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Abstract

We study the cutting planes system CP+∀red for quantified Boolean formulas
(QBF), obtained by augmenting propositional Cutting Planes with a universal
reduction rule, and analyse the proof-theoretic strength of this new calculus.
While in the propositional case, Cutting Planes is of intermediate strength between
resolution and Frege, our findings here show that the situation in QBF is slightly
more complex: while CP+∀red is again weaker than QBF Frege and stronger
than the CDCL-based QBF resolution systems Q-Res and QU-Res, it turns out
to be incomparable to even the weakest expansion-based QBF resolution system
∀Exp+Res. A similar picture holds for a semantic version semCP+∀red.

Technically, our results establish the effectiveness of two lower bound tech-
niques for CP+∀red: via strategy extraction and via monotone feasible interpola-
tion.

Keywords: proof complexity, quantified Boolean formulas, cutting, planes,
resolution, Frege proofs

1. Introduction

The main problem of proof complexity is to understand the minimal size
of proofs for natural classes of formulas in important proof systems. Proof
complexity deeply connects to a number of other areas: since its inception there
has been a tight link to computational complexity [25], in particular as a way
towards the separation of complexity classes [21], and to bounded arithmetic,
where proof systems relate to the strength of weak arithmetic theories [24, 41, 8].
Conceptually, proof complexity made major contributions by calibrating the
relative strength of different proof systems and by supplying general techniques
for lower bounds for proof size in various calculi (cf. [50, 57, 5]).

Proof complexity also deeply connects to practical solving, and recently this
connection has been a main driver for the field. Modern SAT solvers routinely
solve huge industrial instances of the NP-hard SAT problem in millions of
variables. Because runs of the solver on unsatisfiable formulas can be interpreted
as proofs for unsatisfiability in a system corresponding to the solver, proof
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complexity provides the main theoretical tool for an understanding of the power
and limitations of these algorithms.

During the last decade there has been great interest and research activity
to extend the success of SAT solvers to the more expressive quantified Boolean
formulas (QBF). Due to its PSPACE completeness (even for restricted versions
[2]), QBF can express many problems far more succinctly than SAT and thus
applies to further fields such as formal verification or planning [52, 6, 28].

Triggered by this exciting development in QBF solving, QBF proof complexity
has seen a stormy development in past years. A number of resolution-based
systems have been designed with the aim to capture ideas in QBF solving.
Broadly, these systems can be classified into two types corresponding to two
principal approaches in QBF solving: proof systems modelling conflict driven
clause learning (CDCL): Q-resolution Q-Res [40, 10], universal resolution QU-Res
[60], long-distance resolution [3], and their extensions [4]; and proof systems
modelling expansion solving : ∀Exp+Res [38] and their extensions [10]. Proof
complexity research of these systems resulted in a complete understanding of
the relative complexity of QBF resolution systems [11, 4], and the transfer of
propositional techniques to QBF systems was thoroughly assessed [14, 13, 15]. In
addition, stronger QBF Frege and Gentzen systems were defined and investigated
[27, 9, 17].

Most SAT and QBF solvers use resolution as their underlying proof system.
Resolution is a weak proof systems for which a wealth of lower bounds and in fact
lower bound techniques are known (cf. [57, 21]). This raises the question – often
controversially discussed within the proof complexity and solving communities
– whether it would be advantageous to build solvers on top of more powerful
proof systems (cf. [30]). While Frege systems appear too strong and proof
search is hindered by non-automatisability results [44, 19], a natural system of
intermediate strength is Cutting Planes first defined in [26].

Using ideas from integer linear programming [33, 23, 56], Cutting Planes
works with linear inequalities, allowing addition of inequalities as well as multi-
plication and division by positive integers as rules. Translating propositional
clauses into inequalities, Cutting Planes derives the contradiction 0 ≥ 1, thereby
demonstrating that the original set of inequalities (and hence the corresponding
clause set) has no solution. As mentioned, Cutting Planes is a proof system of
intermediate strength: it simulates resolution, but allows short proofs for the
famous pigeonhole formulas hard for resolution [35], while it is simulated by and
strictly weaker than Frege [32, 49].

As a system of intermediate strength, Cutting Planes has become the basis
for a number of different pseudo-Boolean solvers (cf. [55] for a survey). Modern
pseudo-Boolean solvers include Sat4j [7], open-WBO [46] and cdcl-cuttingplanes,
which combine CDCL-style reasoning with the rules of Cutting Planes. While
the above mentioned complexity results suggest that pseudo-Boolean reasoning
has clear potential to outperform SAT-solvers based on resolution, practical
findings present a rather mixed picture (cf. the recent comprehensive investigation
in [30]). With the current theoretical paper on QBF Cutting Planes we open
this discussion for QBF as well, preparing the theoretical ground for potential
subsequent developments in quantified pseudo-Boolean solving.
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Our contributions

In contrast to SAT, a Cutting Planes system based on integer linear program-
ming has been missing for QBFs. It is the aim of this paper to define a natural
Cutting Planes system for QBF and give a comprehensive analysis of its proof
complexity. As discussed in [9], any propositional line-based proof system can
be augmented with a universal reduction rule to obtain a proof system sound
and complete for QBFs. We do precisely this for Cutting Planes, and study the
resulting system CP+∀red.

1. Cutting Planes for QBF. We introduce a complete and sound QBF
proof system CP+∀red that works with quantified linear inequalities, where each
variable is either quantified existentially or universally in a quantifier prefix. The
system CP+∀red extends the propositional Cutting Planes system with one single
∀-reduction rule allowing manipulation of universally quantified variables. The
definition of the system thus naturally aligns with the QBF resolution systems
Q-Res [40] and QU-Res [60] and the stronger QBF Frege systems [9] that likewise
add universal reduction to their propositional base systems.

Inspired by the recent work on semantic Cutting Planes [31] we also define
a stronger system semCP+∀red where in addition to universal reduction all
semantically valid inferences between inequalities are allowed (Section 7).

2. Lower bound techniques for CP+∀red. We establish two lower bound
methods for CP+∀red: strategy extraction (Section 4) and feasible interpolation
(Section 5).

Strategy extraction as a lower bound technique was first devised for Q-Res [11]
and subsequently extended to QBF Frege systems [9, 17]. The technique applies
to calculi that allow to efficiently extract winning strategies for the universal
player from a refutation (or alternatively Skolem functions for the existential
variables from a proof of a true QBF). Here we show that CP+∀red admits
strategy extraction computable by decision lists of threshold functions, thus
establishing an appealing link between CP+∀red proofs (which can count) and a
fragment of the counting circuit class TC0 (Theorem 2) for which exponential
lower bounds are known. Thus we obtain lower bounds in CP+∀red (Corollary 5)
and even semCP+∀red (Corollary 9).

Feasible interpolation is another propositional technique transferring circuit
lower bounds to proof size lower bounds; however, here we import lower bounds
for monotone arithmetic circuits [49] and hence the connection between the
circuits and the lines in the proof system is less direct than in strategy extraction.
Feasible interpolation holds for propositional resolution [43] and Cutting Planes
[49], and indeed was shown to be effective for all QBF resolution systems
[14]. Following the approach of [49] we establish this technique for CP+∀red
(Theorem 3) and in fact for the stronger semCP+∀red (Theorem 10).

It is interesting to note that while feasible interpolation is the only technique
known for propositional Cutting Planes, we have two conceptually different lower
bound methods – and hence more hard formulas in QBF. This is in line with
recent findings in [17] showing that lower bounds for QBF Frege either stem
from circuit lower bounds (for NC1) or from propositional Frege lower bounds.
Our results here illustrate the same paradigm for CP+∀red: lower bounds arise
either from lower bounds for a fragment of TC0 (via strategy extraction) or via
propositional lower bound methods for Cutting Planes (feasible interpolation).
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3. Relations to other QBF proof systems. We compare our new system
CP+∀red with previous QBF resolution and Frege systems. In contrast to the
propositional setting, the emerging picture is somewhat more complex: while
CP+∀red is strong enough to simulate the core CDCL QBF resolution systems
Q-Res and QU-Res and indeed is exponentially stronger than these systems
(Theorem 5), CP+∀red is incomparable to even the base system ∀Exp+Res
of the expansion resolution systems (Theorem 7). Conceptually, this means
that, in contrast to the SAT case, QBF solvers based on linear programming
and corresponding to CP+∀red will not encompass the full strength of current
resolution-based QBF solving techniques.

On the other hand, CP+∀red turns out to be simulated by Frege+∀red,
which is also exponentially more powerful than CP+∀red (Theorem 8). While
this separation could be achieved by lifting the propositional separation [49]
to QBF by considering purely existentially quantified formulas, we highlight
that our separation also holds for classes of natural QBFs. The first of these
are QBFs based on the integer product modulo 2, where we use the strategy
extraction technique for the CP+∀red lower bound. The second class of formulas
expresses the clique-co-clique principle, which is not known to have a succinct
propositional representation. Here we employ the feasible interpolation technique
for the CP+∀red lower bound.

It is worthwhile noting that on formulas with only existential quantifiers,
CP+∀red degenerates to Cutting Planes (as also QU-Res and Q-Res and ∀Exp+Res
to Res, Frege+∀red to Frege). That is, CP+∀red cannot speed up refutations of
purely existential formulas. Thus basic separations between CP+∀red and QU-
Res, or between Frege+∀red and CP+∀red, come for free from the propositional
domain, as mentioned above. However, our lower bounds are “genuine QBF lower
bounds”; they hold even in the presence of SAT oracles. (For a formalisation of
SAT oracles in QBF proof systems and genuineness of QBF lower bounds, see
[16].)

2. Notation and preliminaries

Circuit classes. We recall the definitions of some standard circuit classes
(cf. [61]). The class AC0 contains all languages recognisable by polynomial-size
circuits using ¬, ∨, ∧ with constant depth and unbounded fan-in. If also counting
gates modulo p are allowed for a prime p, we obtain the class AC0[p]. For the
class TC0 the circuits may use ¬, ∨, ∧, and threshold gates (the circuits still
have constant depth and unbounded fan-in).

Stronger classes are obtained by using NC1 circuits of polynomial size and
logarithmic depth with bounded fan-in ¬, ∨, ∧ gates, and by P/poly circuits of
polynomial size. We use non-uniform classes throughout.

The class LTF refers to functions computed by depth-1 TC0 circuits; this is
exactly the functions that can be expressed as the sign of a linear form. Interested
readers are referred to the book [47, Chapter 5].

Decision lists [53]. A decision list is a list L of pairs (t1, v1), . . . , (tr, vr),
where each ti is a term (a conjunction of literals) and vi is a value in {0, 1},
and the last term tr is the constant term true (i.e., the empty term). The
length of L is r. A decision list L defines a Boolean function as follows: for any
assignment α, L(α) is defined to be equal to vj where j is the least index such
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that tj |α = 1. (Such an item always exists, since the last term always evaluates
to 1). A decision list in which every term contains at most k literals is called a
k-decision list. It is known that functions computed by 1-decision lists are all in
the class LTF. For example, the 1-decision list (x1, 1), (¬x2, 0), (x3, 1), (1, 0) is
represented as 23x1 − 22(1− x2) + 2x3 + 0 > 0.

In [45], decision lists have been generalised to neural decision lists (or linear
decision lists [59]), where instead of terms one can use linear threshold functions.
We refer to such lists as LTF-decision lists. In [9], this is further generalised
to C-decision lists (for any circuit class C), where instead of terms or linear
threshold functions, one can use circuits from C. A C-decision list yields the

circuit C(x) =
∨r
i=1

(
vi ∧ Ci(x) ∧

∧
j<i ¬Cj(x)

)
. In particular, polynomial-

length LTF-decision lists are in TC0, and are even known to be in depth-2 TC0

(see [59]).

Quantified Boolean Formulas. A literal is a Boolean variable or its
negation. We say a literal x is complementary to the literal ¬x and vice versa.
A clause is a disjunction of literals and a term is a conjunction of literals. The
empty clause is denoted by �, and is semantically equivalent to false, denoted ⊥.
A formula in conjunctive normal form (CNF) is a conjunction of clauses. For a
literal l = x or l = ¬x, we write var(l) for x and extend this notation to var(C)
for a clause C. Let α be any partial assignment. For a clause C, we write C|α
for the clause obtained after applying the partial assignment α to C.

Quantified Boolean Formulas (QBFs) extend propositional logic with Boolean
quantifiers with the standard semantics that ∀x.F is satisfied by the same truth
assignments as F |x=0 ∧ F |x=1 and ∃x.F as F |x=0 ∨ F |x=1. We assume that
QBFs are in closed prenex form with a CNF matrix, i.e., we consider the form
Q1x1 · · · Qnxn .φ where each Qi is either ∃ or ∀, and φ is a quantifier-free
CNF formula, called the matrix, in the variables x1, . . . , xn. Any QBF can be
efficiently (in polynomial time) converted to an equivalent QBF in this form
(using PSPACE-completeness of such QBFs). We denote such formulas succinctly
as Q .φ. The index ind(y) of a variable y is its position in the prefix Q; for each
i ∈ [n], ind(xi) = i. If ind(x) < ind(y), we say that x occurs before y, or to the
left of y. The quantification level lv(y) of a variable y in Q .φ is the number of
alternations of quantifiers to the left of y in the quantifier prefix of Q .φ. For
instance, in the QBF ∃x1∀x2∀x3∃x4φ, lv(x1) = 1, lv(x2) = lv(x3) = 2, and
lv(x4) = 3.

Often it is useful to think of a QBF Q1x1 · · · Qnxn .φ as a game between
two players: universal (∀) and existential (∃). In the i-th step of the game, the
player Qi assigns a value to the variable xi. The existential player wins if φ
evaluates to 1 under the assignment constructed in the game. The universal
player wins if φ evaluates to 0. A strategy for xi is a function from assignments
to all variables of index < i to {0, 1}. A strategy for the universal player is a
collection of strategies, one for each universally quantified variable. Similarly,
a strategy for the existential player is a collection of strategies, one for each
existentially quantified variable. A strategy for the universal player is a winning
strategy if using this strategy to assign values to variables, the universal player
wins any possible game, irrespective of the strategy used by the existential player.
Winning strategies for the existential player are similarly defined. For any QBF,
exactly one of the two players has a winning strategy. A QBF is false if and only
if there exists a winning strategy for the universal player ([34],[1, Sec. 4.2.2],[48,
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Chap. 19]).

Proof systems. Following notation from [25], a proof system for a language
L is a polynomial-time onto function f : {0, 1}∗ → L. Each string φ ∈ L is a
theorem, and if f(π) = φ, then π is a proof of φ in f . Given a polynomial-time
function f : {0, 1}∗ → {0, 1}∗ the fact that f({0, 1}∗) ⊆ L is the soundness
property for f and the fact that f({0, 1}∗) ⊇ L is the completeness property for
f .

Proof systems for the language of propositional unsatisfiable formulas (UN-
SAT) are called propositional proof systems and proof systems for the language of
false QBFs are called QBF proof systems. These are refutational proof systems.
Equivalently, propositional proof systems and QBF proof systems can be defined
respectively for the languages of true propositional formulas (TAUT) and of true
QBFs. Since any QBF Q .φ can be converted in polynomial time to another QBF
Q′ .φ′ such that exactly one of Q .φ and Q′ .φ′ is true, it suffices to consider
only refutational QBF proof systems.

Given two proof systems f1 and f2 for the same language L, we say that
f1 simulates f2, if there exists a function g and a polynomial p such that
f1(g(w)) = f2(w) and |g(w)| ≤ p(|w|) for all w. Thus g translates a proof w of
x ∈ L in the system f2 into a proof g(w) of x ∈ L in the system f1, with at most
polynomial blow-up in proof-size. If there is such a g that is also polynomial-time
computable, then we say that f1 p-simulates f2.

A refutational propositional proof system f is “refutationally complete”:
f({0, 1}∗) ⊇ UNSAT. If, furthermore, whenever X entails A, it is possible
to derive A from X in the proof system, we say that the proof system is
implicationally complete. (We say that a set of formulas X entails a formula A
if every Boolean assignment satisfying X also satisfies A.)

QBF resolution calculi. Resolution (Res), introduced by Blake [18]
and Robinson [54], is a refutational proof system for formulas in CNF form.
The lines in the Res proofs are clauses. The only inference (resolution) rule

is
C ∨ x D ∨ ¬x

C ∪D where C,D denote clauses and x is a variable. A Res

refutation derives the empty clause �.
Q-resolution (Q-Res) [40] is a resolution-like calculus operating on QBFs

in prenex form with a CNF matrix. The lines in the Q-Res proofs are clauses.
It uses the propositional resolution rule above with the side conditions that
variable x is existential, and if z ∈ C, then ¬z /∈ D. (Unlike in the propositional
case, dropping this latter condition that C ∪D is not a tautology can lead to

unsoundness.) In addition Q-Res has the universal reduction rule
C ∨ u
C

and

C ∨ ¬u (∀-Red),
C

where variable u is universal and every existential variable

x ∈ C has lv(x) < lv(u). If a clause containing universal variable has an
existential variable x with lv(x) > lv(u), then u cannot be reduced from this
clause; we say that u is “blocked” by x.

If resolution is also permitted with universal variable x (as long as tautologies
are not created), then we get the calculus QU-Res [60].

Expansion-based calculi are another type of resolution systems significantly
different from Q-Res. These calculi are based on instantiation of universal
variables and operate on clauses that comprise only existential variables from
the original QBF, which are additionally annotated by a substitution to some
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universal variables, e.g. ¬xu/0,v/1. For any annotated literal lσ, the substitution
σ must not make assignments to variables right of l, i.e. if u ∈ dom(σ), then u
is universal and lv(u) < lv(l). To preserve this invariant, we use the auxiliary
notation l[σ], which for an existential literal l and an assignment σ to the
universal variables filters out all assignments that are not permitted, i.e. l[σ] =
l{u/c∈σ | lv(u)<lv(l)}. We say that an assignment is complete if its domain is all
universal variables. Likewise, we say that a literal xτ is fully annotated if all
universal variables u with lv(u) < lv(x) in the QBF are in dom(τ), and a clause
is fully annotated if all its literals are fully annotated.

In this paper, we will briefly refer to one such calculus, the ∀Exp+Res from [38].
This calculus works with fully annotated clauses on which resolution is performed.
For each clause C from the matrix and an assignment τ to all universal variables,
∀Exp+Res uses axiom

{
l[τ ] | l ∈ C, l existential

}
∪{τ(l) | l ∈ C, l universal}. For

example, consider a QBF formula with the quantifier prefix
∃e1∀u1∃e2∀u2∃e3∀u3 and containing the clause C = (e1 ∨ ¬e2 ∨ u1 ∨ e3 ∨ ¬u3).
Let τ = u1 ← 0, u2 ← 1, u3 ← 1. Note that τ is an assignment to all universal
variables, which falsifies all universal literals in C. Now, given the filtering of

annotations, e
[τ ]
1 is just e1, e

[τ ]
2 is e

u1/0
2 , and e

[τ ]
3 is e

u1/0,u2/1
3 . Hence in ∀Exp+Res,

downloading the clause C with respect to τ gives clause (e1∨¬eu1/0
2 ∨eu1/0,u2/1

3 ).
Likewise, we could download C with respect to σ = u1 ← 0, u2 ← 0, u3 ← 1; this

gives the clause (e1 ∨¬eu1/0
2 ∨ eu1/0,u2/0

3 ). However, downloading C with respect

to η = u1 ← 1, u2 ← 0, u3 ← 1 gives the clause (e1 ∨ ¬eu1/1
2 ∨ 1 ∨ eu1/1,u2/0

3 )
which is a tautology and hence useless in the proof.

As its only rule, ∀Exp+Res uses the resolution rule on annotated variables

C ∨ xτ D ∨ ¬xτ (Res).
C ∪D

Frege systems. Frege proof systems are the common ‘textbook’ proof
systems for propositional logic based on axioms and rules [25]. The lines in a
Frege proof are propositional formulas built from propositional variables xi and
Boolean connectives ¬, ∧, and ∨. A Frege system comprises a finite set of axiom
schemes and rules, e.g., φ ∨ ¬φ is a possible axiom scheme. A Frege proof is a
sequence of formulas where each formula is either a substitution instance of an
axiom, or can be inferred from previous formulas by a valid inference rule. Frege
systems are required to be sound and implicationally complete. The exact choice
of the axiom schemes and rules does not matter as any two Frege systems are
p-equivalent, even when changing the basis of Boolean connectives [25] and [42,
Theorem 4.4.13].

Usually Frege systems are defined as proof systems where the last formula
is the proven formula. We use here the equivalent setting of refutation Frege
systems where we start with the negation of the formula that we want to prove
and derive the contradiction ⊥.

A refutation of a false QBF Q .φ in the system Frege+∀red [9] is sequence
of lines L1, . . . , L` where each line is a formula, L1 = φ, L` = ⊥ and each Li is
inferred from previous lines Lj , j < i, using the inference rules of Frege or using
the universal reduction rule

Lj
(∀Red),

Lj [u/B]
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where u is a universal variable and is the rightmost (highest index) variable
among the variables of Lj , B is a formula containing only variables left of u,
and Lj [u/B] is the formula obtained from Lj by replacing each occurrence of u
in Lj by B. Note that the quantifier prefix is not changed at any stage; all the
manipulation is with respected to the inner formulas.

There are many sub-systems of Frege studied in the literature (see e.g. [5]).
In these subsystems, the lines are restricted to circuits from a class C, yielding
the system C-Frege (cf. [39] for a general definition). The system NC1-Frege
coincides with Frege. In this paper we are primarily interested in one other
restriction, namely TC0-Frege, where the lines are all circuits from TC0. Again,
we can lift these systems to QBF, yielding in particular TC0-Frege+∀red (cf. [9]).

3. The CP+∀red proof system

In this section we define a QBF analogue of the propositional Cutting Planes
proof system by augmenting it with a reduction rule for universal variables. We
denote this system by CP+∀red. Consider a false quantified set of inequalities
F ≡ Q1x1 . . .Qnxn. F , where F is a set of linear inequalities of the form∑
xiai ≥ A for integers ai and A, and F includes the set of inequalities B =

{xi ≥ 0,−xi ≥ −1 | i ∈ [n]}. The inequalities in B are called the Boolean
axioms, because they force any integer-valued assignment ~a to the variables,
satisfying F , to take only 0, 1-values. We point out that propositional Cutting
Planes proof systems (only existential variables) can refute any inconsistent set
of linear inequalities over integers ([33, 23, 56, 26]). However, once universal
quantification is allowed, dealing with an unbounded domain is more messy.
Since our primary goal in defining this proof system is to refute false QBFs, and
since QBFs have only Boolean variables, we only consider sets of inequalities
that contain B.

Definition 3.1 (CP+∀red proofs for inequalities). Consider a set of quantified
inequalities F ≡ Q1x1 . . .Qnxn. F , where F also contains the Boolean axioms.
A CP+∀red refutation π of F is a quantified sequence of linear inequalities
Q1x1 . . .Qnxn.[I1, I2, . . . , Il] where the quantifier prefix is the same as in F , Il
is an inequality of the form 0 ≥ C for some positive integer C, and for every
j ∈ {1, . . . , l}, either Ij ∈ F , or Ij is derived from earlier inequalities in the
sequence via one of the following inference rules:

1. Addition: From
∑
k

ckxk ≥ C and
∑
k

dkxk ≥ D, derive
∑
k

(ck+dk)xk ≥

C +D.

2. Multiplication: From
∑
k

ckxk ≥ C, derive
∑
k

dckxk ≥ dC, where

d ∈ Z+.

3. Division: From
∑
k

ckxk ≥ C, derive
∑
k

ck
d
xk ≥

⌈
C

d

⌉
, where d ∈ Z+

divides each ck.

4. ∀-red: From

∑
k∈[n]\{i}

ckxk + hxi ≥ C, derive


∑

k∈[n]\{i}

ckxk ≥ C if h > 0;∑
k∈[n]\{i}

ckxk ≥ C − h if h < 0.
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This rule can be used provided variable xi is universal, and provided all
existential variables with non-zero coefficients in the hypothesis are to the
left of xi in the quantification prefix. (That is, if xj is existential, then
j > i⇒ cj = 0.) Observe that when h > 0, we are replacing xi by 0, and
when h < 0, we are replacing xi by 1. We say that the universal variable
xi has been reduced.
If an inequality has ci 6= 0, cj 6= 0 for some i < j where xi is universal and
xj is existential, then xi cannot be reduced from this inequality. We say
that xi is blocked (by xj).

Each inequality Ij is a line in the proof π. Note that proof lines are always of
the form

∑
k ckxk ≥ C for integer-valued ck, C. The length of π (denoted |π|) is

the number of lines in it, and the size of π (denoted size(π)) is the bit-size of a
representation of the proof (this depends on the number of lines and the binary
length of the numbers in the proof).

In order to use CP+∀red as a refutational system for QBFs in prenex form
with CNF matrix, we must translate QBFs into quantified sets of inequalities.

Definition 3.2 (Encoding QBFs as inequalities). We first describe how to
encode a CNF formula F over variables x1, . . . , xn as a set of linear inequalities.
Define R(x) = x and R(¬x) = 1− x. A clause C ≡ (l1 ∨ · · · ∨ lk) is translated

into the inequality R(C) ≡
∑k
i=1R(li) ≥ 1. A CNF formula φ = C1 ∧ · · · ∧ Cm

is represented as the set of inequalities Fφ = {R(C1), R(C2), . . . , R(Cm)} ∪ B,
where B is the set of Boolean axioms x ≥ 0,−x ≥ −1 for each variable x. We
call this the standard encoding. For a QBF Q1x1 . . .Qnxn. φ with a CNF matrix
φ, the encoding is the quantified set of linear inequalities Q1x1 . . .Qnxn. Fφ.

We say that a 0, 1-assignment α satisfies the inequality I ≡
∑n
i=1 aixi ≥ b

(i.e., I|α = 1), if
∑n
i=1 aiαi ≥ b. For any clause C, an assignment satisfies C if

and only if it satisfies R(C). Since the standard encoding includes all Boolean
axioms, we obtain the following:

Proposition 1. Let Q .φ be a QBF in closed prenex CNF, and let F = Q. Fφ
be its encoding as a quantified set of linear inequalities. Then Q .φ is false if
and only if F is false.

As for QBFs, we can play the 2-player game on the encoding F of a QBF.
Players choose 0/1 values for their variables in the order defined in the prefix.
The ∀ player wins if the assignment so constructed violates some inequality in F .
As before, when F is false, the universal player has a winning strategy; otherwise
the existential player has a winning strategy.

Definition 3.3 (CP+∀red proofs for QBFs). Let Q .φ = Q1x1 · · · Qnxn .φ be a
false QBF in prenex CNF, and let F be its encoding as a quantified set of linear
inequalities. A CP+∀red (refutation) proof of Q .φ is a CP+∀red proof of F as
defined in Definition 3.1.

It is worth noting that a CP+∀red proof for inequalities, as in Definition 3.1,
can start with encodings of QBFs, but can also start with quantified sets of
inequalities that contain the Boolean axioms but do not correspond to any QBF,
since the initial non-Boolean inequalities can have arbitrary integer coefficients.
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For example, ∃x∃y∀z[x+ y + z ≥ 2][x+ y ≤ 1] along with Boolean inequalities
is false. But it is not the standard translation of any QBF.

Observe that in the ∀-red step of CP+∀red, if u is the universal variable being
reduced, then u need not be the rightmost variable with a non-zero coefficient.
There may be universal variables to the right of u with non-zero coefficients.
This is analogous to the conditions in QU-Res, where we require only that every
existential variable x in C has lv(x) < lv(u). However, in the Frege+∀red proof
system defined in [9], the variable being reduced from a formula is required to
be the rightmost in the formula; that is, ind(x) < ind(u) for every variable other
than x in C. We show below that imposing such a condition in CP+∀red does
not affect the strength of the proof system. That is, if we call a proof where the
∀-red steps are applied only to the rightmost universal variables with non-zero
coefficients a normal-form proof, then any CP+∀red proof can be efficiently
converted to one in normal form. In later sections we often assume this normal
form.

Lemma 2. Any CP+∀red proof can be converted into normal form in polynomial
time.

Proof. The idea is simple: to reduce a variable u, first reduce all universal
variables to the right of u, then reduce u, then re-introduce the previously
reduced variables using Boolean axioms.

Let π be any CP+∀red proof of a false QBF ϕ. We efficiently convert π into a
normal-form proof π′ using the Boolean axioms. Let inequality I ′ be derived in
π from I by a ∀-reduction step on w. If w is the rightmost universal variable in
I, then nothing needs to be done. Otherwise, in any case, no existential variable
right of w can have non-zero coefficient in I. Let (w =)w0, w1, . . . , wk be the
universal variables right of (including) w with non-zero coefficients h0, h1, . . . , hk
in I. We obtain I ′ from I via the following (3k + 1) steps:
For j = k down to 0, reduce wj .
For j = 1 up to k, if hj > 0 then add hj(wj ≥ 0), else add (−hj)(−wj ≥ −1).
Note that the constant on the right-hand-side may change along the way but
finally reverts to its original value. Observe that this proof fragment is in
normal-form.

Now we show that CP+∀red is a complete and sound proof system for false
quantified inequalities containing the Boolean axioms.

Theorem 1. CP+∀red is a complete and sound proof system for false quantified
inequalities containing the Boolean axioms. That is, if F = Q. F is a false
set of inequalities containing the Boolean axioms, then there exists a CP+∀red
refutation of F (completeness), and if there exists a CP+∀red refutation of F ,
then F is false (soundness).

Proof. Completeness: The key idea is to use the implicational completeness of
propositional Cutting Planes [33, 23, 56, 26] and to argue inductively on the
correctness of winning strategies, formalised as inequalities.

Let φ be a set of inequalities in the variables x1, y1, . . . xn, yn, and let ∀b,∃b
be Boolean quantifiers. (This is equivalent to allowing arbitrary quantifiers but
including the Boolean axioms in φ.) Without loss of generality, consider the
quantifier prefix Q = ∀by1∃bx1 . . . ∀byn∃bxn. Assume that Q.φ is false. Then,
in the two player game for quantified Boolean semantics, the universal player
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has a winning strategy. In other words, for every yi there is a Boolean formula
Ci(x1, . . . , xi−1, y1, . . . , yi−1) such that for any Boolean assignment ~x = ~a, ~y = ~b,

if for each i ∈ [n], bi = Ci(a1, . . . , ai−1, b1, . . . , bi−1), then φ(~a,~b) is false. (Note
that the important fact is the existence of such a strategy. The size of the formula
computing it is irrelevant.) Equivalently, if a Boolean assignment ~x = ~a, ~y = ~b
satisfies φ, then for some i ∈ [n], bi differs from Ci(a1, . . . , ai−1, b1, . . . , bi−1).

For each j ∈ [n], define the propositional formulas

Fj :

j∨
i=1

(yi 6= Ci(x1, . . . , xi−1, y1, . . . , yi−1))

Note that Fj ≡ [yj 6= Cj ] ∨ Fj−1, where F0 is the empty clause.
By the discussion above, Fn is a semantic consequence of φ. Representing

Fn as a set In of linear inequalities, we can use the implicational completeness
of propositional Cutting Planes to derive all the inequalities in In from φ.

Note that the inequalities in In do not involve xn, and so yn is not blocked.
We can thus perform universal reduction on yn wherever it appears in In, with
both 0 and 1. This will give us (inequalities corresponding to) the following
eventual semantic consequences of ∀bynFn:

[Cn(x1, . . . , xn, y1, . . . , yn−1) 6= 0] ∨ Fn−1,

[Cn(x1, . . . , xn, y1, . . . , yn−1) 6= 1] ∨ Fn−1.

Taking these two together, the semantic consequence Fn−1 can be derived.
We repeat this process until we arrive at the empty clause F0 derived from

∀by1F1.
Thus we have shown that CP+∀red is refutationally complete.
Soundness: Let F = Q. F be a set of quantified inequalities, where F

also includes the Boolean axioms. Let π = Q1x1 . . .Qnxn.[I1, I2, . . . , Il] be any
CP+∀red refutation (see Definition 3.1) of F . We can assume (using Lemma 2)
that π is in normal form.

To prove soundness, we need to show that Q .φ is false. We do this by
showing that the following holds for each j ∈ [l]:

Q1x1 . . .Qnxn. [F ∧ I1 ∧ · · · ∧ Ij−1] |= Q1x1 . . .Qnxn. [F ∧ I1 ∧ · · · ∧ Ij−1 ∧ Ij ].

Thus if F is true, then so is Q1x1 . . .Qnxn.[I1, I2, . . . , Il]. However, Il is not
satisfied by any assignment, so this statement is false. Hence F is false.

Observe that the cases when Ij is derived via Addition, Multiplication, or
Division rules are straightforward, since every Boolean assignment satisfying
F ∧ I1 ∧ · · · ∧ Ij−1 also satisfies Ij . We now concentrate on the ∀-red step.

Say Ij is derived from Ik, k < j, via the ∀-red rule. Let u = xr be the universal
variable reduced, and let Ik be

∑
s csxs ≥ C for some integers c1, . . . , cn, C. Since

π is in normal form, for all s > r, cs = 0.
Suppose the claim is invalid. That is, Fj−1 = Q .F ∧ I1 ∧ · · · ∧ Ij−1 is true

but Fj = Q .F ∧ I1 ∧ · · · ∧ Ij is false. Then the existential player has a winning
strategy σ∃ for Fj−1, while the universal player has a winning strategy σ∀ for
Fj . Let α be the assignment constructed when the players use these strategies
for their variables. Then α satisfies F ∧ I1 ∧ · · · ∧ Ij−1, and in particular, Ik, but
does not satisfy Ij . Define a new strategy σ′∀ for the universal player; it uses
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the same strategy as σ∀ for variables other than xr, but flips the strategy of σ∀
for variable xr. Let β be the assignment constructed by strategies σ∃ and σ′∀.
Then β(xs) = α(xs) for all s < r, and β(xr) 6= α(xr). These are the only values
that matter for evaluating Ik. An examination of the ∀-red rule shows that it
derives the tighter of the two inequalities Ik|xr=0 and Ik|xr=1 as Ij , and hence
Ik(β) equals Ij(α) and is false. Thus the existential player using strategy σ∃
does not win against the universal player using strategy σ′∀, and hence is not a
winning strategy for Fj−1, a contradiction.

We remark that to just show the completeness of CP+∀red for sets of
inequalities arising from encodings of QBFs (where, in particular, only 0/1/− 1
coefficients appear in the inequalities), we could alternatively use the following
easy simulation of QU-Res by CP+∀red and then refer to the known completeness
of QU-Res for QBFs. As we will need the simulation later anyway, we state it
here as a lemma.

Lemma 3. CP+∀red p-simulates QU-Res.

Proof. Let π be a QU-Res proof. For each C ∈ π we show how to derive R(C)
in CP+∀red.

We know that the rules of the propositional cutting planes system can
p-simulate the resolution rule [26]. Observe that the same simulation works
independent of the quantifier prefix or the nature of the pivot variable. Now we
show how CP+∀red simulates the ∀-red rule of QU-Res proof system. Consider a
∀-red step in QU-Res of the form C∨u

C , where u is universal and all existential
variables in the clause C come before u in the prefix. By induction we have
derived the inequality R(C ∨ u) for the clause C ∨ u. Reducing u from this
inequality is valid. Clearly, the coefficient of u in the inequality R(C ∨ u) is +1.
Hence in the CP+∀red proof, using the ∀-red rule assigns u = 0 and hence derives
R(C). Similarly, for C∨¬u

C , the coefficient of u in the inequality R(C ∨ ¬u) is
−1 (the variable u contributes (1− u) to R(C ∨ ¬u)), hence the ∀-red rule in
CP+∀red sets u = 1 and again derives R(C).

4. Strategy extraction for CP+∀red

Strategy extraction is an important paradigm in QBF, which is also very
desirable in practice to certify the solution of QBF solvers (cf. [34, 3, 29, 10]).
Winning strategies for the universal player can be very complex. But a QBF
proof system has the strategy extraction property for a particular class of circuits
C whenever we can efficiently extract, from every refutation π of a false QBF ϕ,
a winning strategy for the universal player where the strategies for individual
universal variables are computable in circuit class C.

In this section we show how to extract, from a refutation in CP+∀red, winning
strategies computable by LTF-decision lists.

Theorem 2 (Strategy Extraction Theorem). Given a false QBF ϕ = Q. φ, with
n variables, and a CP+∀red refutation π of ϕ of length l, it is possible to extract
from π a winning strategy where for each universal variable u ∈ ϕ, the strategy
σu can be computed by an LTF-decision list of length at most l.

Furthermore, if π has nu steps where the variable u is reduced, then the
LTF-decision list computing σu has length at most nu.
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Proof. We adapt the technique from [9]. Let Q. F be the standard encoding of ϕ,
and let π = Q. [I1, . . . , Il] be a normal-form CP+∀red proof of Q. F of length l.
For j ∈ {0, 1, . . . , l}, define πj = Q. [Ij+1, . . . , Il] and Fj = F ∪{I1, . . . , Ij} (note
that: πl = ∅ and F0 = F ). By downward induction on j, from πj we show how
to compute, for each universal variable u, a Boolean function σju that maps each
assignment to the variables quantified before u to a bit {0, 1}. These functions
satisfy the property that in a 2-player game played on the formula Q. Fj , if the
universal player chooses values for each universal variable u according to σju,
then finally some inequality in Fj is falsified. We describe the functions σju by
decision lists of size O(l − j), where each condition is an LTF. The functions σ0

u

are the desired strategies σu. To be precise, we show the following:

Claim 4. For every j ∈ [l], from πj, one can extract a winning strategy for the
universal player σj(~x) in the two player game played on Q. Fj, such that σj(~x)
can be computed by an LTF-decision list of length O(l − j).

As already mentioned, we prove Claim 4 by downward induction on j. Since
all axioms are included in F , we can skip the axiom download steps in the
CP+∀red proof.
Base case: When j = l, define σlu = 0 for all u. Indeed σlu can take any Boolean
value as Fl contains Il which is the contradiction 0 ≥ 1.
Induction hypothesis: Assume that Claim 4 is true at the jth step.
Induction step: For j ≤ l, if Ij is obtained by a propositional rule, then
σj−1
u ≡ σju for every universal variable u. By induction, against any strategy of

the existential player, the assignment constructed by playing according to σju
falsifies some inequality in Fj . If it does not falsify Ij , then it must falsify an
Ik ∈ Fj with k < j, that is, an Ik ∈ Fj−1. Otherwise, since it falsifies Ij and
since the inference rules are sound, it also falsifies at least one of the hypotheses
Ik, k < j.

If Ij is derived using a ∀-red rule; that is Ij = Ik|u=bj for some k < j, then

for all u′ 6= u, σj−1
u′ ≡ σju′ . For u, if Ik|u=bj (~a) = 0, then σj−1

u (~a) = bj , else
σj−1
u (~a) = σju(~a). (The value Ik|u=bj (~a) can be determined since variables to the

right of u have zero coefficient in Ik.)
By induction, against any strategy of the existential player, the assignment

constructed by playing according to σju falsifies some inequality in Fj . If does not
falsify Ij , then it must falsify an Ik′ ∈ Fj with k′ < j, that is, an Ik′ ∈ Fj−1. In
this case, we have defined σj−1

u ≡ σju, so playing according to σj−1
u also falsifies

Ik′ ∈ Fj−1. Otherwise, since it falsifies Ij = Ik|u=bj and since in this case we
have defined σj−1

u (~a) = bj , so playing according to σj−1
u also falsifies Ik ∈ Fj−1.

The decision list Dj−1
u for σj−1

u is constructed as follows: If Ij is obtained
using a propositional rule, or by reducing a variable other than u, then Dj−1

u (~x) =
Dj
u(~x). If u is reduced, then the decision list is Dj−1

u (~x) is the following:

Dj−1
u (~x) = If ¬(Ik|z=bj (~x)) Then bj Else Dj

u(~x).

Observe that Dj−1
u (~x) has at most one more condition than Dj

u(~x).
By construction, the decision lists D0

u have length O(l) and each condition is
an LTF.

We point out that the computational model of LTF-decision lists is weak
enough to allow for unconditional lower bounds [59]. This is in contrast to
TC0 circuits (of which LTF-decision lists form a strict sub-class), where no
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unconditional lower bounds are currently known. In fact, strategy extraction in
TC0 is needed for TC0-Frege+∀red [9].

We now use the mentioned unconditional lower bound for LTF-decision lists
together with Theorem 2 to obtain an exponential lower bound for CP+∀red
proof size for a specific family of QBFs.

Corollary 5. There exists a family of false QBFs Q-IPn requiring exponential-
size proofs in CP+∀red.

Proof. We use the function IPn that computes the Inner Product (mod 2) of
two Boolean vectors. That is,

∀x, y ∈ {0, 1}n, IPn(x, y) =

{
1 if

∑
i xiyi ≡ 1 (mod 2)

0 otherwise.

Consider the following false sentence based on IPn:

∃x1 . . . xn∃y1 . . . yn∀z.
[
IPn(~x, ~y) 6= z

]
.

This can be expressed as a QBF with CNF matrix by using auxiliary variables
t1, . . . , tn, where ti computes

∑
j≤i xiyi (mod 2). Thus we start with the false

sentence

∃x1 . . . xn∃y1 . . . yn∀z∃t1 . . . tn.
(¬t0)
ti ↔ (ti−1 ⊕ (xi ∧ yi)) for i ∈ [n],
(tn ↔ ¬z)

and replace each line by an equivalent CNF formulation. We call the resulting
formula Q-IPn and remark that it is a false prenex QBF with CNF matrix, and
is of size Θ(n).

In the two-player game on Q-IPn or on its standard encoding, the only
winning strategy for the universal variable z is the function IPn(~x) itself. If
there exists a CP+∀red proof for Q-IPn of length l, then from Theorem 2, IPn
has an LTF-decision list of length l. In [59] it is shown that any LTF-decision list
for IPn must have length greater than 2n/2 − 1. It follows that any CP+∀red
proof for Q-IPn must have length greater than 2n/2 − 1.

We complement this lower bound with an upper bound for refuting the same
formulas in TC0-Frege+∀red.

Proposition 6. QBFs Q-IPn have polynomial-size proofs in TC0-Frege+∀red.

Proof. By [37], iterated multiplication can be performed in TC0. Thus we can
compute IPn by TC0 circuits. Now we can use Theorem 5.2 of [9], stating that
for all functions f ∈ TC0 the QBFs Q-fn, constructed as above in Q-IPn, can
be refuted in TC0-Frege+∀red. This proves the claim.

Thus, together with the simulation of CP+∀red by Frege+∀red (shown later
in Theorem 8) this yields an exponential separation of the two systems.
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5. Feasible (monotone) interpolation for CP+∀red

In this section we show that CP+∀red admits feasible monotone interpolation.
We adapt the technique first used by Pudlák [49] to re-prove and generalise the
result of Kraj́ıček [43].

Consider a false QBF of the form

ϕ = ∃~pQ~qQ~r.
[
A′(~p, ~q) ∧B′(~p, ~r)

]
where ~p, ~q, and ~r are mutually disjoint sets of propositional variables, A′(~p, ~q)
is a set of clauses using only the ~p and ~q variables, and B′(~p, ~r) is a set of
clauses using only the ~p and ~r variables. Thus ~p are the common variables
between them. The ~q and ~r variables can be quantified arbitrarily, with any
number of quantification levels. Since ϕ is false, on any assignment ~a to the
variables in ~p, either ϕ~a,0 = Q~q. A′(~a, ~q) or ϕ~a,1 = Q~r. B′(~a,~r) (or both) must
be false. An interpolant for ϕ is a Boolean function that, given ~a, indicates
which of ϕ~a,0, ϕ~a,1 is false. As defined in [14], a QBF proof system S admits
feasible interpolation if from an S-proof π of such a QBF ϕ, we can extract a
Boolean circuit Cπ computing an interpolant for ϕ, such that, the size of Cπ is
polynomially related to the size of π. If, whenever the ~p variables occur only
positively in A′ or only negatively in B′, the polynomial sized (with respect to
the size of π) interpolating circuit for ϕ is monotone, then we say that S admits
monotone feasible interpolation.

Cutting Planes naturally gives rise to arithmetic rather than Boolean circuits,
as in the propositional case in [49]. Generalising this to the case of QBFs, we
have the following definitions.

Definition 5.1 (Pudlák [49]). A monotone real circuit is a circuit which com-
putes with real numbers and uses arbitrary non-decreasing real unary and binary
functions as gates.

We say that a monotone real circuit computes a Boolean function (uniquely
determined by the circuit), if for all inputs of 0’s and 1’s the circuit outputs 0 or
1.

Definition 5.2. A QBF proof system S admits monotone real feasible interpola-
tion if for any false QBF ϕ of the form ∃~pQ~qQ~r.

[
A′(~p, ~q)∧B′(~p, ~r)

]
where the ~p

variables occur only positively in A′ or only negatively in B′, and for any S-proof
π of ϕ, we can extract from π a monotone real circuit C of size polynomial in the
length of π and the number n of ~p variables, such that C computes a Boolean
function, and on every 0, 1 assignment ~a for ~p,

C(~a) = 0 =⇒ Q~q.A′(~a, ~q) is false, and

C(~a) = 1 =⇒ Q~r.B′(~a,~r) is false.

Such a C is called a monotone real interpolating circuit for ϕ.

Theorem 3. CP+∀red for inequalities admits monotone real feasible interpo-
lation. That is, let F be any false quantified set of inequalities of the form
∃~pQ~qQ~r.

[
A(~p, ~q)∧B(~p, ~r)

]
where A∪B includes all Boolean axioms, and where

the coefficients of ~p are either all non-negative in A or are all non-positive in B.
If F has a CP+∀red-proof π, of length l, then we can extract a monotone real
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circuit C of size polynomial in l and the number n of ~p variables in F , such that
C computes a Boolean function, and on any 0, 1 assignment ~a to ~p,

C(~a) = 0 =⇒ Q~q.A(~a, ~q) is false, and

C(~a) = 1 =⇒ Q~r.B(~a,~r) is false.

Such a C is called a monotone real interpolating circuit for F .

Proof. Let π = ∃~pQ~qQ~r. [I1, . . . , Il] be a CP+∀red refutation of F . The idea, as
in [49], is to associate with each inequality

I ≡
∑
k

ekpk +
∑
i

fiqi +
∑
j

gjrj ≥ D

in π, two inequalities

I0 ≡
∑
i

fiqi ≥ D0, I1 ≡
∑
j

gjrj ≥ D1

depending on the Boolean assignment ~a to the ~p variables, in such a way that

• I0 and I1 together imply I|~a. (It suffices to ensure D0 +D1 ≥ D−
∑
k

ekak.)

• I0 can be derived solely from the Q~q.A(~a, ~q) part in CP+∀red.

• I1 can be derived solely from the Q~r.B(~a,~r) part in CP+∀red.

Then the inequalities corresponding to the last step of the proof, Il, are 0 ≥ D0

and 0 ≥ D1, with D0 + D1 ≥ 1. Hence D0 > 0 =⇒ ~Q~q.A(~a, ~q) is false, and

D1 > 0 =⇒ ~Q~r.B(~a,~r) is false. Note that we only need to compute one of
the values D0, D1 to identify a false part of F . Furthermore, we will show that
if all the coefficients ek in B(~p, ~r) are non-positive, then D1 can be computed
by a real monotone circuit of size O(nl). If all the coefficients ek in A(~p, ~q) are
non-negative, then we will show that −D0 can be computed by a real monotone
circuit of size O(nl). (The inputs to the circuit are an assignment ~a to the ~p
variables.) Applying the unary non-decreasing threshold function D1 > 0? or
−D0 ≥ 0? to its output will then give a monotone real interpolating circuit for
F .

We first describe the computation of D0 and D1 at each inequality. These
are computed by two circuits, both of which have exactly the structure of π.

Consider the case when all ek in B(~p, ~r) are non-positive; the other case is
analogous. All axioms are considered as either A-axioms or as B-axioms. The
Boolean axioms concerning ~p variables are treated as A-axioms in this case.

The computation of D0 and D1 proceeds bottom-up as described below.
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How inequality I is obtained D0 D1

Axioms:
pk ≥ 0 −ak 0
−pk ≥ −1 ak − 1 0
−qi ≥ −1 −1 0
−rj ≥ −1 0 −1
qj ≥ 0 or rj ≥ 0 0 0∑
k ekpk +

∑
fiqi ≥ D D −

∑
ekak 0∑

k ekpk +
∑
gjrj ≥ D 0 D −

∑
ekak

Arithmetic:
Addition I = I ′ + I ′′ D′0 +D′′0 D′1 +D′′1
Multiplication I = hI ′, h > 0 h×D′0 h×D′1
Division I = I ′/c, c > 0

⌈
D′0
c

⌉ ⌈
D′1
c

⌉
Reduction: I = I ′ |u=b;
(coefficient of u in I ′ is h).
h > 0 D′0 D′1
h < 0 and u is a ~q variable D′0 − h D′1
h < 0 and u is an ~r variable D′0 D′1 − h

As in the proof argument from [49], a straightforward induction shows that
with these computations, at each proof line I, the inequalities I0 and I1 together
imply I |~a, and that each I0 can be derived from the A-axioms alone and each
I1 can be derived from the B-axioms alone.

All the operations required for the arithmetic and reduction steps compute
non-decreasing functions. At the axioms, note that the dependence of the D1

values on the assignment values ~a is always with non-negative coefficients −ek;
hence these functions are also non-decreasing. Thus we obtain a monotone real
circuit for D1, of size O(nl).

Monotone real feasible interpolation for QBFs in CP+∀red follows trivially
from Theorem 3. (The extra step to note is that if ~p occurs only positively in
the clauses of A′, the Boolean axioms corresponding to these variables should
be included in B, and otherwise in A.)

Using monotone interpolation (Theorem 3), we now prove another lower
bound for the CP+∀red proof system, which is based on the false clique-co-clique
formulas from [14].

Definition 5.3. Fix positive integers k, n with k ≤ n. CliqueCoCliquen,k is
the class of QBFs of the form ∃~pQ~qQ~r. [An,k(~p, ~q) ∧Bn,k(~p, ~r)] where

• ~p is the set of variables {puv | 1 ≤ u < v ≤ n}. An assignment to ~p picks a
set of edges, and thus an n-vertex graph that we denote G~p.

• Q~q. An,k(~p, ~q) is a QBF expressing the property that G~p has a clique of
size k.

• Q~r. Bn,k(~p, ~r) is a QBF expressing the property that G~p has no clique of
size k.

Any QBF in CliqueCoCliquen,k expresses the clique-co-clique principle (there
is a graph both containing and not containing a k-clique) and is obviously false.
In [14], a particular QBF ϕn ∈ CliqueCoCliquen,n/2 of size polynomial in n
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is described. It can be easily generalised to QBFs ϕn,k ∈ CliqueCoCliquen,k
of size polynomial in n.

Let Φn,k be any QBF in CliqueCoClique, and suppose that it has a
CP+∀red proof of length l. From Theorem 3, we obtain a monotone real circuit
C of size O(l + n2) computing a Boolean function, such that for every 0, 1 input
vector ~a of length

(
n
2

)
encoding a graph G, C(~a) = 1 ⇐⇒ G has a k clique.

In [49], Pudlák showed the following exponential lower bound on the size of
real monotone circuits interpolating the famous “clique-color” encodings.

Theorem 4 (Pudlák [49]). Suppose that the inputs for a monotone real circuit C
are 0, 1 vectors of length

(
n
2

)
encoding in the natural way graphs on an n-element

set. Suppose that C outputs 1 on all cliques of size k and outputs 0 on all
complete (k− 1)-partite graphs, where k = b 1

8 (n/ log n)2/3c. Then the size of the

circuit is at least 2Ω((n/ logn)1/3).

(In some earlier literature, clique-color has been referred to as clique-co-clique.
However, this is misleading because the clique-color encoding is weaker than
Φn,k in the following sense. The clique-color encoding says that there exists a
graph which has a k-clique and is (k− 1)-colorable. A graph may neither have a
k-clique nor be (k − 1)-colorable, so both parts of the clique-color formula may
be false. Our clique-co-clique formulas, on the other hand, always have exactly
one true part.)

Since complete (k − 1)-partite graphs have no k-clique, the real monotone
interpolating circuit C we obtain from a CP+∀red proof of Φn,k also satisfies the
premise of Theorem 4. Hence, C must have size exponential in n. But C’s size
is polynomially related to the length of the CP+∀red proof of Φn,k. We have
thus obtained the following:

Corollary 7. For k = b 1
8 (n/ log n)2/3c, any false QBF

Φn,k ∈ CliqueCoCliquen,k requires proofs of length exponential in n in the
CP+∀red proof system. In particular, the QBF ϕn,k from Definition 5.3 requires
proofs of length exponential in |ϕn,k| in CP+∀red.

6. Relative power of CP+∀red and other QBF proof systems

In this section we relate the power of CP+∀red with other well known QBF
proof systems.

6.1. Comparison to weaker QBF proof systems

We start by comparing CP+∀red to the main QBF resolution systems.

Theorem 5. CP+∀red is exponentially stronger than Q-Res and QU-Res.

Proof. By Lemma 3, CP+∀red p-simulates QU-Res (and hence Q-Res), and is
thus at least as strong as them. From propositional proof complexity we know
that false CNF formulas based on the pigeonhole principle are easy for Cutting
Planes proof system [26] but hard for resolution [35]. Therefore CP+∀red is
exponentially more powerful than any QBF proof system based on resolution
(Q-Res, QU-Res, etc.); these systems cannot simulate CP+∀red.
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Note that the separating QBFs have only existential quantification, and this
is not the effect one wants to study in QBF proof complexity (cf. also [22] for a
discussion). However, there are also natural separating QBFs using universal
quantifiers. We discuss two of them below.

In [11] it has been shown that the false QBFs KBKF(t), introduced in [40],
are hard for Q-Res. However, they are known to have a polynomial-size proofs
in QU-Res [60], and by Lemma 3 in CP+∀red as well; thus they separate Q-Res
from CP+∀red.

Arguably, the more interesting separation is between QU-Res and CP+∀red.
For this we define the family of false QBFs QMajorityn in a manner similar
to the definition of Q-IPn in Corollary 5. The QBF expresses the false sentence

∃x1, . . . , x2n+1 ∀zMajority(x1, . . . , x2n+1) 6= z.

To express this compactly with a CNF matrix, we use auxiliary variables tik for
i ∈ [2n+ 1] and 0 ≤ k ≤ i, and inductively define tik = Thresholdk(x1, . . . , xi)
by using tik = ti−1

k ∨ (ti−1
k−1 ∧ xi). Therefore t2n+1

n+1 = Majority(x1, . . . , x2n+1).
We define QMajorityn as the QBF with the prefix

∃x1, . . . , x2n+1 ∀z ∃t10, t11, ∃t20, t21, t22, . . .∃t2n+1
0 , t2n+1

1 , . . . , t2n+1
2n+1

and the CNF matrix

{ti0} i ∈ [2n+ 1]
{x1,¬t11} {¬x1, t

1
1}

{ti−1
i−1,¬tii} {xi,¬tii} {¬xi,¬ti−1

i−1, t
i
i} 2 ≤ i ≤ 2n+ 1

{xi,¬tik, t
i−1
k } {¬tik, t

i−1
k , ti−1

k−1} 2 ≤ i ≤ 2n+ 1, k ∈ [i− 1]

{¬ti−1
k , tik, } {¬xi, tik,¬t

i−1
k−1} 2 ≤ i ≤ 2n+ 1, k ∈ [i− 1]

{z, t2n+1
n+1 } {¬z,¬t2n+1

n+1 }.

Note that this is a false prenex QBF with CNF matrix, and is of size Θ(n2).

Theorem 6. 1. Any QU-Res proof for QMajority has exponential size.

2. QMajority has polynomial-sized proofs in CP+∀red.

Proof. For the QU-Res lower bound, note that the only winning strategy for the
single universal variable z is the function Majority(x1, . . . , x2n+1) itself. By
the results of [36], constant-depth circuits for Parity, and hence for Majority,
must be of size exponential in the number of variables. On the other hand,
we know that from any QU-Res proof of size S, one can extract a winning
strategy for the universal player as an AC0-decision list of length S as shown in
[11]. Therefore, if QMajority has a QU-Res proof of size S, then the winning
strategy for the universal player, and hence Majority, can be computed by an
AC0-decision list of length S. It follows that S must be exponential in n.

We now describe a CP+∀red proof for QMajorityn of length Θ(n2).
The proof is tediously long but not very complicated. Here is a roadmap

of the steps involved. Associate the predicate tik ≡ Thresholdk(x1, . . . , xi)
with the integer point (k, i) in an array of integer points with i ∈ [2n + 1]
and 0 ≤ k ≤ i. We want to derive the predicate at point (n + 1, 2n + 1). We
reach this predicate by a rightward sweep starting from i = 1. At each value
of i, the predicates at the extremes k = 0 and k = i are derivable from the
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Boolean axioms, the clause axioms, and in the case k = i, from the predicate at
(i − 1, i − 1). Each other predicate (k, i) is derived from the axioms (Boolean
and clause) and the predicates at (k − 1, i− 1) and (k, i− 1).

To implement this, we must express the predicates by appropriate inequalities.
To simplify the expressions, we use the notation PSumi to denote the partial
sum

∑
j≤i xj . We write the implications and inequalities as follows:

forward direction backward direction
Implication tik → PSumi ≥ k tik ← PSumi ≥ k
Inequality −ktik + PSumi ≥ 0 (i− k + 1)tik −PSumi ≥ 1− k

Now for the details. The reader who is convinced by the outline above can
skip the detailed steps of the induction.

We proceed by induction on i.
Base case: For i = 1, k is 0 or 1. At k = 0, the forward direction is the Boolean
axiom x1 ≥ 0, and the backward direction inequality 2t10 − x1 ≥ 1 is obtained by
adding the Boolean axiom −x1 ≥ −1 and twice the unit clause axiom t10 ≥ 1. For
k = 1, both directions are the inequalities corresponding to the axioms t11 ↔ x1.
Inductive Step: Now assume that i ≥ 2. The extreme values of k, namely
k = 0 and k = i, are easy and we deal with them first.
k = 0 : For the forward direction, we simply add all Boolean axioms xj ≥ 0 for
j ≤ i together to get PSumi ≥ 0. For the backward direction, similarly, we add
all Boolean axioms −xj ≥ −1 for j ≤ i together to get −PSumi ≥ −i, and then
add (i+ 1) times the unit clause axiom ti0 ≥ 1.
k = i : The forward inequality is derived as follows:

{¬tii, ti−1
i−1}

−tii + ti−1
i−1 ≥ 0

−(i− 1)tii + (i− 1)ti−1
i−1 ≥ 0 −(i− 1)ti−1

i−1 + PSumi−i ≥ 0

−(i− 1)tii + PSumi−1 ≥ 0

{¬tii, xi}
−tii + xi−1 ≥ 0

−itii + PSumi ≥ 0

The backward inequality is derived as follows:

{tii,¬t
i−1
i−1,¬xi}

tii − t
i−1
i−1 − xi ≥ −1 ti−1

i−1 −PSumi−1 ≥ 2− i
tii −PSumi ≥ 1− i

1 ≤ k < i : Now we consider the intermediate values. The backward direction is
a bit easier and we do it first. It uses the inductively derived backward direction
for i− 1.

We first derive inequalities for PSumi−1 ≥ k → tik and PSumi−1 ≥ k − 1 ∧
xi → tik and then derive the inequality for PSumi ≥ k → tik.

The derivation of an inequality for PSumi−1 ≥ k → tik is as follows.

{tik,¬t
i−1
k }

tik − t
i−1
k ≥ 0

(i− k)tik − (i− k)ti−1
k ≥ 0 (i− k)ti−1

k −PSumi−1 ≥ 1− k
(i− k)tik −PSumi−1 ≥ 1− k
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The derivation of the inequality for PSumi−1 ≥ k − 1 ∧ xi → tik is as follows.

{tik,¬ti−1
k−1,¬xi}

tik − ti−1
k−1 − xi ≥ −1

(i− k + 1)(tik − ti−1
k−1 − xi) ≥ k − i− 1 (i− k + 1)ti−1

k−1 − PSumi−1 ≥ 2− k

(i− k + 1)tik − PSumi−1 − (i− k + 1)xi ≥ 1− i

We can conclude with the following derivations.

(i − k)tik − PSumi−1 ≥ 1 − k

(i − k)2tik − (i − k)PSumi−1 ≥ (i − k)(1 − k) (i − k + 1)tik − PSumi−1 − (i − k + 1)xi ≥ 1 − i

((i − k + 1)(i − k) + 1)tik − (i − k + 1)PSumi ≥ 1 − k(i + 1 − k)

tik ≥ 0

(i− k)tik ≥ 0 ((i− k + 1)(i− k) + 1)tik − (i− k + 1)PSumi ≥ 1− k(i+ 1− k)

(i− k + 1)2tik − (i− k + 1)PSumi ≥ 1− k(i+ 1− k)

(i− k + 1)tik − PSumi ≥ 1− k

The forward direction uses both the directions of the inductively derived
inequalities for i− 1. Recall that i ≥ 2 and 1 ≤ k ≤ i− 1. We need to derive
tik → PSumi ≥ k. The key to this is to derive and then combine inequalities for
tik → PSumi−1 ≥ k − 1 and tik → xi ∨PSumi−1 ≥ k.

In order to show tik → PSumi−1 ≥ k − 1 from our inductive hypothesis and
the clause ¬tik ∨ t

i−1
k ∨ ti−1

k−1, we use the fact that ti−1
k → ti−1

k−1 is true. But first
we must derive this fact from the induction hypothesis. We start the derivation
as follows:

(i+ 1− k)ti−1
k−1 −PSumi−1 ≥ 2− k −kti−1

k + PSumi−1 ≥ 0

−kti−1
k + (i+ 1− k)ti−1

k−1 ≥ 2− k

Now we equalise the coefficients on the left-hand-side by adding a multiple of
an appropriate Boolean axiom, and then a division rule yields −ti−1

k + ti−1
k−1 ≥ 0.

If i+ 1− 2k > 0, then we proceed as follows:

−ti−1
k ≥ −1

−(i+ 1− 2k)ti−1
k ≥ −(i+ 1− 2k) −kti−1

k + (i+ 1− k)ti−1
k−1 ≥ 2− k

−(i+ 1− k)ti−1
k + (i+ 1− k)ti−1

k−1 ≥ 2− (i+ 1− k)

−ti−1
k + ti−1

k−1 ≥ 0

Alternatively, if i+ 1− 2k ≤ 0,

ti−1
k−1 ≥ 0

−(i+ 1− 2k)ti−1
k−1 ≥ 0 −kti−1

k + (i+ 1− k)ti−1
k−1 ≥ 2− k

−kti−1
k + kti−1

k−1 ≥ 2− k

−ti−1
k + ti−1

k−1 ≥ 0
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(At the last step, we may obtain 1 on the right hand side if k = 1. In that
case, we further add 0 ≥ −1, which may be considered an axiom or may be
derived by adding the two Boolean axioms for any variable.)

Next we use the derived inequality −ti−1
k + ti−1

k−1 ≥ 0 to derive −tik + ti−1
k−1 ≥ 0.

−ti−1
k + ti−1

k−1 ≥ 0

{−tik, t
i−1
k , ti−1

k−1}

−tik + ti−1
k + ti−1

k−1 ≥ 0

−tik + 2ti−1
k−1 ≥ 0 −tik ≥ −1

−2tik + 2ti−1
k−1 ≥ −1

−tik + ti−1
k−1 ≥ 0

This, with the inductive hypothesis, lets us derive tik → PSumi−1 ≥ k − 1.

−tik + ti−1
k−1 ≥ 0

−(k − 1)tik + (k − 1)ti−1
k−1 ≥ 0 −(k − 1)ti−1

k−1 + PSumi−1 ≥ 0

−(k − 1)tik + PSumi−1 ≥ 0

As described earlier, we also need an inequality for tik → xi ∨
∑
j<i xj ≥ k.

Under Boolean conditions, the inequality −ktik +
∑
j<i xj + kxi ≥ 0 suffices. We

use an axiom clause along with the inductive hypothesis to derive it.

{¬tik, t
i−1
k , xi}

−tik + ti−1
k + xi ≥ 0

−ktik + kti−1
k + kxi ≥ 0 −kti−1

k + PSumi−1 ≥ 0

−ktik + PSumi−1 + kxi ≥ 0

Now we combine the derived inequalities to obtain the inequality for the
forward direction.

−ktik + PSumi−1 + kxi ≥ 0

−tik ≥ −1

(1− k)tik ≥ 1− k

(1− 2k)tik + PSumi−1 + kxi ≥ 1− k

−(k − 1)tik + PSumi−1 ≥ 0

−(k − 1)2tik + (k − 1)PSumi−1 ≥ 0

−k2tik + kPSumi ≥ 1− k

−ktik + PSumi ≥ 0

After Induction: With the induction part of the proof completed, we have
shown that (n+ 1)t2n+1

n+1 −PSum2n+1 ≥ −n and −(n+ 1)t2n+1
n+1 +PSum2n+1 ≥ 0

can be derived in a short proof of length Θ(n2). (We use Θ(1) additional steps
for both directions of each (i, k) pair.) We now complete the refutation via
universal reduction, which can be applied after eliminating the t variables; the
partial sums do not block the reduction. The first fragment below reduces z by
setting z = 0, the second one sets z = 1.
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{z, t2n+1}
z + t2n+1

n+1 ≥ 1

(n+ 1)z + (n+ 1)t2n+1
n+1 ≥ n+ 1 −(n+ 1)t2n+1

n+1 + PSum2n+1 ≥ 0

(n+ 1)z + PSum2n+1 ≥ n+ 1

PSum2n+1 ≥ n+ 1

{¬z,¬t2n+1}
−z − t2n+1

n+1 ≥ −1

−(n+ 1)z − (n+ 1)t2n+1
n+1 ≥ −(n+ 1) (n+ 1)t2n+1

n+1 −PSum2n+1 ≥ −n
−(n+ 1)z −PSum2n+1 ≥ −2n− 1

−PSum2n+1 ≥ −n

−PSum2n+1 ≥ −n PSum2n+1 ≥ n+ 1

0 ≥ 1

As a corollary we obtain that strategy extraction for CP+∀red, established in
Theorem 2 to have LTF-decision lists, cannot be improved to AC0 or even AC0[p]
for any prime p.

Corollary 8. CP+∀red does not admit strategy extraction in AC0 or in AC0[p]
for any prime p.

Proof. By results of [51, 58], Majority requires exponential-size AC0 circuits,
(in fact even AC0[p] for a prime p). By the previous theorem QMajority has
short proofs in CP+∀red and Majority is the only winning strategy for the
universal player on the formula. Therefore we cannot extract winning strategies
from CP+∀red proofs in AC0 (and neither in AC0[p]).

6.2. Incomparability results

Theorems 5, 6 show that CP+∀red is stronger than the propositional CDCL
proof systems. However, as we show next, it is incomparable with even the base
system of expansion solving.

Theorem 7. CP+∀red and ∀Exp+Res are incomparable. i.e.,

• ∀Exp+Res cannot simulate CP+∀red.

• CP+∀red cannot simulate ∀Exp+Res.

Proof. In [38], Janota and Marques-Silva show that there exists a family of false
QBFs which are hard for ∀Exp+Res but easy to refute in Q-Res. As CP+∀red
p-simulates Q-Res (Lemma 3), we conclude that ∀Exp+Res cannot simulate
CP+∀red.

For the second claim, recall the QBF Q-IPn; Corollary 5 shows that it
needs exponential refutation size in CP+∀red. On the other hand, from [11,
Proposition 28], we know that it (and in fact any similar formula Q-fn where
fn has polynomial-sized circuits) can be refuted in ∀Exp+Res in O(n) steps.
Briefly, the refutation proceeds as follows: expand on both polarities of the single
universal variable z, creating two copies t0i and t1i of each variable ti. Inductively
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derive that for each b ∈ {0, 1}, tbi is equivalent to tbi−1 ⊕ (xi ∧ yi). Hence derive
t0l = t1l . Since the clauses expressing tl 6= z on expansion give the unit clauses
¬t1l and t0l , we obtain a contradiction.

Another consequence of the short CP+∀red proofs for QMajority (Theo-
rem 6) is the (partial) incomparability of AC0-Frege+∀red with CP+∀red. Because
of the hardness of QMajority for AC0[p]-Frege+∀red for an arbitrary prime p,
shown in [9], we can conclude that AC0[p]-Frege+∀red does not simulate CP+∀red,
but a stronger Frege system is needed for this simulation. This directly leads to
our next topic.

6.3. Comparison to stronger QBF proof systems

We now proceed to compare CP+∀red with stronger QBF systems. A natural
candidate is Frege+∀red, which we will show to be exponentially stronger than
CP+∀red.

Theorem 8. Frege+∀red is exponentially stronger than CP+∀red:
Frege+∀red p-simulates CP+∀red, whereas CP+∀red does not simulate simulate
Frege+∀red.

Proof. Frege+∀red p-simulates CP+∀red: In the classical (propositional)
setting, Cook, Coullard and Turán [26] first showed that Extended Frege p-
simulates Cutting Planes. Then Goerdt [32] showed that even Frege p-simulates
Cutting Planes. Using techniques from [20], [26], and [32], we show that the same
simulation goes through with minor modifications for QBFs.

Let ϕ be the false formula Qx1 · · · Qxn. [C1 ∧ · · · ∧ Cm], and let F denote
its standard encoding as described in Definition 3.2. Fix any CP+∀red proof
π = Qx1 · · · Qxn. [I1, I2, . . . , Im] of F . By Lemma 2, we can assume that π is in
normal form. We need to represent each inequality I as a propositional formula
Rep(I), such that on each assignment α to the Boolean variables, Rep(I)(α) is 1
if and only if I|α is 1. We do this almost exactly as in [32].

Integer arithmetic is in NC1. Thus, for a string of (n+ 1)L Boolean variables
~y representing the bits of n+ 1 signed integers a1, a2, . . . , an, b with bit length
L each, and n Boolean variables x1, . . . , xn, there is a formula F (~y, ~x) of size
polynomial in n+L (and depth logarithmic in nL) with the following properties:

• For every assignments β to the ~y variables, F (β, ~x) represents the inequality∑
i aixi ≥ b.

• For every assignments α to the ~x variables, we have F (β, α) is true if and
only if

∑
i aiαi ≥ b is true.

To represent a specific inequality I :
∑
i aixi ≥ b, we append to the leaves of

F labelled from ~y subformulas of the form x ∨ x̄ or x ∧ x̄ depending on the
bits of the ai’s and b. The resulting formula has the variables x1, . . . , xn and is
the representation Rep(I). It will be more convenient to think of Rep(I) as a
formula with multiple output gates. The main output gate is the one described
above, taking truth value 1 if and only if the inequality is satisfied. Additionally,
for each bit of each ai and b, one of the gates of Rep(I) evaluates to exactly that
bit.

Our simulating Frege+∀red proof will have the structure

π1,Rep(I1), π2,Rep(I2), . . . , πm,Rep(Im), πm+1, false,
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where each πi is a sequence of propositional formulas. That is, the simulating
Frege+∀red proof is a sequence of formulas containing the subsequence

Rep(I1),Rep(I2), . . . ,Rep(Im), false.

For each axiom clause C, we derive the formula Rep(R(C)) by a short (polynomial
in n) Frege+∀red proof. (Note that the clause C fixes the values of ai and b,
and hence it fixes the values of the y variables to some β.) For each coefficient
ai, i ∈ [n], and b, inside Rep(R(C)) there are explicit subformulas representing
their bits aij and bj for i ∈ [n], j ∈ [L]. (To handle carry overflows, we pad each
coefficient with 0s to length Θ(L) as in [32].) Also included within Rep(R(C))
are explicit subformulas for each aij ∧ xi, since these are the values used in
testing the inequality.

We now need to derive each Rep(It) from Rep(Ij), j < t, via short (polynomial
in the size of proof π) Frege+∀red proofs.

The addition rule, multiplication rule, and the division rule can be simulated
as in the propositional case [32]: since integer arithmetic is in NC1, we have
small formulas G expressing the coefficients of the resulting inequality I from
the used inequalities I ′ and I ′′. A Frege-style proof can describe how values from
the subformulas in Rep(I ′) and Rep(I ′′) propagate through G to bits equivalent
to the corresponding input bits of Rep(I).

Now we show the ∀-red step simulation.
Suppose the inequality Ik is obtained from Ij for some j < k by applying

the ∀-red rule, reducing universal variable u. Clearly, u is the rightmost variable
in Ij with non-zero coefficient hu. Inductively, we have already derived Rep(Ij).
Let bu = 0 if hu > 0, otherwise bu = 1. We need to instantiate u in Rep(Ij) with
bu. But u is not the rightmost variable in Rep(Ij). However, for each variable v
to the right of u, we know that the coefficient av of v in Ij is 0, and hence the
subformulas evaluating to the bits avj , as well as the subformulas evaluating
avj ∧ v, are all 0. In Frege+∀red, we can transform the pair of subformulas,
avj ∧ v, and avj ≡ 0, to the subformula avj ∧ 0, and thus eliminate v (note that
v does not figure anywhere else in the formula).

Once this is done for all variables right of u, we have a formula R in which
the ∀-reduction step is valid in Frege+∀red. Performing this reduction gives
the formula R′ = R |u=bu . Now, a short Frege proof allows us to derive
Rep(Ij |u=bu) = Rep(Ik). To see why such a proof exists, consider the case
bu = 0. Inside R′ we have subformulas for the bits huj of the coefficient hu of u,
and bits for huj ∧ u, and at u we have attached a simple subformula evaluating
to 0. What we want is subformulas where u is still free, but the bits of the new
coefficient of u are all 0. That is, from huj ∧ u and u ≡ 0, we want to derive
0 ∧ u (the reverse of what we did before in the reduction for variables v right of
u). This is easy in Frege+∀red. The case when bu = 1 is similar, with the added
task of subtracting hu from the right-hand-side. This too can be tracked using a
NC1 formula for subtraction.

CP+∀red does not simulate Frege+∀red. While we could just refer to
the separation of the propositional fragments of these proof systems3 it is more

3Frege is exponentially more powerful than Cutting Planes as witnessed by the clique-colour
formulas [49] (see also Section 5), this separation carries over to CP+∀red and Frege+∀red,
because, on existentially quantified formulas, CP+∀red coincides with CP (likewise for Frege).
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interesting to achieve this separation on ‘genuine’ QBFs. Such a separation is
provided by the Q-IPn formulas, which by Proposition 6 have polynomial-size
Frege+∀red proofs, but require exponential-size CP+∀red proofs by Corollary 5.

We believe that this result can possibly be strengthened to an exponential
separation between CP+∀red and TC0-Frege+∀red. As this holds already for
the separating example by Proposition 6, we would just need to tighten the
simulation to a simulation of CP+∀red by TC0-Frege+∀red.

There are further examples separating CP+∀red from Frege+∀red, with non-
trivial universal quantifiers. In Section 5, we described a class of QBF formulas
expressing the clique-co-clique principle. By Corollary 7, none of them have
short proofs in CP+∀red. We show that a particular member of this class (i.e.,
a particular way of encoding clique-co-clique) has short proofs in Frege+∀red.
(However, not all encodings have short proofs; see the discussion after the proof
of the theorem.)

Theorem 9. There is a sequence Φn,k ∈ CliqueCoCliquen,k of size polyno-
mial in n, with polynomial-size Frege+∀red proofs.

Proof. Fix positive integers n (indicating the number of vertices of the graph)
and k ≤ n (indicating the size of the clique queried) and let ~p be the set of
variables {puv | 1 ≤ u < v ≤ n}. An assignment to ~p picks a set of edges, and
thus an n-vertex graph that we denote G~p.

The formula Q~q. An,k(~p, ~q) should express the property Clique(n, k), that
G~p has a clique of size k, and Q~r. Bn,k(~p, ~r) should express the property co-
Clique(n, k), that G~p has no clique of size k.

Let ~q be the set of variables {qiu | i ∈ [k], u ∈ [n]}. We use the following
clauses

Ci = qi1 ∨ · · · ∨ qin for i ∈ [k]
Di,j,u = ¬qiu ∨ ¬qju for i, j ∈ [k], i < j and u ∈ [n]
Ei,u,v = ¬qiu ∨ ¬qiv for i ∈ [k] and u, v ∈ [n], u < v
Fi,j,u,v = ¬qiu ∨ ¬qjv ∨ puv for i, j ∈ [k], i < j and u 6= v ∈ [n].

We can now express Clique(n, k) as a polynomial-size QBF ∃~q.An,k(~p, ~q), where

An,k(~p, ~q) =
∧
i∈[k]

Ci ∧
∧

i<j,u∈[n]

Di,j,u ∧
∧

i∈[k],u<v

Ei,u,v ∧
∧

i<j,u 6=v

Fi,j,u,v.

Here the edge variables ~p appear only positively in An,k(~p, ~q).
Likewise co-Clique(n, k) can be written as a QBF ∀~r∃~t.Bn,k(~p, ~r,~t) of poly-

nomial size. In [14] one way of doing so is described. Another way is take a
disjoint copy of ∃~rAn,k(~p, ~r) with the same ~p variables but new variables instead
of ~q, use auxiliary variables to transform the matrix to 3-CNF, negate it to obtain
∀~rA′n,k(~p, ~r), where A′ is a 3-DNF, and then obtain a short CNF equivalent of
A′. We describe here a somewhat different and more transparent encoding. This
encoding can be used to obtain the results of [14] as well, and is more convenient
for us here because it allows us to obtain a short Frege+∀red proof. As noted
in the remark after this proof, there are very similar encodings of the same
clique-co-clique principle that are unlikely to have short proofs, so the specific
encoding chosen is important.
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In ~r, we have a variable riu for every variable qiu, and in ~t we have a variable
for each clause of An,k, and one new variable t; that is, {tK | K ∈ An,k} ∪ {t}.
For each clause K in An,k(~p, ~q), replace each occurrence of each qiu by the
corresponding riu to obtain clause K ′. These clauses are not put into the matrix.
Instead, we include in Bn,k(~p, ~r,~t) the equivalences tK ↔ K ′, which we represent
as a set of clauses. If all these equivalences are satisfied by an assignment to ~r,
then ∧KtK asserts that the ~r variables encode a clique. We introduce clauses
for t ↔

∧
K∈An,k

tK , so t indicates whether the ~r variables encode a clique.
Because we want to represent the co-clique formula we also include the unit
clause ¬t. These clauses together give Bn,k(~p, ~r,~t), which yields the CNF formula
co-Clique(n, k) = ∀~r∃~t.Bn,k(~p, ~r,~t).

Our clique-co-clique formulas Φn,k are ∃~p∃~q∀~r∃~t.An,k(~p, ~q)∧Bn,k(~p, ~r,~t). We
now show that these formulas are easy in Frege+∀red.

We use a result from [17, Theorem 8.1] which shows that a Frege+∀red
super-polynomial lower bound must either come from a circuit lower bound or a
propositional Frege lower bound. More precisely, if false QBFs Φn do not admit
polynomial-size Frege+∀red proofs, then either the universal player does not
have NC1 winning strategies for the universal variables, or if small NC1 winning
strategies exist, then the propositional formulas obtained by substituting the
NC1 circuits for universal variables in Φn are hard for propositional Frege.

In the case of the clique co-clique formulas Φn,k there exist short winning
strategies for the universal player, namely ~r = ~q. To see this, we just need to
consider the case where the existential player chooses a graph ~p that contains
a k-clique exhibited in the ~q-variables, because otherwise the universal player
immediately wins on An,k(~p, ~q). In this case, choosing ~r = ~q ensures that
Bn,k(~p, ~r,~t) fails as ~r indeed is a k-clique.

Substituting these winning strategies into Φn,k, we obtain the false proposi-
tional formulas An,k(~p, ~q) ∧Bn,k(~p, ~q,~t), which admit short Frege refutations.

Using this intuition we can refute Φn,k in Frege+∀red with short proofs. For
this we first derive the tautology ¬(An,k(~p, ~q)∧Bn,k(~p, ~q,~t)) by demonstrating a
way to find a contradiction in An,k(~p, ~q)∧Bn,k(~p, ~q,~t). To do this we observe that
for any clause K ∈ An,k(~p, ~q), we have the equivalences (tK ↔ K) ∈ Bn(~p, ~q,~t),
so we derive all tK . Then, because (t↔

∧
K∈An,k

tK) ∈ Bn,k(~p, ~q,~t), we obtain

t. This means that with ¬t ∈ Bn,k(~p, ~q,~t) we have a contradiction, thus proving
the negation ¬(An,k(~p, ~q) ∧Bn,k(~p, ~q,~t)).

Moving forward to the next step, we derive in (polynomially many) Frege
steps the implication

∧
i∈[k],j∈[(n

2)](qi,j ↔ ri,j)→ ¬(An,k(~p, ~q)∧Bn(~p, ~r,~t)), from

which together with the axiom An(~p, ~q) ∧Bn(~p, ~r,~t) we derive the disjunction∨
i∈[k],j∈[(n

2)](ri,j 6= qi,j).

Now we perform ∀-reduction, starting with the rightmost universal variable
ri1,j1 and instantiating it with both 0 and 1. Thus we obtain two lines:

(0 6= qi1,j1) ∨
∨

i∈[k],i6=i1,j∈[(n
2)],j 6=j1

(ri,j 6= qi,j)

(1 6= qi1,j1) ∨
∨

i∈[k],i6=i1,j∈[(n
2)],j 6=j1

(ri,j 6= qi,j)

We then use the tautology (qi1,j1 ↔ 0)∨(qi1,j1 ↔ 1) and the two instantiations
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to remove the disjunct (ri1,j1 6= qi1,j1) from the disjunction. Continuing this
iteratively, we remove all disjuncts and are left with the empty disjunct, hence
refuting Φn,k in polynomial size.

Note that if we changed the quantification and used formula
∃~p∀~r∃~t∃~q.An,k(~p, ~q) ∧Bn,k(~p, ~r,~t) we would still be describing exactly the same
contradiction between clique and co-clique. However this encoding is unlikely to
have short proofs in Frege+∀red. This is because the strategy extraction theorem
from [9] allows us to extract, from a polynomially-sized Frege+∀red proof, an NC1

circuit for a winning strategy of the universal player. In the encoding used in
the proof of Theorem 9, the universal player has an exceedingly simple strategy
for choosing an assignment to the ~r variables – simply copy the values chosen by
the existential player for ~q. However, with this new encoding, where only the
quantifier prefix has changed, the universal player does not have access to the
values of ~q while choosing values for ~r. Any winning strategy must, given only
the graph G~p, choose an assignment to ~r that picks out a clique in G~p. This is
an NP-hard problem, yet a short proof in Frege+∀red would imply that it is in
NC1.

7. Semantic cutting planes for QBFs

The propositional Cutting Planes proof system can be extended to the semantic
Cutting Planes proof system by allowing the following semantic inference rule:
from inequalities I ′, I ′′, we can infer I in one step if every Boolean assignment
satisfying both I ′ and I ′′ also satisfies I. In [31], it is shown that semantic Cutting
Planes is exponentially more powerful than Cutting Planes. We now augment
the system semantic Cutting Planes with the ∀-reduction rule as defined for
CP+∀red, to obtain a QBF version denoted semCP+∀red. In fact, in this system
we need only two rules, semantic inference and ∀-reduction, since the addition,
multiplication and division rules of Cutting Planes are also semantic inferences,
and the Boolean axioms can be semantically inferred from any inequality.

It is clear that semCP+∀red is sound and complete. However it is not possible
to verify the semantic rule efficiently (unless P= NP).

As in CP+∀red, we call a semCP+∀red proof π a normal-form proof if ∀-red
is applied only to the rightmost universal variable. Since one can use Boolean
axioms in semCP+∀red; Lemma 2 is valid in semCP+∀red as well, i.e., one can
convert any semCP+∀red proof π into a normal form in polynomial time.

Clearly, SemCP+∀red is at least as powerful as CP+∀red. From propositional
proof complexity we known that semantic Cutting Planes is exponentially more
powerful than Cutting Planes [31]. That is, in [31, Theorem 2], it has been shown
that for every n, there exists a CNF formula Fn which has a short semantic

Cutting Planes refutation but needs 2n
Ω(1)

lines to refute in Cutting Planes. Thus
semCP+∀red is also exponentially more powerful than CP+∀red, as witnessed by
these purely existentially quantified formulas.

In Theorem 2, we established strategy extraction from CP+∀red proofs.
These results hold for semCP+∀red proofs as well; if Ij is obtained by semantic
inference, we do not change the strategy functions and let σj−1

u = σju for every
universal variable u. Thus the lower bound on CP+∀red (Corollary 5 and the
separation Theorem 7) continues to hold:
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Corollary 9. The false QBFs Q-IP require exponential size proofs in
semCP+∀red. Hence semCP+∀red cannot simulate ∀Exp+Res.

For extending the lower bound from Corollary 7 we need an analogue of real
monotone interpolation (Theorem 3). For this, we adapt the corresponding proof
technique used in the propositional case from [31]. Using their technique for
semantic inference, and handling axioms and ∀-reduction rules as in the proof of
Theorem 3, everything goes through as desired.

Theorem 10. SemCP+∀red admits monotone real feasible interpolation for false
QBFs.

Proof. Let ϕ = ∃~pQ~qQ~r(A′(~p, ~q) ∧ B′(~p, ~r)) be a false QBF formula. Without
loss of generality, the ~p variables appear only negatively in B′(~p, ~r). Consider
the standard encoding F = ∃~pQ~qQ~r(A(~p, ~q) ∧B(~p, ~r)) of ϕ (see Definition 3.2).
Clearly the coefficient of ~p variables in B are non-positive. As discussed before
it is sufficient to extract a monotone real feasible interpolation for F . Let π be
any semCP+∀red proof of F , and as in the proof of Theorem 3, we construct
a real monotone interpolating C to detect whether D1 > 0. Axioms and the
∀-reduction rule are handled exactly as in Theorem 3. Now suppose that the
inequality I ≡

∑
k

ekpk +
∑
i

fiqi +
∑
j

gjrj ≥ D is semantically inferred from I ′

and I ′′. We define I0, I1 by defining D0 and D1.

D0 = min

{∑
i

fiqi|γ : γ ∈ {0, 1}|~q|, γ satisfies I ′0, I
′′
0

}

D1 = min

∑
j

gjrj |τ : τ ∈ {0, 1}|~r|, τ satisfies I ′1, I
′′
1


It suffices to show that D0 + D1 ≥ D −

∑
k

ekak. For D0, let the minimum

be achieved at assignment γ0, and for D1, let the minimum be achieved at
assignment τ1. Let ρ be the assignment to the ~q and ~r variables setting ~q as in
γ0 and ~r as in τ1. Then ρ satisfies I ′0, I ′′0 , I ′1, I ′′1 (at ~p = ~a). Hence by induction,
ρ satisfies I ′ and I ′′. Since I is inferred semantically from I ′ and I ′′, ρ satisfies
I as well. Hence

D0 +D1 =
∑
i

fiqi|γ0
+
∑
j

gjrj |τ1 =

∑
i

fiqi +
∑
j

gjrj

 |ρ ≥ D −∑
k

ekak,

as required.
Since ~p appears only negatively in B(~p, ~r), D1 is a non-decreasing function

of D′1 and D′′1 . (As the values of D′1 and D′′1 increase, the set of assignments τ
over which we take the minimum shrinks, and so the minimum value can only
increase or stay the same.)

The proof of Theorem 10 goes through even if the quantified set of linear
inequalities F are of the form defined in Theorem 3, not just those arising from
false QBFs. Therefore similar to Theorem 3, semCP+∀red also admits monotone
real feasible interpolation for inequalities.

Using Theorem 10, we obtain another exponential lower bound for
semCP+∀red, analogous to Corollary 7.
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Corollary 10. For k = b 1
8 (n/ log n)2/3c, any false QBF

Φn,k ∈ CliqueCoCliquen,k requires proofs of length exponential in n in the
semCP+∀red proof system. In particular, the QBFs ϕn,k from Definition 5.3
require proofs of length exponential in |ϕn,k| in semCP+∀red.
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[41] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory, volume 60 of Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, Cambridge, 1995.
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