = |Var(v2)| = 4. Then we use a case analysis to show that at least one
of the aforementioned conditions hold true. In both steps, we will repeatedly
use Proposition 3, which showed that any 3-variate ROP can be reduced to a
linear polynomial by substituting a single variable with a field constant. We now
proceed with the proof.

Suppose |Var(v1)| ≤ 3. Applying Proposition 3 first to v1 and then to the
resulting restriction of v2, one can see that there exist i, j ∈ [4] and a, b ∈ F such
that g |xi=a,xj=b is a linear polynomial. So condition C1′ is satisfied.

Now assume that |Var(v1)| = |Var(v2)| = 4. Depending on the type of gates
of v1 and v2, we consider 3 cases.

Case 1: Both v1 and v2 are × gates. Then g can be represented as M1 ·M2 +
M3 ·M4 where (M1,M2) and (M3,M4) are variable-disjoint ROPs.



Suppose that for some i, |Var(Mi)| = 1. Then, g |Mi→0 is a 3-variate restric-
tion of f and is clearly an ROP. Applying Proposition 3 to this restriction, we
see that condition C1′ holds.

Otherwise each Mi has |Var(Mi)| = 2.
Suppose (M1,M2) and (M3,M4) define distinct partitions of the variable set.

Assume without loss of generality that g = M1(x1, x2) ·M2(x3, x4)+M3(x1, x3) ·
M4(x2, x4). If all Mis are linear forms, it is clear that condition C3′ holds. If not,
assume that M1 is of the form l1(x1) ·m1(x2) + c1 where l1,m1 are linear forms
and c1 ∈ F. Now g |l1→0= c1 ·M2(x3, x4) +M ′3(x3) ·M4(x2, x4). Either set x3 to
make M ′3 zero, or, if that is not possible because M ′3 is a non-zero field constant,
then set x4 → b where b ∈ F. In both cases, by setting at most 2 variables, we
obtain a linear polynomial, so C1′ holds.

Otherwise, (M1,M2) and (M3,M4) define the same partition of the vari-
able set. Assume without loss of generality that g = M1(x1, x2) ·M2(x3, x4) +
M3(x1, x2) ·M4(x3, x4). If one of the Mis is linear, say without loss of generality
that M1 is a linear form, then g |M4→0 is a 2-variate restriction which is also
a linear form, so C1′ holds. Otherwise, none of the Mis is a linear form. Then
each Mi can be represented as li ·mi+ ci where li,mi are univariate linear forms
and ci ∈ F. We consider a 2-variate restriction which sets l1 and m4 to 0. (Note
that Var(l1) ∩ Var(m4) = ∅.) Then the resulting polynomial is a linear form, so
C1′ holds.

Case 2: Both v1 and v2 are + gates. Then g can be written as f = M1 +M2 +
M3 +M4 where (M1,M2) and (M3,M4) are variable-disjoint ROPs.

Suppose (M1,M2) and (M3,M4) define distinct partitions of the variable set.
Suppose further that there exists Mi such that |Var(Mi)| = 1. Without loss

Of generality, Var(M1) = {x1}, {x1, x2} ⊆ Var(M3), and x3 ∈ Var(M4). Any
setting to x2 and x4 results in a linear polynomial, so C1′ holds.

So assume without loss of generality that g = M1(x1, x2) + M2(x3, x4) +
M3(x1, x3) + M4(x2, x4). Then for a, b ∈ F, g |x1=a,x4=b is a linear polynomial,
so C1′ holds.

Otherwise, (M1,M2) and (M3,M4) define the same partition of the variable
set. Again, if say |Var(M1)| = 1, then setting two variables from M2 shows
that C1′ holds. So assume without loss of generality that g = M1(x1, x2) +
M2(x3, x4) +M3(x1, x2) +M4(x3, x4). Then for a, b ∈ F, g |x1=a,x3=b is a linear
polynomial, so again C1′ holds.

Case 3: One of v1, v2 is a + gate and the other is a × gate. Then g can be written
as g = M1 +M2 +M3 ·M4 where (M1,M2) and (M3,M4) are variable-disjoint
ROPs. Suppose that |Var(M3)| = 1. Then g |M3→0 is a 3-variate restriction
which is a ROP. Using Proposition 3, we get a 2-variate restriction of g which
is also linear, so C1′ holds. The same argument works when |Var(M4)| = 1. So
assume that M3 and M4 are bivariate polynomials.

Suppose that (M1,M2) and (M3,M4) define distinct partitions of the variable
set. Assume without loss of generality that g = M1+M2+M3(x1, x2)·M4(x3, x4),
and x3, x4 are separated byM1,M2. Then g |M3→0 is a 2-variate restriction which
is also linear, so C1′ holds.



Otherwise (M1,M2) and (M3,M4) define the same partition of the vari-
able set. Assume without loss of generality that g = M1(x1, x2) +M2(x3, x4) +
M3(x1, x2) ·M4(x3, x4). If M1 (or M2) is a linear form, then consider a 2-variate
restriction of g which sets M4 (or M3) to 0. The resulting polynomial is a linear
form. Similarly if M3 (or M4) is of the form l ·m + c where l,m are univariate
linear forms, then we consider a 2-variate restriction which sets l to 0 and some
xi ∈ Var(M4) to a field constant. The resulting polynomial again is a linear
form. In all these cases, C1′ holds.

The only case that remains is that M3 and M4 are linear forms while M1 and
M2 are not. Assume that M1 = (a1x1+b1)(a2x2+b2)+c and M3 = a3x1+b3x2+
c3. Then ∂x1(g) = a1(a2x2 + b2) + a3M4 and ∂x2(g) = (a1x1 + b1)a2 + b3M4. It
follows that b3 ·∂x1(g)−a3 ·∂x2(g)+a1a2a3x1−a1a2b3x2 = a1b2b3− b1a2a3 ∈ F,
and hence the polynomials x1, x2, ∂x1

(g), ∂x2
(g) and 1 are linearly dependent.

Therefore, condition C2′ of the lemma is satisfied. ut

Lemma 7. If α, β, γ satisfy conditions C1, C2, C3 from the statement of The-
orem 8, then the polynomial fα,β,γ does not satisfy any of the properties C1′,
C2′, C3′ from Lemma 6.

Proof. C1⇒ ¬C1′: Since αβγ 6= 0, f contains all possible degree 2 monomials.
Hence after setting xi = a and xj = b, the monomial xkxl where k, l ∈ [4]\{i, j}
still survives.

C2⇒ ¬C2′: The proof is by contradiction. Assume to the contrary that for
some i, j, without loss of generality say for i = 1 and j = 2, the polynomials
x1, x2, ∂x1

(f), ∂x2
(f), 1 are linearly dependent. Note that ∂x1

(f) = αx2 + βx3 +
γx4 and ∂x2(f) = αx1 + γx3 + βx4. This implies that the vectors (1, 0, 0, 0, 0),
(0, 1, 0, 0, 0), (0, α, β, γ, 0), (α, 0, γ, β, 0) and (0, 0, 0, 0, 1) are linearly dependent.
This further implies that the vectors (β, γ) and (γ, β) are linearly dependent.
Therefore, β = ±γ, contradicting C2.

C1 ∧C2 ∧C3⇒ ¬C3′: Suppose, to the contrary, that C3′ holds. That is, f
can be written as f = l1 · l2 + l3 · l4 where (l1, l2) and (l3, l4) are variable-disjoint
linear forms. By the preceding arguments, we know that f does not satisfy C1′

or C2′.

First consider the case when (l1, l2) and (l3, l4) define the same partition
of the variable set. Assume without loss of generality that Var(l1) = Var(l3),
Var(l2) = Var(l4), and |Var(l1)| ≤ 2. Setting the variables in l1 to any field
constants yields a linear form, so f satisfies C1’, a contradiction.

Hence it must be the case that (l1, l2) and (l3, l4) define different partitions
of the variable set. Since all degree-2 monomials are present in f , each pair xi,
xj must be separated by at least one of the two partitions. This implies that
both partitions have exactly 2 variables in each part. Assume without loss of
generality that f = l1(x1, x2) · l2(x3, x4) + l3(x1, x3) · l4(x2, x4).

At this point, we use properties of the commutator of f ; recall Definition 3.
By Lemma 2, we know that l2 divides 412f . We compute 412f explicitly for



our candidate polynomial:

412f = (αx3x4)(α+ (β + γ)(x3 + x4) + αx3x4)

− (βx4 + γx3 + αx3x4)(βx3 + γx4 + αx3x4)

= −βγ(x23 + x24) + (α2 − β2 − γ2)x3x4

Since l2 divides 412f , 412f is not irreducible but is the product of two linear
factors. Since 412f(0, 0) = 0, at least one of the linear factors of 412f must
vanish at (0, 0). Let x3 − δx4 be such a factor. Then 412(f) vanishes not only
at (0, 0), but whenever x3 = δx4. Substituting x3 = δx4 in 412f , we get

−δ2βγ − βγ + δ(α2 − β2 − γ2) = 0

Hence δ is of the form

δ =
−(α2 − β2 − γ2)±

√
(α2 − β2 − γ2)2 − 4β2γ2

−2βγ

Hence 2βγδ−(α2−β2−γ2) is a root of the equation X2−D1 = 0, contradicting
the assumption that C3 holds.

Hence it must be the case that C3′ does not hold. ut

With this, the proof of Theorem 8 is complete.
The conditions imposed on α, β, γ in Theorem 8 are tight and irredundant.

Below we give some explicit examples over the field of reals.

1. f = 2(x1x2 +x3x4)+2(x1x3 +x2x4)+3(x1x4 +x2x3) satisfies conditions C1

and C3 from the Theorem but not C2; α = β. A
∑2 ·ROP representation

for f is f = 2(x1 + x4)(x2 + x3) + 3(x1x4 + x2x3).
2. f = 2(x1x2 + x3x4) − 2(x1x3 + x2x4) + 3(x1x4 + x2x3) satisfies conditions

C1 and C3 but not C2; α = −β. A
∑2 ·ROP representation for f is f =

2(x1 − x4)(x2 − x3) + 3(x1x4 + x2x3).
3. f = (x1x2 +x3x4) + 2(x1x3 +x2x4) + 3(x1x4 +x2x3) satisfies conditions C1

and C2 but not C3. A
∑2 ·ROP representation for f is f = (x1 + x3)(x2 +

x4) + 2(x1 + x2)(x3 + x4).

5 Conclusions

1. We have seen in Proposition 1 that every n-variate multilinear polynomial
(n ≥ 4) can be written as the sum of 3 × 2n−4 ROPs. A counting argu-
ment shows that there exist multilinear polynomials f requiring exponen-
tially many ROPs summands; if f ∈

∑k ·ROP then k = Ω(2n/n2). Our
general upper bound on k is O(2n), leaving a small gap between the lower
and upper bound. What is the true tight bound? Can we find explicit poly-
nomials that require exponentially large k in any

∑k ·ROP expression?



2. We have shown in Theorem 1 that for each k,
∑k ·ROP can be separated

from
∑k−1 ·ROP by a polynomial on 2k−1 variables. Can we separate these

classes with fewer variables? Note that any separating polynomial must have
Ω(log k) variables.

3. In particular, can 4-variate multilinear polynomials separate sums of 3 ROPs
from sums of 2 ROPs over every field? If not, what is an explicit example?
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