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Abstract
We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [6]), a
refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike
most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together
with information on countermodels, which are syntactically stored in the proofs as merge maps.
As demonstrated in [6], this makes MRes quite powerful: it has strategy extraction by design and
allows short proofs for formulas which are hard for classical QBF resolution systems.

Here we show the first exponential lower bounds for MRes, thereby uncovering limitations of
MRes. Technically, the results are either transferred from bounds from circuit complexity (for
restricted versions of MRes) or directly obtained by combinatorial arguments (for full MRes). Our
results imply that the MRes approach is largely orthogonal to other QBF resolution models such as
the QCDCL resolution systems QRes and QURes and the expansion systems ∀Exp + Res and IR.
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1 Introduction

Proof complexity aims to provide a theoretical understanding of the ease or difficulty of
proving statements formally. It also aims to explain the success stories of, as well as the
obstacles faced by, algorithmic approaches to hard problems such as satisfiability (SAT) and
Quantified Boolean Formulas (QBF) [18,28]. While propositional proof complexity, the study
of proofs of unsatisfiability of propositional formulas, has been around for decades [19,26],
the area of QBF proof complexity is relatively new, with theoretical studies gaining traction
only in the last decade or so [2,7, 9, 10]. While inheriting and using a wealth of techniques
from propositional proof complexity [11,13, 24], QBF proof complexity has also given several
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12:2 Hard QBFs for Merge Resolution

new perspectives specific to QBF [5,23,34], and these perspectives and their connections to
QBF solving [31, 38] as well as their practical applications [33] have driven the search for
newer proof systems [1, 10,21,27,29].

Many of the currently known QBF proof systems are built on the best-studied propositional
proof system resolution [16,32]. Broadly speaking, resolution has been adapted to handle
the universal variables in QBFs in two intrinsically different ways. The first is an expansion-
based approach: universal variables are eliminated at the outset by implicitly expanding the
universal quantifiers into conjunctions, creating annotated copies of existential variables.
The systems ∀Exp + Res, IR, and IRM [10,23] are of this type. The second is a reduction-
rule approach: under certain conditions, resolution may be blocked, and also under certain
conditions, universal variables can be deleted from clauses. The conditions are formulated to
preserve soundness, ensuring that if a QBF is true, then so is the QBF resulting from adding
a derived clause. The systems QRes, QURes, CP + ∀Red [12,25,36] are of this type.

A central role in QBF proof complexity is played by the two-player evaluation game on
QBFs, and the existence of winning strategies for the universal player in false QBFs. For
many QBF resolution systems, such strategies were used to construct proofs and demonstrate
completeness, and soundness was demonstrated by extracting such strategies from proofs
[1,10,20]. The strategy extraction procedures build partial strategies at each line of the proof,
with the strategies at the final line forming a complete countermodel. These extraction
procedures are based on the fact that in each application of a rule in the proof system, any
winning strategies of the existential player are not destroyed.

In the systems QRes [25] and QURes [36], the soundness of the resolution rule is ensured
by enforcing a very simple side-condition: variables other than the pivot cannot appear in
both polarities in the antecedents. It was observed early on that this is often too restrictive.
The long-distance resolution proof system LD-QRes [1, 38] arose from efforts to have less
restrictive but still sound rules. In this system, a universal variable could appear in both
polarities and get merged in the consequent, provided it was to the right of the pivot in the
quantifier prefix. This preserves soundness, but the strategy extraction procedures become
notably more complex.

The system LD-QRes, while provably better than QRes [20], is still needlessly restrictive
in some situations. In particular, by checking a very simple syntactic prefix-ordering condition,
it fails to exploit the fact that soundness is not lost even if universal variables to the left
of the pivot are merged in both antecedents, provided the partial strategies built for them
in both antecedents are identical. A new system Merge Resolution (MRes) was introduced
last year [6] by a subset of the current authors, precisely to address this point. In MRes,
partial strategies are explicitly represented within the proof, in a particular representation
format called merge maps – these are essentially deterministic branching programs (DBPs).
In this format, isomorphism checking can be done efficiently, and this opens the way for
enabling sound applications of resolution that would have been blocked in LD-QRes (and
QRes). In [6], it was shown that this brought a rich pay-off: there is a family of formulas, the
SquaredEquality formulas, with short (linear-size) proofs in MRes, even in its tree-like and
regular versions, but requiring exponential size in QRes, QURes, CP + ∀Red, ∀Exp + Res,
and IR. It is notable that the hardness of SquaredEquality in these systems stems from a
certain semantic cost associated with these formulas and a corresponding lower bound [4, 5].
Thus the results of [6] show that such semantic costs are not a barrier for MRes.

In this paper, we explore the price paid for overcoming the semantic cost barrier. We
show that (expectedly) MRes is not an unqualified success story. Building strategies into
proofs via merge maps, and screening out unsoundness only through isomorphism tests,
comes at a fairly heavy price.
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Figure 1 Visual summary of the proof complexity landscape, with new results shown in bold.
Dotted lines to the box containing the four systems on the right indicate incomparability with all the
four systems. All incomparability results with tree-like MRes hold also with the tree-like systems.

(A) Lower bounds from circuit complexity for restricted versions of MRes. Since the
strategies are explicitly represented inside the proofs, computational hardness of strategies
immediately translates to proof size lower bounds. While computational hardness of strategies
is a known source of hardness in all reduction-based proof systems admitting efficient strategy
extraction [8,10], the computational model relevant for MRes is one for which no unconditional
lower bounds are known. For tree-like and regular MRes, the relevant models are decision
trees and read-once DBPs, where lower bounds are known. Using this approach, we show:
1. Tree-like MRes is exponentially weaker than MRes.

The QParity formulas witness the separation (Theorem 7) as their unique countermodel
is the parity function which requires large decision trees.

2. Tree-like MRes is incomparable with the dag-like and tree-like versions of QRes, QURes,
CP + ∀Red, ∀Exp + Res and IR.
One direction was shown in [6] via the SquaredEquality formulas: these formulas are
easy for tree-like MRes but hard for dag-like QRes, QURes, CP + ∀Red, ∀Exp + Res,
IR. The other direction is witnessed by the Completion Principle formulas (Theorem 9).
Unlike the QParity formulas, these formulas do not have unique countermodels. However,
we show that every countermodel requires large decision tree size, and hence obtain the
lower bound for tree-like MRes.

(B) Combinatorial lower bounds for full MRes. Even when winning strategies are unique
and easy to compute by DBPs, the formulas can be hard for MRes. We establish such
hardness in two cases, obtaining more incomparabilities.
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12:4 Hard QBFs for Merge Resolution

1. The LQParity formulas, easy in ∀Exp+Res [10], are exponentially hard for regular MRes
(Theorem 13). Hence regular MRes is incomparable with ∀Exp + Res and IR.

2. The KBKF-lq formulas, easy in QURes [2], are exponentially hard for MRes (Theorem 19).
Hence MRes and regular MRes are incomparable with QURes and CP + ∀Red.

The second hardness result above for the KBKF-lq formulas provides the first lower
bound for the full system of MRes, for which previously no lower bounds were known.

It may be noted that for existentially quantified QBFs, all the QBF proof systems
mentioned in this paper coincide with Resolution (or in case of CP + ∀Red, with Cutting
Planes). Therefore lower bounds for these propositional proof systems trivially lift to the
corresponding QBF proof system. In particular, the separations of tree-like and regular
MRes from MRes and other systems follow from the propositional case. However, such lower
bounds do not tell us much about the limitations of the QBF proof system other than what is
known from the underlying propositional proof system. Therefore, in QBF proof complexity,
we are interested in “genuine” QBF lower bounds, i.e. lower bounds that do not follow from
propositional lower bounds (cf. [14] on how to formally define the notion of “genuine” lower
bounds). The lower bounds we establish here are of this nature.

Figure 1 depicts the simulation order and incomparabilities we establish involving MRes
and its refinements. Amongst the remaining systems (the five systems on the right), all
relationships not directly implied by depicted connections are known to be incomparabilities
[10,12,23].

2 Preliminaries

Let [n] = {1, 2, . . . , n} and [m,n] = {m, . . . , n}. We represent clauses by sets of literals.
The resolution rule derives, from clauses C ∨ x and D ∨ ¬x, the clause C ∨D. We say

that C ∨D is the resolvent, x is the pivot, and denote this by C ∨D = res(C ∨ x,D ∨¬x, x).
The propositional proof system Resolution proves that a CNF formula F is unsatisfiable

by deriving the empty clause through repeated applications of the resolution rule.

Quantified Boolean formulas. A Quantified Boolean formula (QBF) in prenex conjunctive
normal form is denoted Φ := Q ·φ, where (a) Q = Q1Z1Q2Z2 . . . QkZk is the quantifier prefix,
in which Zi are pairwise disjoint finite sets of Boolean variables, Qi ∈ {∃,∀} for each i ∈ [k]
and Qi 6= Qi+1 for each i ∈ [k − 1], and (b) the matrix φ is a CNF over vars(Φ) := ∪i∈[k]Zi.

The existential (resp. universal) variables of Φ, typically denoted X or X∃ (resp. U or
X∀) is the set obtained as a union of Zi for which Qi = ∃ (resp. Qi = ∀). The prefix Q
defines a binary relation <Q on vars(Φ), such that z <Q z′ holds iff z ∈ Zi, z′ ∈ Zj , and
i < j, in which case we say that z′ is right of z and z is left of z′. For each u ∈ U , we define
LQ(u) := {x ∈ X | x <Q u}, i.e. the existential variables left of u.

For a set of variables Z, let 〈Z〉 denote the set of assignments to Z. A strategy h for a QBF
Φ is a set {hu | u ∈ U} of functions hu : 〈LQ(u)〉 → {0, 1} (for each α ∈ 〈X〉, hu(α�LQ(u))
and h(α) should be interpreted as a Boolean assignment to the variable u and the variable
set U respectively). Additionally h is winning if, for each α ∈ 〈X〉, the restriction of φ by
the assignment (α, h(α)) is false. We use the terms “winning strategy” and “countermodel”
interchangeably. A QBF is called false if it has a countermodel, and true if it does not.

The semantics of QBFs is also explained by a two-player evaluation game played on a
QBF. In a run of the game, two players, the existential and the universal player, assign
values to the variables in the order of quantification in the prefix. The existential player wins
if the assignment so constructed satisfies all the clauses of φ; otherwise the universal player
wins. Assigning values according to a countermodel guarantees that the universal player
wins no matter how the existential player plays; hence the term “winning strategy”.
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2.1 The formulas
We describe the formulas we will use throughout the paper.

The QParity and LQParity formulas [10]. Let parityc(y1, y2, . . . , yk) be a shorthand
for the following conjunction of clauses:

∧
S⊆[k], |S|≡1(mod 2) ((∨i∈Syi) ∨ (∨i 6∈Syi)). Thus

parityc(y1, y2, . . . , yk) is equal to 1 iff y1 + y2 + · · ·+ yk ≡ 0 (mod 2). QParityn is the QBF
∃x1, . . . , xn,∀z,∃t1, . . . , tn.

(∧
i∈[n+1] φ

i
n

)
where

φ1
n = parityc(x1, t1); ∀i ∈ [2, n], φi

n = parityc(ti−1, xi, ti); φn+1
n = (tn ∨ z)∧

(
tn ∨ z

)
.

The QBFs are false: they claim that there exist x1, . . . , xn such that x1 + · · ·+ xn is neither
congruent to 0 nor 1 modulo 2. Note that the only winning strategy for the universal player
is to play z satisfying z ≡ x1 + · · ·+ xn (mod 2).

Similarly, let p̂arityc(y1, y2, . . . , yk, z) abbreviate
∧

C∈parityc(y1,y2,...,yk)
(
(C ∨ z)∧ (C ∨ z)

)
.

LQParityn is the QBF ∃x1, . . . , xn,∀z,∃t1, . . . , tn.
(∧

i∈[n+1] φ
i
n

)
where

φ1
n = p̂arityc(x1, t1, z); ∀i ∈ [2, n], φi

n = p̂arityc(ti−1, xi, ti, z); φn+1
n = (tn ∨ z)∧

(
tn ∨ z

)
.

For both QParityn and LQParityn, for i, j ∈ [n + 1], i ≤ j, we let φ[i,j]
n denote

∧
k∈[i,j] φ

k
n.

Also, X = {x1, . . . , xn} and T = {t1, . . . , tn}.

I Observation 1. For both QParityn and LQParityn: (a) for each i ∈ [n], and each C ∈ φi
n,

{xi, ti} ⊆ var(C); and (b) for each i ∈ [n+ 1] \ {1}, and each C ∈ φi
n, {ti−1} ⊆ var(C).

The Completion Principle formulas CRn [23]. The QBF CRn is defined as follows:

CRn = ∃
i,j∈[n]

xij ,∀ z, ∃
i∈[n]

ai, ∃
j∈[n]

bj .

(
∧

i,j∈[n]
(Aij ∧Bij)

)
∧ LA ∧ LB

where Aij = xij ∨ z ∨ ai, Bij = xij ∨ z ∨ bj , LA = a1 ∨ · · · ∨ an, and LB = b1 ∨ · · · ∨ bn.
Let X,A,B denote the variable sets {xij : i, j ∈ [n]}, {ai : i ∈ [n]}, and {bj : j ∈ [n]}. It is
convenient to think of the X variables as arranged in an n× n matrix.

Intuitively, the formulas describe a completion game, played on the matrix(
a1 . . . a1 . . . an . . . an

b1 . . . bn . . . b1 . . . bn

)
where the ∃-player first deletes exactly one cell per column and the ∀-player then chooses
one row. The ∀-player wins if his row contains all of A or all of B (cf. [23]).

The KBKF-lq[n] formulas [2]. Our last QBFs are a variant of the formulas introduced by
Kleine Büning et al. [25], which in various versions appear prominently throughout the QBF
literature [2,5, 10,20,36]. For n > 1, the nth member of the KBKF-lq[n] family consists of
the prefix ∃d1, e1,∀x1,∃d2, e2,∀x2, . . . ,∃dn, en,∀xn,∃f1, f2, . . . , fn and clauses

A0 = {d1, e1, f1, . . . , fn}
Ad

i = {di, xi, di+1, ei+1, f1, . . . , fn} Ae
i = {ei, xi, di+1, ei+1, f1, . . . , fn} ∀i ∈ [n− 1]

Ad
n = {dn, xn, f1, . . . , fn} Ae

n = {en, xn, f1, . . . , fn}
B0

i = {xi, fi, fi+1, . . . fn} B1
i = {xi, fi, fi+1, . . . fn} ∀i ∈ [n− 1]

B0
n = {xn, fn} B1

n = {xn, fn}

FSTTCS 2020



12:6 Hard QBFs for Merge Resolution

Note that the existential part of each clause in KBKF-lq[n] is a Horn clause (at most one
positive literal), and except A0, is even strict Horn (exactly one positive literal).

We use the following shorthand notation. Sets of variables: D = {d1, . . . , dn}, E =
{e1, . . . , en}, F = {f1, . . . , fn}, and X = {x1, . . . , xn}. Sets of literals: For Y ∈ {D,E,X, F},
set Y 1 = {u | u ∈ Y } and Y 0 = {u | u ∈ Y }. Sets of clauses:

A0 = {A0}
Ai = {Ad

i , A
e
i} ∀i ∈ [n] Bi = {B0

i , B
1
i } ∀i ∈ [n]

A[i,j] = ∪k∈[i,j]Ak ∀i, j ∈ [0, n], i ≤ j B[i,j] = ∪k∈[i,j]Bk ∀i, j ∈ [n], i ≤ j
A = A[0,n] B = B[1,n]

We use the following property of these formulas:

I Proposition 2. Let h be any countermodel for KBKF-lq[n]. Let α be any assignment to
D, and β be any assignment to E.
For each i ∈ [n], if αj 6= βj for all 1 ≤ j ≤ i, then hxi

(
(α, β)�LQ(xi)

)
= αi.

In particular, if αj 6= βj for all j ∈ [n], then the countermodel computes h(α, β) = α.

2.2 The Merge Resolution proof system [6]
The formal definition of the Merge Resolution proof system, denoted MRes, is rather technical
and can be found in [6]. Here we present a somewhat informal description.

First, we describe the idea behind the proof system. MRes is a line-based proof system.
Each line L has a clause C with only existential literals, and a partial strategy hu for each
universal variable u. The idea is to maintain the invariant that for each existential assignment
α, if α falsifies C, then α extended by the partial universal assignment setting each u to hu(α)
falsifies at least one of the clauses used to derive L. Thus the set of functions {hu} gives a
partial strategy that wins whenever the existential player plays from the set of assignments
falsifying C. The goal is to derive a line with the empty clause; the corresponding strategy
at that line will be a complete winning strategy, a countermodel. Along the way, resolution
is used on the clauses. If the pivot is x, then for universal variables u right of x, the partial
strategies can be combined with a branching decision on x. However, for u left of x, in
the evaluation game, the value of u is already set when x is to be assigned. Thus already
existing non-trivial partial strategies for u cannot be combined with a branching decision,
and so this resolution step is blocked. However, if both the strategies are identical, or if
one of them is trivial (unspecified), then the non-trivial strategy can be carried forward
while maintaining the desired invariant. Checking whether strategies are identical can itself
be hard, making verification of the proof difficult. In MRes, this is handled by choosing a
particular representation called merge maps, where isomorphism checks are easy.

Now we can describe the proof system itself. First we describe merge maps. Syntactically,
these are deterministic branching programs, specified by a sequence of instructions of one of
the following two forms:
〈line `〉 : b where b ∈ {∗, 0, 1}.1
Merge maps containing a single such instruction are called simple. In particular, if b = ∗,
then they are called trivial.
〈line `〉 : If x = 0 then go to 〈line `1〉 else go to 〈line `2〉, for some `1, `2 < `. In a merge
map M for u, all queried variables x must precede u in the quantifier prefix.
Merge maps with such instructions are called complex.

1 In [6], the notation used is b ∈ {∗, u, ū}; u, ū, ∗ denote u = 1, u = 0, undefined respectively.
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(All line numbers are natural numbers.) The merge map Mu computes a partial strategy
for the universal variable u starting at the largest line number (the leading instruction) and
following the instructions in the natural way. The value ∗ denotes an undefined value.

Two merge maps M1,M2 are said to be consistent, denoted M1 ./ M2, if for every line
number i appearing in both M1,M2, the instructions with line number i are identical. Two
merge maps M1,M2 are said to be isomorphic, denoted M1 ' M2, if there is a bijection
between the line numbers in M1 and M2 that transforms M1 to M2 in the natural way.

For the remainder of this section let Φ = Q · φ be a QBF with existential variables X
and universal variables U . The proof system MRes has the following rules:
1. Axiom: For a clause A in the matrix φ, let C be the existential part of A. For each

universal variable u, let bu be the value u must take to falsify A; if u 6∈ var(A), then
bu = ∗. For any natural number i, the line (C, {Mu : u ∈ U}) where each Mu is the
simple merge map 〈i〉 : bu can be derived in MRes.

2. Resolution: From lines La = (Ca, {Mu
a : u ∈ U}) for a ∈ {0, 1}, in MRes, the line

L = (C, {Mu : u ∈ U}) can be derived, where for some x ∈ X,
C = res(C0, C1, x), and
for each u ∈ U , either Mu

a is trivial and Mu = Mu
1−a for some a, or Mu = Mu

0 'Mu
1 ,

or x precedes u and Mu has a leading instruction that builds the complex merge map
If x = 0 then 〈Mu

0 〉 else 〈Mu
1 〉.

A refutation is a derivation using these rules and ending in a line with the empty existential
clause. The size of the refutation is the number of lines. In the rest of this paper, we will
denote refutations by the Greek letter Π.

A small but important illustrative example from [6] is reproduced in the appendix.
As shown in [6], the merge maps at the final line compute a countermodel for the QBF.

To establish this, some stronger properties of the derivation are established and will be useful
to us. We restate the relevant properties here.

I Lemma 3 (Extracted/adapted from [6] Section 4.3, (Proof of Lemma 21)). Let Φ = Q · φ
be a QBF with existential variables X and universal variables U . Let Π def= L1, . . . , Lm be an
MRes refutation of Φ, where each Li = (Ci, {Mu

i | u ∈ U}). Further, for each i ∈ [m],
let αi be the minimal partial assignment falsifying Ci,
let Ai be the set of assignments to X consistent with αi,
for each u ∈ U , let hu

i be the function computed by Mu
i ,

for each α ∈ Ai, let hi(α) be the partial assignment which sets variable u to hu
i (α�LQ(u))

if hu
i (α�LQ(u)) 6= ∗, and leaves it unset otherwise.

Then for each α ∈ Ai, the assignment (α, hi(α)) falsifies at least one clause of φ used in the
sub-derivation of Li.

Let GΠ be the derivation graph corresponding to Π (with edges directed from the
antecedents to the consequent, hence from the axioms to the final line).

I Proposition 4 ([6]). For all u ∈ U , Mu
m is isomorphic to a subgraph of GΠ (up to path

contraction).

Let S be a subset of the existential variables X of Φ. We say that an MRes refutation of
Φ is S-regular if for each x ∈ S, there is no leaf-to-root path that uses x as pivot more than
once. An X-regular proof is simply called a regular proof. If GΠ is a tree, then we say that
Π is a tree-like proof.

FSTTCS 2020



12:8 Hard QBFs for Merge Resolution

3 Lifting branching program lower bounds

The following lemma is an immediate consequence of Proposition 4.

I Lemma 5. Let Π def= L1, . . . , Lm be an MRes refutation. If Π is tree-like (resp. regular),
then for all u ∈ U , Mu

m is a decision tree (resp. read-once branching program). Moreover,
the size of Π is lower bounded by the size of Mu

m.

This lemma allows us to lift lower bounds for decision trees (resp. read-once branching
programs) to lower bounds for tree-like (resp. regular) Merge Resolution.

For QParityn and LQParityn, the only winning strategy for the universal player is to set
z such that z ≡ x1 + x2 + · · ·+ xn (mod 2).

I Proposition 6 (Folklore). The decision tree size complexity of the parity function is 2n.

I Theorem 7. sizeMResTree(QParityn) = 2Ω(n) and sizeMResTree(LQParityn) = 2Ω(n).

For the QBF CRn, the winning strategy for the universal player (countermodel) is not
unique. However, we show that all countermodels require large decision trees.

I Lemma 8. Every countermodel for CRn has decision tree size complexity at least 2n.

I Theorem 9. sizeMResTree(CRn) = 2Ω(n).

I Corollary 10. Tree-Like MRes is incomparable with the tree-like and general versions of
QRes, QURes, CP + ∀Red, ∀Exp + Res, and IR.

Proof. We showed in Theorem 9 that the Completion Principle CRn requires exponential-size
refutations in tree-like Merge Resolution. It has polynomial-size refutations in tree-like QRes
[22] (and hence also in QURes and CP + ∀Red) and tree-like ∀Exp + Res [23] (and hence
also in IR). (While [23] does not explicitly mention tree-like proofs, the proof provided there
for CRn is tree-like.) On the other hand, the formulas EQn have polynomial-size tree-like
MRes refutations [6] but require exponential-size refutations in QRes, QURes, CP+∀Red [5],
∀Exp + Res, IR [4] (cf. [3] on how to apply the lower bound technique from [4] to EQn). J

We now show how to lift lower bounds for read-once branching programs to those for
regular MRes. This follows the method used, for instance, in [10] (Section 4.1) and [30]
(Section 6). Let f : X → {0, 1} be a Boolean function, let Cf be a Boolean circuit encoding
f , and let u be a variable not in X. Using Tseitin transformation [35], we can construct
a CNF formula φ(X,u, Y ) such that ∃Y.φ(X,u, Y ) is logically equivalent to Cf (X) 6= u.
Therefore, Φ := ∃X∀u∃Y.φ(X,u, Y ), called the QBF encoding of f , is a false QBF formula
with f as the unique winning strategy. Moreover, the size of Φ is polynomial in the size of
Cf . Choosing a function f that can be computed by polynomial-size Boolean circuits but
requires exponential-size read-once branching programs gives the desired lower bound. Many
such functions are known [37]. For instance, we can use the following result:

I Theorem 11 ([17]). There is a Boolean function f in n variables that can be computed by
a Boolean circuit of size O(n3/2) but requires read-once branching programs of size 2Ω(

√
n).

I Corollary 12. There is a Boolean function f in n variables with a QBF encoding Φ of size
polynomial in n such that any regular MRes refutation of Φ has size 2Ω(

√
n).
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4 A lower bound for Regular Merge Resolution

In this section, we prove a lower for a formula whose countermodel can be computed by
polynomial-size read-once branching programs.

I Theorem 13. sizeMResReg(LQParityn) = 2Ω(n).

This follows from a stronger result that we prove below: any T -regular refutation of LQParityn

in MRes must have size 2Ω(n) (Theorem 17).
The proof proceeds as follows: Let Π be a T -regular MRes refutation of LQParityn.

Since every axiom has a variable from T while the final clause in Π is empty, there is a
maximal “component” of the proof leading to and including the final line, where all clauses
are T -free. The clauses in this component involve only the X variables. We show that the
“boundary” of this component is large, by showing in Lemma 16 that each clause here must
be wide. (This idea was used in [30] to show that CR is hard for reductionless LD-QRes.) To
establish the width bound, we note that no lines have trivial strategies. Since the pivots at
the boundary are variables from T , the merge maps incoming into each boundary resolution
must be isomorphic. By carefully analysing what axiom clauses can and must be used to
derive lines just above the boundary (Lemma 15), we conclude that the merge maps must be
simple, yielding the lower bound. To fill in all the details, we first describe some properties
(Lemma 14) of Π that will be used in obtaining this result.

The lines of Π will be denoted by L,L′, L′′ etc. For lines L and L′ the respective clause,
merge map and the function computed by the merge map will be denoted by C, M , h and
C ′, M ′, h′ respectively. Let GΠ be the derivation graph corresponding to Π (with edges
directed from the antecedents to the consequent, hence from the axioms to the final line).
We will refer to the nodes of this graph by the corresponding line. For L,L′ ∈ Π, we will say
L L′ if there is a path from L to L′ in GΠ.

For a line L ∈ Π, let ΠL be the minimal sub-derivation of L, and let GΠL
be the

corresponding subgraph of GΠ with sink L. Define UsedConstraints(ΠL) = {φi
n | i ∈

[n + 1], leaves(GΠL
) ∩ φi

n 6= ∅}, and Uci(ΠL) = {i ∈ [n + 1] | φi
n ∈ UsedConstraints(ΠL)}.

(Uci stands for UsedConstraintsIndex.) Note that for any leaf L, Uci(ΠL) is a singleton.
Define S ′ to be the set of those lines in Π where the clause part has no T variable and

furthermore there is a path in GΠ from the line to the final empty clause via lines where all
the clauses also have no T variables. Let S denote the set of leaves in the subgraph of GΠ
restricted to S ′; these are lines that are in S ′ but their parents are not in S ′. Note that no
leaf of Π is in S ′ because all leaves of GΠ contain a variable in T .

I Lemma 14. Let L = (C,M) be a line of Π. Then Uci(ΠL) is an interval [i, j] for some
1 ≤ i ≤ j ≤ n+ 1. Furthermore, (below i, j refer to the endpoints of this interval )
1. For all k ∈ [i, j − 1], tk 6∈ var(C).
2. If i > 1, then ti−1 ∈ var(C).
3. If j ≤ n, then tj ∈ var(C).
4. |var(C) ∩ T | = 1 iff [i, j] contains exactly one of 1, n+ 1.

var(C) ∩ T = ∅ iff [i, j] = [1, n+ 1].
5. For all k ∈ [i, j] ∩ [1, n], xk ∈ var(C) ∪ var(M).

I Lemma 15. Let L ∈ S be derived in Π as L = res(L′, L′′, tk). Then Uci(ΠL) = [1, n+ 1],
and Uci(ΠL′),Uci(ΠL′′) partition [1, n+ 1] into [1, k], [k + 1, n+ 1].

I Lemma 16. For all L ∈ S, width(C) = n.
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12:10 Hard QBFs for Merge Resolution

I Theorem 17. Every T -regular refutation of LQParityn in MRes has size 2Ω(n).

Proof. Let Π be a T -regular refutation of LQParityn in MRes. Let S ′,S be as defined in
the beginning of this sub-section. By definition, for each L = (C,M) ∈ S′, var(C) ⊆ X.
Let Π̂ = {C | L = (C,M) ∈ S′}. Then Π̂ contains a propositional resolution refutation
of C = {C | L = (C,M) ∈ A}. Therefore C is an unsatisfiable CNF formula over the n
variables in X. By Lemma 16, each clause in C has width n and so is falsified by exactly one
assignment. Therefore, to ensure that each of the 2n assignments falsifies some clause, (at
least) 2n clauses are required. Therefore |C| > 2n. Hence |Π| > 2n. J

I Corollary 18. Regular MRes is incomparable with ∀Exp + Res and IR.

5 A lower bound for Merge Resolution

In this section we show that the KBKF-lq formulas are exponentially hard for MRes.

I Theorem 19. sizeMRes(KBKF-lq[n]) = 2Ω(n).

Proof idea

We will show that, in any MRes refutation of the KBKF-lq formulas, the literals over
the variables in F = {f1, f2, . . . , fn} must be removed before the strategies become “very
complex”. From this we conclude that there must be exponentially many lines.

To argue that literals over F must be removed before the strategies become “very complex”,
we look at the form of the lines containing literals over F . If any such line has a “very
complex” strategy (by which we mean that for some i ∈ [n], ui depends on either di or ei),
then the literals over F cannot be removed from the clause.

Elaborating on the roadmap of the argument: Let Π be an MRes refutation of KBKF-lq[n].
Each line in Π has the form L = (C,Mx1 , . . . ,Mxn) where C is a clause over D,E, F , and
each Mxi is a merge map computing a strategy for xi.

Define S ′ to be set of those lines in Π where the clause part has no F variable and
furthermore the line has a path in GΠ to the final empty clause via lines where all the clauses
also have no F variables. Let S denote the set of leaves in the subgraph of GΠ restricted to
S ′; these are lines that are in S ′ but their parents are not in S ′. Note that by definition,
for each L = (C, {Mxi | i ∈ [n]}) ∈ S ′, var(C) ⊆ D ∪ E. No line in S ′ (and in particular, no
line in S) is an axiom since all axiom clauses have variables from F .

Recall that the variables of KBKF-lq[n] can be naturally grouped based on the quantifier
prefix: for i ∈ [n], the ith group has di, ei, xi, and the (n+ 1)th group has the F variables.
By construction, the merge map for xi does not depend on variables in later groups, as is
indeed required for a countermodel. We say that a merge map for xi has self-dependence if
it does depend on di and/or ei.

We show that every merge map at every line in S ′ is non-trivial (Lemma 24). Further, we
show that at every line on the boundary of S ′, i.e. in S, no merge map has self-dependence
(Lemma 25). Using this, we conclude that S must be exponentially large, since in every
countermodel the strategy of each variable must have self-dependence (Proposition 2).

In order to show that lines in S do not have self-dependence, we first establish several
properties of the sets of axiom clauses used in a sub-derivation (Lemmas 20, 21, 22, 23).
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Detailed proof

For a line L ∈ Π, let ΠL be the minimal sub-derivation of L, and let GΠL
be the corresponding

subgraph of GΠ with sink L. Let Uci(ΠL) = {i ∈ [0, n] | leaves(GΠL
)∩Ai 6= ∅}. (Uci stands

for UsedConstraintsIndex). Note that we are only looking at the clauses in A to define Uci.

I Lemma 20. For every line L = (C, {Mxi | i ∈ [n]}) of Π,
1. Uci(ΠL) = ∅ if and only if C ∩ F 1 6= ∅ if and only if |C ∩ F 1| = 1.
2. Uci(ΠL) 6= ∅ if and only if C ∩ F 1 = ∅.

I Lemma 21. A line L = (C, {Mxi | i ∈ [n]}) of Π with Uci(ΠL) = ∅ has these properties:
1. var(C) ⊆ F ; for all i ∈ [n], Mxi ∈ {∗, 0, 1};
2. For some j ∈ [n], fj ∈ C and Mxj ∈ {0, 1};
3. For 1 ≤ i < j, fi 6∈ var(C) and Mxi = ∗;
4. For j < i ≤ n, if fi 6∈ var(C), then Mxj ∈ {0, 1}.

I Lemma 22. Let L = (C, {Mxi | i ∈ [n]}) be a line of Π with Uci(ΠL) 6= ∅. Then Uci(ΠL)
is an interval [a, b] for some 0 ≤ a ≤ b ≤ n. Furthermore, (in the items below, a, b refer to
the endpoints of this interval ), it has the following properties:
1. For k ∈ [n] ∩ [a, b], Mxk 6= ∗.
2. If a ≥ 1, then |{da, ea} ∩ C| = 1. If a = 0, then C does not have any positive literal.
3. If b < n, then db+1, eb+1 ∈ C.
4. For all k ∈ [n] \ [a, b], (i) dk, ek 6∈ var(Mxk ), and (ii) if Mxk = ∗ then fk ∈ C.

I Lemma 23. For any line L = (C, {Mxi | i ∈ [n]}) in Π, and any k ∈ [n], if {dk, ek} ∩
var(Mxk ) 6= ∅, then Uci(ΠL) = [a, n] for some a ≤ k − 1.

I Lemma 24. For all L ∈ S ′, for all k ∈ [n], Mxk 6= ∗.

Proof. Consider a line L = (C, {Mxi | i ∈ [n]}) ∈ S ′. Since L ∈ S ′, var(C) ∩ F = ∅, so
C ∩ F 1 = ∅. By Lemma 20, Uci(ΠL) 6= ∅. Since every clause in A contains all literals in
F 0, for each k ∈ [n], ΠL has a leaf where the clause contains fk. This literal is removed in
deriving L, so ΠL also has a leaf where the clause contains the positive literal fk. That is, it
uses an axiom from Bk; this leaf has a non-trivial merge map for xk. Since a step in MRes
cannot make a non-trivial merge map trivial, the merge map for xk at L is non-trivial. J

I Lemma 25. For all L ∈ S, for all k ∈ [n], dk, ek 6∈ var(Mxk ).

Proof. Consider a line L ∈ S; L = (C, {Mxi | i ∈ [n]}). Assume to the contrary that for
some k ∈ [n], {dk, ek} ∩ var(Mxk ) 6= ∅.

Line L is obtained by performing resolution on two non-S ′ clauses with a pivot from F .
Let L = res(L′, L′′, f`) for some ` ∈ [n]; f` ∈ C ′ and f` ∈ C ′′. Since L has no variable in F ,
f` is the only variable from F in var(C ′) and var(C ′′).

Since C ′ has the literal f` ∈ F 1, by Observation 20, Uci(ΠL′) = ∅ and L′ is derived
exclusively from B. Since D ∪E and var(B) are disjoint, all the merge maps in L′ have no
variable from D∪E. So Mxk gets its D∪E variables from (M ′′)xk . Since this does not block
the resolution step, (M ′)xk must be trivial and Mxk = (M ′′)xk . Since var(C ′) ∩ F = f`, by
Lemma 21 (2),(3),(4), k < `.

The line L′′ has no literal from F 1, so by Observation 20, Uci(ΠL′′) 6= ∅. It has a merge
map for xk involving at least one of dk, ek, so by Lemma 23, Uci(ΠL′′) = [a, n] for some
a ≤ k − 1. Thus we have a ≤ k − 1 < k < ` ≤ n.

Consider the resolution of L′ with L′′. By Lemma 21 (2), (M ′)x` ∈ {0, 1}, and by
Lemma 22 (1), (M ′′)x` 6= ∗. To enable this resolution, (M ′′)x` = (M ′)x` . The clauses Ad

`
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and Ae
` give rise to different constant strategies for x`. So the derivation of L′′ uses exactly

one of these two clauses. Assume it uses Ad
` ; the other case is symmetric. Since a < `, the

derivation of L′′ uses a clause from A`−1, introducing literals d` and e`. Since the only clause
containing positive literal e` is not used, e` survives in C ′′. Going from L′′ to L removes only
f`, so e` ∈ C.

To summarize, at this stage we know that L ∈ S, e` ∈ C, {dk, ek} ∩ var(Mxk ) 6= ∅,
Mx` ∈ {0, 1} and 1 ≤ k < ` ≤ n.

Fix any path ρ in GΠ from L to L�. Along this path, e` appears as the pivot somewhere,
since the literal e` is eventually removed. Consider the resolution step at that point, say
C1 = res(C2, C3, e`), with C3 being the clause at the line on ρ. At the corresponding line
L3, the strategies are at least as complex as those at L. Hence var(Mxk

3 ) ∩ {dk, ek} 6= ∅. On
the other hand, C2 has the positive literal e`. By Lemma 22, for the corresponding line
L2, Uci(ΠL2) = [`, c] for some c ≥ `. Since k < `, by Lemma 22, {dk, ek} ∩ var(Mxk

2 ) = ∅.
However, the path from L2 to L1 and thence to L� along ρ witnesses that L2 ∈ S ′, so by
Lemma 24, (M2)xk 6= ∗. Thus Mxk

2 and Mxk
3 are non-trivial but not isomorphic, and this

blocks the resolution on e`.
Thus our assumption that {dk, ek}∩var(Mxk ) 6= ∅must be false. The lemma is proved. J

Proof. (of Theorem 19) Let Π be a refutation of KBKF-lq[n] in MRes. Let S ′,S be as
defined in the beginning of this section. Let the final line of Π be L� = (�, {sxi | i ∈ [n]}),
and for i ∈ [n], let hi be the functions computed by the merge map sxi . By soundness of
MRes, the functions {hi}i∈[n] form a countermodel for KBKF-lq[n].

For each a ∈ {0, 1}n, consider the assignment α to the variables of D ∪ E where di = ai,
ei = ai. Call such an assignment an anti-symmetric assignment. Given such an assignment,
walk from L� towards the leaves of Π as far as is possible while maintaining the following
invariant at each line L = (C, {Mxi | i ∈ [n]}) along the way:
1. α falsifies C, and
2. for each i ∈ [n], hi(α) = Mxi(α).
Clearly this invariant is initially true at L�, which is in S ′. If we are currently at a line
L ∈ S ′ where the invariant is true, and if L 6∈ S, then L is obtained from lines L′, L′′. The
resolution pivot in this step is not in F , since that would put L in S. So both L′ and L′′ are
in S ′, and the pivot is in D ∪E. Let the pivot be in {d`, e`} for some ` ∈ [n]. Depending on
the pivot value, exactly one of C ′, C ′′ is falsified by α; say C ′ is falsified. By Lemma 24, for
each i ∈ [n], both (M ′)xi and (M ′′)xi are non-trivial. By definition of the MRes rule,

For i < `, (M ′)xi and (M ′′)xi are isomorphic (otherwise the resolution is blocked), and
Mxi = (M ′)xi = (M ′′)xi .
For i ≥ `, there are two possibilities:
(1) (M ′)xi and (M ′′)xi are isomorphic, and Mxi = (M ′)xi .
(2) Mxi is a merge of (M ′)xi and (M ′′)xi with the pivot variable queried. By definition
of the merge operation, since C ′ is falsified by α, Mxi(α) = (M ′)xi(α).

Thus in all cases, for each i, hi(α) = Mxi(α) = (M ′)xi(α). Hence L′ satisfies the invariant.
We have shown that as long as we have not encountered a line in S, we can move further.

We continue the walk until a line in S is reached. We denote the line so reached by P (α).
Thus P defines a map from anti-symmetric assignments to S.

Suppose P (α) = P (β) = (C, {Mxi | i ∈ [n]}) for two distinct anti-symmetric assignments
obtained from a, b ∈ {0, 1}n respectively. Let j be the least index in [n] where aj 6= bj . By
Lemma 25, Mxj depends only on {di, ei | i < j}, and α, β agree on these variables. Thus
we get the equalities aj = hj(α) = Mxj (α) = Mxj (β) = hj(β) = bj , where the first and last
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equalities follow from Proposition 2, the third equality from by Lemma 25 and choice of j,
and the second and fourth equalities by the invariant satisfied at P (α) and P (β) respectively.
This contradicts aj 6= bj .

We have established that the map P is one-to-one. Hence, S has at least as many lines
as anti-symmetric assignments, so |Π| ≥ |S| ≥ 2n. J

I Corollary 26. Both regular MRes and MRes are incomparable with QURes and CP+∀Red.

Proof. Theorem 19 shows that the KBKF-lq[n] formula requires exponential-size refutations
in MRes (and hence also in its regular restriction). It has polynomial-size refutations in QURes
[2], and also in CP + ∀Red since CP + ∀Red simulates QURes ([12]). The other direction
follows from the EQn formulas, as already mentioned in the proofs of Corollaries 10, 18. J

6 Conclusions and Future Work

The proof system MRes was introduced in [6], using the novel idea of building strategies
directly into the proof and using them to enable additional sound applications of resolution.
In [6], the strengths of the proof system were demonstrated. In this paper, we complement
that study by exposing some limitations of MRes. We obtain hardness for tree-like MRes by
transferring computational hardness of the countermodels in decision trees, and for regular
and general MRes by ad hoc combinatorial arguments.

Several questions still remain.
1. One of the driving goals behind the definition of MRes was overcoming a perceived

weakness of LD-QRes: its criterion for blocking unsound applications of resolution also
blocks several sound applications. However, whether MRes actually overcomes this
weakness is yet to be demonstrated. In [6], MRes is shown to be more powerful than the
reductionless variant of LD-QRes (introduced in [15] and further investigated in [6, 30]).
However, we still do not have an instance of a formula hard for LD-QRes but easy for
MRes. A natural candidate is LQParity, for which we only have a lower bound in regular
MRes. Another natural candidate is SquaredEquality. The other direction, whether there
is a formula easy for LD-QRes but hard for MRes, is also open. One possible candidate
for this separation might appear to be KBKF, which is easy for LD-QRes [20] (that paper
uses the name ϕt). However the KBKF formulas can be shown to have short refutations
in MRes as well, and hence cannot be used for this purpose.

2. In the propositional case, regular resolution simulates tree-like resolution. This relation
may not hold in the case of MRes, and even if it does, it will need a different proof. The
trick used in the propositional case – (i) interpret the proof tree as a decision tree for
search, (ii) make the decision tree read-once, (iii) then return from the search tree to a
refutation, – does not work here because when we prune away parts of the decision tree
to get a read-once tree, we may end up destroying isomorphism of strategies of blocking
variables.
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