
STUDIES IN LANGUAGE CLASSES

DEFINED BY

DIFFERENT TYPES OF

TIME-VARYING

CELLULAR AUTOMATA

A THESIS

submitted for the award of the Degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

MEENA BHASKAR MAHAJAN

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

MADRAS 600 036, INDIA

NOVEMBER 1992

CERTIFICATE

This is to certify that the thesis entitled “Studies in Language Classes Defined by Different

Types of Time-Varying Cellular Automata”, which is being submitted by Meena Bhaskar

Mahajan to the Indian Institute of Technology, Madras, for the award of the degree of Doctor

of Philosophy, is a record of bonafide research work carried out by her under my supervision

and guidance. The contents of this thesis have not been submitted to any other Institute or

University for the award of any degree or diploma.

Madras 600 036. Dr. Kamala Krithivasan.

November 1992. Professor,

Department of Computer Science

and Engineering,

I.I.T., Madras.

Abstract

CA are an abstract model for parallel language recognition. Due to their inherent par-

allelism, they are intrinsically faster than many other language recognition devices. Thus

a lot of interest has centred on how fast CAs can compute, and a fair amount of research

has focussed on whether at all there is a difference between real-time, linear-time, and

unbounded-time CA computation (rCA, lCA and CA respectively). It is not even known

whether these classes are distinct when restricted to tally sets. Another longstanding open

problem is whether one-way communication reduces the power of a CA. The motivation for

this thesis has been to further refine these open problems.

In this thesis, we first define time-varying CA (TV CA) and then give different interpre-

tations to the ensuing computations. A TV CA is essentially a CA where the component

cells act differently at different time steps. The variation is dictated by some prespecified

control set. This corresponds to the notion of an external control, through global broadcast

to all cells. Our interest is language-theoretic; we study the language recognition capabilities

of TV CA and related models with an approach towards characterising the computational

power of these models.

We have studied how the complexity of the controlling languages affects the power of

the resulting TV CA. At one extreme, ultimately periodic tally languages do not impart any

additional power to TV CA over CA; at the other extreme, CA control makes TV CA strictly

more powerful than CA. In between, using rCA or lCA control, we obtain languages which

are contained in OCA, but which do not appear to be in lCA. This supports the conjecture

that lCA are not as powerful as OCA or CA.

We have also examined the effect of varying the number of controlling languages. While

for linear-time and unbounded-time computation this is not a crucial factor, it appears to

be so for real-time computation.

The controlling language L in a 2-function TV CA can be viewed as an oracle to which the

TV CA makes implicit queries. This is a restricted form of oracle access, since queries must

be made at each step, and in a specific order. Nonetheless, we show that the mechanism

v

is powerful enough to exhibit separations as well as strong separations of the relativised

classes rCA, lCA and CA. The equality CA = DSPACE(n) becomes a containment

from left to right if CA are relativised via TV CA and the DSPACE(n) machines via the

unrestricted query model. On the other hand, if theDSPACE(n) machines use the bounded

query model, then the equality changes to a containment from right to left. However, the

lCA ⊆ DSPACE(n) relationship relativises in both cases.

Restricting the study to tally languages, we find that there exists a hierarchy of languages

between the complexity classes rCA and OCA. The hierarchy is built with rCA and lCA at

the base, and each level is obtained by relativising rCA and lCA with respect to languages

at the previous level. Examining the structure of this hierarchy, we have found that rCA

control does not increase the power of rCA beyond lCA, and it does not increase the power

of lCA at all. Of course, if it should turn out that rCA and lCA (when restricted to tally

languages) are equal, then all classes in this hierarchy are equal. However, the difficulty of

showing any more equalities in this hierarchy offers further evidence that the classes of tally

languages in rCA and lCA are indeed distinct.

We next consider an interpretation of TV CA as nondeterministic CA; instead of having

controlling languages, the TV CA nondeterministically decides, at each time step, which

transition function to use. With this interpretation, we can now study classes of time-

bounded nondeterministic CA, which we refer to as NTV CA. This mode of nondeterminism

differs significantly from the traditional notion, and many standard proof techniques fail to

carry over. Despite this, we have obtained some non-trivial results relating the classes so

defined. The main results are that given unbounded time, the two modes of nondeterminism

do not differ, and that in the mode we define, one-way communication does not decrease

the power of the unbounded-time CA. We have also shown that the membership problem

for real-time NTV CA is NP -complete, and that linear-time NTV CA are no more powerful

than OCA. We have also modelled restricted nondeterminism by allowing the TV CA to

choose transition functions only in sequences from a specified set.

Instead of checking whether at least one path of the TV CA ends in an accepting configu-

ration, we could check if more than half of them end in accepting configurations. This gives

the operation of the TV CA a probabilistic interpretation. A further generalisation of this

vi

concept gives us another interpretation of TV CA, as alternating CA. With this interpreta-

tion, fast checking of properties of substrings becomes possible. We have briefly considered

such probabilistic and alternating CA.

Finally, we have considered the closure of CA classes under various language operations.

This is mainly motivated by the fact that rCA are closed under reversal if and only if rCA =

lCA. Some of the closure proofs involve interesting automata-theoretic constructions. We

have also tried to relate the closure of the CA classes to the newly obtained nondeterministic

classes defined in terms of NTV CA, and to the alternating CA classes.

vii

Contents

1 Introduction 1

2 Preliminaries and Basic Results 8

2.1 Notation . 8

2.2 Definitions . 9

2.3 Basic Results . 12

3 Time-varying Cellular Automata 21

3.1 Time-Varying Cellular Automata (TV CA) 21

3.2 Control Imposed by Different Classes of Languages 24

3.3 The k-function Hierarchy . 33

3.4 Conclusions . 42

4 A Study of the Oracle Access Mechanism provided by TVCA as Relativised

CA 44

4.1 TV CA as Relativised CA . 44

4.2 Querying Tally Oracles . 46

4.3 Querying Non-Tally Oracles . 51

4.4 Separation Results . 51

4.5 Conclusions . 60

5 Language Classes Defined by Time-bounded Relativised CA with CA Or-

acles 62

5.1 Relativised CA Language Classes . 62

i

CONTENTS ii

5.2 The Structure of the Cellular Automata Hierarchy 66

5.3 Conclusions . 76

6 Nondeterministic Computation on Cellular Array Models 78

6.1 Preliminaries and Definitions . 78

6.2 Nondeterministic Computation on TV CA 83

6.3 Modelling Restricted Nondeterminism . 90

6.4 Closure Properties . 93

6.5 Conclusions . 95

7 Probabilistic and Alternating Computations on CA 97

7.1 Probabilistic Computation on a TV CA . 98

7.2 Alternating Computations on TV CA . 105

7.3 Conclusions . 108

8 Language Operations on Cellular Automata Classes 111

8.1 Introduction . 111

8.2 Closure Properties . 113

8.3 Conclusions . 133

9 Conclusions 134

List of Figures

2.1 A cellular automaton . 10

2.2 A one-way cellular automaton . 10

2.3 Firing squad synchronisation . 14

2.4 Known results about CA language classes 16

2.5 An rCA simulating an lOCA . 17

3.1 The unrolling of an rOCA . 26

3.2 An SA simulating an lCA(OCA) computation (Part (c) on next page) . . . 29

3.2 An SA simulating an lCA(OCA) computation 30

3.3 Computing n from ⟨n⟩ on a CA . 32

3.4 Reducing a (k + 1)-LTV CA to a k-TV CA in twice as much time 36

3.5 Reducing a k2-LTV CA to a k-TV CA in twice as much time 37

3.6 Reducing a 3-rLTV CA to a 2-lLTV OCA 39

3.7 2n-time k-LTV OCA simulated by k2-rLTV CA 41

3.8 Inclusions amongst some TV CA classes . 43

4.1 Computing n2 on a CA. 54

5.1 Simulating a CA on all prefixes of the input in real time 67

5.2 Simulating an rrCA1 by an llCA0 . 69

5.3 The structure of the CAH . 73

5.4 The CAH, assuming rrCA1 = lrCA1 . 74

5.5 The CAH, assuming lrCA1 = llCA1 . 75

6.1 Binary tree of possible computations and characteristic bit strings 81

iii

LIST OF FIGURES iv

6.2 Restricted nondeterminism computation paths 82

6.3 An NTV OCA simulating an NOCA . 85

6.4 Worktape of an SA accepting an lNTV CA language 89

6.5 Intersection of finite-turn NTV CA languages 95

7.1 Inclusions among CA and ATM classes . 108

7.2 Deterministic, nondeterministic and probabilistic CA classes 110

8.1 Real-time simulation on all prefixes, for an rCA language 117

8.2 For L ∈ lCA, a 1-turn lNTV CA accepting ∃PRE(L) 119

8.3 For L ∈ lCA, an lACA accepting ∀PRE(L) 120

8.4 lCA accepting PAD2,1(L), where L ∈ lCA 122

8.5 For L ∈ rCA, a 1-turn rNTV CA accepting ∃MID(L) 124

8.6 For L ∈ lCA, a 1-turn lNTV CA accepting ∃MID(L) 125

8.7 SAs accepting L and SHUFFLE(L) . 127

8.8 SA accepting (1/2)CY CLE(L) . 128

8.9 Worktape of an SA accepting CY CLE(L) 129

8.10 Worktape of an SA accepting (1/2)(L) . 130

8.11 Worktape of an SA accepting ∃MID(L) . 132

Chapter 1

Introduction

Cellular automata deal with large collections of interconnected finite state automata, each

automaton being thought of as a cell. The pioneering work in this field was done by John

von Neumann and reported by A. W. Burks [Neu66]; similar studies are also reported in

[Cod68]. Von Neumann’s study focussed on a particular cellular space and investigated

conditions under which it is possible to exhibit (a) universal computing—the computation

of all computable functions, and (b) universal constructibility—embedding in the cellular

space an automaton A which, given the specifications of any constructible automaton B,

builds B and sets it free to work independently of A. This is akin to asking whether a robot

can mechanically, given the specifications, build another robot meeting those specifications.

von Neumann’s interest in studying these questions was in the development of organisa-

tion in biological systems. What he proved through his cellular space construction is well

summarised by A. R. Smith III [Smi76] as follows:

“. . . that a very large array of not very powerful computers operating in parallel

can be programmed to be quite powerful, and that the program to accomplish

this can spread copies of itself throughout the array. So, not only is the array

of relatively powerless computers capable of computing what one powerful com-

puter can, but it is also capable of computing what a large number of powerful

computers can compute simultaneously, with only one of the programs being

provided by man.”

1

CHAPTER 1. INTRODUCTION 2

Subsequently the study of CA continued under differing motivations. CA have been use-

fully applied to the study of a variety of complex systems — lattice gas dynamics, statistical

mechanics, etc. A very good survey of this kind of work appears in Wolfram’s book [Wol86];

also see [DGT85]. Several related and similar models have also been independently studied.

A survey of such “polyautomata” appears in A. R. Smith III’s article [Smi76], from which

the above extract is taken.

To the computer engineer, the significance of CA lies in the fact that CA have enor-

mous computing power obtained by interconnecting several fairly primitive cells in a reg-

ular fashion. Thus they possess homogeneity of components, facilitating mass production,

easily incrementable power, and ease of reorganising these increments to suit various spe-

cial needs. A major spurt in CA investigation in the last few years stems from the ad-

vances in devices for parallel computation. Special interest has arisen in systolic systems

[Kun79, Kun80, Kun82] —arrays of uniformly interconnected identical processors, working

in a synchronous manner, while data travels across the array in a rhythmic fashion. Such sys-

tems have homogeneity, modularity, simplicity—all factors making them easy to implement

in VLSI circuitry. The design and study of systolic systems and algorithms has benefitted

from the study of bounded CA systems. Notable examples are the work of Culik et al

[BC84, CC84, CGS84a, CGS84b, CGS86] on systolic trellis automata (which are equivalent

to bounded-space real-time one-way CA) and of Ibarra et al [IK84, IKP86, IPK85b] on linear

systolic arrays modelled as 1- and 2-Dimensional CA, one-way CA (OCA), and a closely

related model, the iterative arrays. Their work has resulted in the development of hosts of

easy-to-implement systolic algorithms using the techniques developed for CA and equivalent

sequential machines. Another instance of directly applying CA techniques is the work re-

ported by Pries et al. and others [DP88, KA87, PTC86] on exploiting the group properties

of additive CA to implement on-chip test-pattern-set-generators for VLSI circuits.

CA, due to their inherent parallelism, are intrinsically faster than many other compu-

tation models [Smi72]. It is but natural that some interest will centre on how fast CAs

can compute. A lot of research has focussed on whether at all there is a difference between

real-time, linear-time, and unbounded-time CA computation (rCA, lCA and CA respec-

tively). Some of this work is reported in [BC84, CC84, IJ88, Smi71, Smi72]. (In real-time

CHAPTER 1. INTRODUCTION 3

language recognition, if the input is of length n, the CA requires at most n steps to deter-

mine whether or not the input belongs to the language. In linear-time language recognition,

there is a constant c such that on inputs of length n, at most cn time is required.) Another

longstanding open problem is whether one-way communication reduces the power of a CA;

related research results are reported in [CIV88, Dye80, IJ87, UMS82].

The motivation for this thesis has been to further refine these open problems, in an

attempt to come closer towards solving them. With this end, we first define time-varying

CA (TV CA) and then give different interpretations to the ensuing computations. A TV CA

is essentially a CA where the component cells act differently at different time steps. The

variation is dictated by some prespecified control set. This corresponds to the notion of an

external control, through global broadcast to all cells.

The idea of imposing external control in some fashion is not new. There are several

instances in automata and language theory of modifying the generative/recognising power

of a grammar or a language through some form of external control—regulated rewriting is a

well-researched area in language theory [KD85, Sal73]. A practical application is in compiler

design— while most programming languages are context-sensitive, efficient parsing is known

only for context-free languages. So the programming languages are usually modelled as

context-free languages where the context-sensitive properties are incorporated not through

the form of the productions (which would make parsing difficult) but through regulating and

controlling their usage. Similar uses can be envisaged for TV CA.

This thesis, however, is not directly concerned with such applications. Our interest is

language-theoretic; we study the language recognition capabilities of TV CA and related

models with an approach towards characterising the computational power of these models.

Time-variations have been shown to vastly increase the generative power of regular grammars

[KD84, Sal73]. Analogously, time-varying finite-state automata and pushdown automata

have been shown to be far more powerful language acceptors than their non-time-varying

counterparts [KD86, KS88]. Our attempt has been to perform a similar investigation for

time-varying cellular automata.

A TV CA is similar to a CA except in one respect: the transition function which specifies

the next state of a cell in terms of its current state and the current state of its neighbours

CHAPTER 1. INTRODUCTION 4

is not fixed. Instead, there is a finite set of local transition functions, and at each time

step, exactly one of them is used, depending on how many time steps have elapsed since

the TV CA operation began. This dependence on time can be expressed in terms of a set of

control languages which are tally (ie. over a unary alphabet {0}): at the ith time step, use

the jth function if and only if the ith string over the alphabet belongs to the jth controlling

language.

We have studied how the complexity of the controlling languages affects the power of

the resulting TV CA. At one extreme, ultimately periodic tally languages do not impart any

additional power to TV CA over CA; at the other extreme, CA control makes TV CA strictly

more powerful than CA. In between, using rCA or lCA control, we obtain languages which

are contained in OCA, but which do not appear to be in lCA. This supports the conjecture

that lCA are not as powerful as OCA or CA.

We have also examined the effect of varying the number of controlling languages. While

for linear-time and unbounded-time computation this is not a crucial factor, it appears to

be so for real-time computation.

The controlling language L in a 2-function TV CA can be viewed as an oracle to which

the TV CA makes implicit queries; at time step i, it queries the oracle on membership of 0i

in L. This is a restricted form of oracle access, since queries must be made at each step, and

in a specific order. Nonetheless, the mechanism is powerful enough to exhibit separations

as well as strong separations of the relativised classes rCA, lCA and CA. The equality

CA = DSPACE(n) becomes a containment from left to right if CA are relativised via

TV CA and theDSPACE(n) machines via the unrestricted query model. On the other hand,

if the DSPACE(n) machines use the bounded query model, then the equality changes to a

containment from right to left. However, the lCA ⊆ DSPACE(n) relationship relativises

in both cases.

Restricting the study to tally languages, we find that there exists a hierarchy of languages

between the complexity classes rCA and OCA. The hierarchy is built with rCA and lCA at

the base, and each level is obtained by relativising rCA and lCA with respect to languages

at the previous level. Examining the structure of this hierarchy, we have found that rCA

control does not increase the power of rCA beyond lCA, and it does not increase the power

CHAPTER 1. INTRODUCTION 5

of lCA at all. Of course, if it should turn out that rCA and lCA (when restricted to tally

languages) are equal, then all classes in this hierarchy are equal. However, the difficulty of

showing any more equalities in this hierarchy offers further evidence that the classes of tally

languages in rCA and lCA are indeed distinct.

Instead of providing the TV CA with a controlling language deciding which transition

function is to be used at each step, we can allow the TV CA to proceed in all possible ways

simultaneously and check whether any one (or more) such way leads to an accepting con-

figuration. This is a kind of nondeterministic computation; the TV CA nondeterministically

decides, at each time step, which transition function to use. With this interpretation, we

can now study classes of time-bounded nondeterministic CA, which we shall refer to as

NTV CA. This mode of nondeterminism differs significantly from the traditional notion,

and many standard proof techniques fail to carry over. Despite this, we have obtained

some non-trivial results relating the classes so defined. The main results are that given

unbounded time, the two modes of nondeterminism do not differ, and that in the mode we

define, one-way communication does not decrease the power of the unbounded-time CA. We

have also shown that the membership problem for real-time NTV CA is NP -complete, and

that linear-time NTV CA are no more powerful than OCA.

Restricted nondeterminism can be modelled by allowing the TV CA to choose transition

functions only in sequences from a specified set. This offers more choice than the relativised

CA, where the controlling language specifies a single sequence of transition functions. At

the same time, it is not as general as unrestricted NTV CA. We consider such restricted

NTV CA where the allowable sequences are specified by simple constraints — in a 2-function

TV CA, the sequence is allowed to alternate between two transition functions, δ1 and δ2, at

most k times, for some given constant k, or is allowed to use δ2 at most k times. We show

that the classes defined through this form of nondeterminism are likely to be strictly stronger

than deterministic CA, and yet strictly weaker than the unrestricted nondeterminism classes.

Instead of checking whether at least one path of the TV CA ends in an accepting configu-

ration, we could check if more than half of them end in accepting configurations. This gives

the operation of the TV CA a probabilistic flavour. Again, restricted classes can be studied;

of the paths possessing some specific property, more than half must be accepting paths. We

CHAPTER 1. INTRODUCTION 6

have shown some results concerning such TV CA, the most notable being that linear-time

probabilistic TV CA are no more powerful than OCA.

A further generalisation of this concept brings us to alternating CA. States of the CA

are of one of the following four types: universal, existential, accepting or rejecting. A

configuration is accepting or rejecting if the leftmost cell is in such a state. If the leftmost cell

is in an existential (universal) state, then at least one (all) of the subtrees of the computation

tree at that point must be accepting. This allows fast checking of properties of substrings.

Some of these alternating CA classes are used subsequently to locate closures of CA classes

under various language operations.

Closure properties of language classes play an important part in our understanding of

the structure of the classes; they also sometimes give more insight into the containments

amongst the classes. For instance, it is not known whether rCA are closed under reversal,

but it is known that this is the case if and only if rCA = lCA [IJ88]. We have considered the

closure of CA classes under various language operations. Some of the closure proofs involve

interesting automata-theoretic constructions. The most notable results are that for L in

rCA, given a string x, checking whether some or all or none or an odd number of prefixes

of x are in L (ie. checking whether x is in ∃PRE(L), ∀PRE(L), MIN(L), ⊕PRE(L)) can

also be done in real time. Also, for L in rCA or lCA, the string obtained by interchanging,

pairwise, letters from strings in L (SHUFFLE(L)), can also be recognised by an rCA or

lCA.

We have also tried to relate the closure of the CA classes to the newly obtained non-

deterministic classes defined in terms of NTV CA, and to the alternating CA classes. For

instance, consider recognising the language ∃PRE(L). For L in rOCA and rCA, we have

shown that ∃PRE(L) is also in rOCA or rCA respectively. For L in lCA, however, the

fastest CA construction we have for recognising ∃PRE(L) requires O(n2) time. But using

a restricted NTV CA, we can accept the same language in linear time. Several other such

closures have been expressed in terms of NTV CA and restricted NTV CA.

The thesis is organised as follows.

In chapter 2 we describe the notation to be used in the rest of the thesis. We then give the

definition of CA and the associated language classes, and survey some of the known results

CHAPTER 1. INTRODUCTION 7

about these classes. In chapter 3 we introduce TV CA. We study the effect of two impor-

tant parameters—the complexity of the controlling languages, and the number of controlling

languages—on the power of the resulting TV CA. In the next two chapters, the operation of

a TV CA is interpreted as that of a relativised CA, with the controlling language acting as

the oracle. Special attention is paid to tally language recognition. Chapter 6 considers an

interpretation of TV CA without controlling languages as a nondeterministic CA computa-

tion. In chapter 7 we briefly look at two other interpretations of TV CA computation—as a

probabilistic CA and as an alternating CA. Finally in chapter 8 we consider closure proper-

ties of CA language classes. Chapter 9 presents a discussion of the extent and significance

of the work done and summarises the problems which remain open at the end of this work.

Chapter 2

Preliminaries and Basic Results

In this chapter the notation and definitions used in the rest of the thesis are presented, and

basic results in the field are surveyed. The survey is not meant to be comprehensive, but

it covers all the results used or cited in the rest of the thesis. Most of the results are only

mentioned; however, in a few cases, where the proof techniques have been put to use in

subsequent chapters, the proofs are sketched.

2.1 Notation

Throughout this thesis, the symbol Σ (or Σ′, Σ, . . .) will be used to denote a finite alphabet.

Small letters a, b, c . . . , or bits 0, 1 will be letters in the alphabet; small letters u, v, w, x, y . . .

will typically denote strings of finite length over the alphabet. Σ∗ (respectively Σ+) denotes

the set of all finite (respectively, finite non-zero) length strings over Σ. If x ∈ Σ∗, |x| denotes

the length of x. xR denotes the string obtained by writing the letters of x in reversed order.

For a set S, the cardinality of the set is denoted by ∥S∥. N (respectively N+) is the set

of (positive) natural numbers. For any positive natural number n, let 1x be the unique

binary representation of n with no leading zeroes. Then x, denoted ⟨n⟩, is the standard

representation for the number n.

δ is used to denote transition functions, and Q is used to denote a finite set of states.

States are usually represented by the letters p, q, . . . ; however frequently states will coincide

with letters of an alphabet, in which case those letters will be used.

8

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 9

A language is a subset of Σ∗; languages will usually be denoted by the capital letter L.

L is the complement of L, and contains all those strings from Σ∗ which are not in L. LR is

the reversal of L, and contains exactly those strings x for which xR is in L.

We assume a basic familiarity with formal language theory, finite state automata and

Turing machines; for a general introduction to automata theory, see [HU79]. For language

classes obtained through resource-bounded Turing machine computations, we use the stan-

dard notation from [BDG88, BDG90]. ThusDSPACE(s(n)) (respectivelyNSPACE(s(n)),

ASPACE(s(n))) is the class of languages which can be accepted by deterministic (respec-

tively nondeterministic, alternating) Turing machines using no more than s(n) space on their

worktapes for inputs of length n. (The input is on a separate read-only tape; thus s(n) could

well be less than n.) The classes DTIME(t(n)), NTIME(t(n)) and ATIME(t(n)) are

similarly defined; now the corresponding machines are constrained to use only t(n) time,

on inputs of length n. The union of DTIME(p(n)), NTIME(p(n)) and DSPACE(p(n))

classes respectively, over all polynomial functions p, gives the classes P , NP and PSPACE

respectively.

2.2 Definitions

Cellular automata (CA) are a simple model for parallel recognition of languages. A CA

consists of an array of identical finite-state machines (FSM), one for each letter of the input.

(Our work is restricted to one-dimensional CA. For results on CA of higher dimensions, see

[Col69, IPK85b].) The FSMs are called cells. Each cell initially contains one letter of the

input. The cells change their states in a synchronised fashion, at discrete time steps. The

state of a cell at a time instant is a function of the states of cells in its neighbourhood at the

previous time instant; this function is the transition function of the CA and is the same for

all cells. Throughout this work, we will consider the three cell or two cell neighbourhoods.

In the former, the neighbourhood of a cell consists of itself, the cell to its immediate left, and

the cell to its immediate right. In the latter, the right neighbour is excluded. See Figures

2.1 and 2.2.

Let c(i, t) denote the state of the ith cell at time t. Then, as mentioned above, the CA is

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 10

✤✜
✣✢
✛✘
✚✙

✛✘
✚✙

✛✘
✚✙✛ ✲ ✛ ✲ ✛ ✲a1 a2 an

accepting node

• • •

Figure 2.1: A cellular automaton

✛✘
✚✙

✛✘
✚✙

✛✘
✚✙
✤✜
✣✢✲ ✲ ✲a1 a2 an

accepting node

• • •

Figure 2.2: A one-way cellular automaton

initialised by setting c(i, 0) to ai, where the input is a1a2 . . . an. Let the transition function

of the CA be δ. Then for 1 ≤ i ≤ n,

c(i, t+ 1) = δ(c(i− 1, t), c(i, t), c(i+ 1, t))

Thus the subsequent operation of the CA is autonomous.

(The cells at the boundary of the array have one neighbour missing. These cells take a

special state # as the missing argument when applying the transition function.)

The leftmost cell of the CA is a special cell; it denotes whether the input is accepted by

the CA. Let Q be the finite set of states each cell can take. A subset of this, A, is specified as

the set of accepting states. Now, if the leftmost cell ever enters a state from A, then we say

that the input has been accepted. Note that for nontrivial language recognition, acceptance

requires at least n time steps on an input of length n.

If the two cell neighbourhood is considered, then

c(i, t+ 1) = δ(c(i− 1, t), c(i, t))

Now the rightmost cell is the special cell denoting acceptance. Such CA are called one-way

CA (OCA), since information can only flow in one direction (from left to right).

Formally, CA and OCA are defined as follows.

Definition 2.1 A cellular automaton is a 4-tuple C = (Q, #, δ, A) where

• Q is a finite set of states

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 11

• # ∈ Q is the boundary state

• δ : Q×Q×Q→ Q is the local transition function satisfying

δ(a, b, c) = # if and only if b = #

• A ⊆ Q is the set of accepting states

Definition 2.2 A one-way cellular automaton is a 4-tuple C = (Q, #, δ, A) where Q, #

and A are as in Definition 2.1, and δ : Q×Q→ Q is the local transition function satisfying

δ(a, b) = # if and only if b = #

The set of strings accepted by the CA C is denoted L(C).

The operation of the CA (and OCA) is frequently represented using a time-space dia-

gram. This is an array where the topmost row has the input configuration, and successive

configurations appear in successive rows beneath it. Thus the ith row gives the configuration

of the CA after i time steps, and the jth column gives the sequence of states entered by the

jth cell of the CA. Such diagrams give a visual representation of the CA computation and

make it more easily comprehensible. Signals travelling across the array of FSMs are shown

in such diagrams by lines of varying slopes, depending on the speed at which the signal is

travelling.

A CA C is said to operate in T (n) time if for each n, for each string w of length n, if w is ac-

cepted then it is accepted within T (n) time steps. In other words, if c(1, 0)c(2, 0) . . . c(n, 0) =

w and w ∈ L(C), then ∃t ≤ T (n) such that c(1, t) ∈ A. Here T (n) could be any function

T : N+ → N+. Of special interest are the cases when T (n) = n, giving “real-time” CA (rCA

and rOCA), and T (n) = cn for some constant c, giving “linear-time” CA (lCA and lOCA).

If we allow the CA or OCA to use an unbounded amount of time, the class of languages

accepted is denoted merely by CA or OCA respectively. (Thus CA would denote the class

of cellular automata as well as the class of langauges accepted by them; the meaning will

be clear from the context.) Towards the end of this chapter we will give examples of some

languages belonging to each of these classes. Though CA and OCA can use an unbounded

amount of time in principle, in practice it is always possible to design equivalent CA or OCA

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 12

using at most 2cn time for some constant c; this follows from the fact that since ∥Q∥ is finite,

there are only a finite number of configurations that a CA can go through without looping.

The definitions of CA and OCA can be generalised to the nondeterministic case. Now δ

will map Q×Q×Q (or Q×Q, for OCA) to subsets of Q, and the input will be accepted if

for some computation of the CA satisfying δ, the accepting cell enters a state from A.

Nondeterministic CA (NCA and NOCA) have also been studied in some detail in the

past; some of the results can be found in [IK84, Smi72]. For a nondeterministic CA, for the

same input there can be several time-space diagrams, corresponding to different nondeter-

ministic choices.

2.3 Basic Results

The relationship between CA and Turing machines is easily expressed: since on inputs of

length n the CA has exactly n cells, the computation can be simulated by a Turing machine

which uses only linear space on its worktape. It will however require O(n) steps to simulate

one step of the CA, since the parallel action of all the cells has to be simulated sequentially.

Thus a T (n)-time CA can be simulated by a Turing machine in O(nT (n)) time using O(n)

space. Conversely, a Turing machine using linear space (ie. a DSPACE(n) machine. For

this notation, see [BDG88]) can be simulated by a CA in the same amount of time. Each cell

of the CA will hold the contents of one worktape cell of the CA; additionally, at each time

step, exactly one CA cell will be in a special state indicating that the tape head is positioned

here, and also indicating the state of the Turing machine. Clearly, a consistent updating of

the states of all the CA cells is possible using only local neighbourhood information; thus a

suitable transition function for the CA can be constructed to make the CA behave like the

Turing machine. Thus

Lemma 2.3 CA = DSPACE(n).

We now present some of the important well-known results about CA. The first result

is the famous firing squad synchronisation (FSS) lemma. This lemma states that there is

a CA which, when started off in a configuration with the leftmost cell (the general) in a

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 13

special state b and all other cells (soldiers) in a “quiescent” state c, enters a configuration

with all cells in a “fire” state $ after 2n steps. Here n is the total number of cells (general

+ soldiers) in the firing line. Also, no cell enters the “fire” state before this time; all cells

fire for the first time simultaneously. The transitions do not depend on n. There is also a

real-time version if generals are placed at both ends of the firing line.

(When the general is at one end, such a synchronisation can be achieved by sending two

signals, one thrice as fast as the other. The fast signal reflects off a boundary and meets

the slower signal at the midpoint of the array. From this point, the algorithm is repeated

recursively on both halves. This algorithm will require 3n time steps, as shown in Figure

2.3. The 2n-time algorithm is too complex to be described here.)

Lemma 2.4 There is a CA which, starting with configuration bcn−1, reaches the configura-

tion $n in exactly 2n steps, with no cell entering the state $ before time 2n [LM68, Wak66].

Also, there is a CA which, starting with configuration bcn−2b, reaches the configuration $n

in exactly n steps, with no cell entering the state $ before time n [BC84].

A closely related concept is the concept of CA-time-constructibility, as defined below.

Definition 2.5 A function T (n) : Σ+ → N+ is said to be CA-time-constructible if there is

a CA which, on any input of length n, puts its accepting cell into a special state after exactly

T (n) time steps. The function is said to be strongly CA-time-constructible if the CA puts

every cell into a special state, for the first time, after exactly T (n) steps. In other words,

after T (n) steps, all cells simultaneously “fire” for the first time.

Thus Lemma 2.4 essentially says that the function mapping strings of length n to the

number 2n (or n) is strongly CA-time-constructible.

The next lemma states that lCA and OCA are equivalent to a restricted form of an

online single-tape Turing machine, called a Sweeping Automaton (SA). An SA consists

of a semi-infinite worktape (bounded at the left by a special boundary marker c|) and a

finite-state control with an input terminal at which it receives the serial input a1a2 . . . an.

The symbol $ is used as endmarker. The SA operates in left-to-right sweeps as follows:

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 14

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡✡

❍❍❍

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

❏
❏
❏
❏
❏❏

❏
❏
❏
❏
❏❏

✡
✡

✡
✡

✡✡

✡
✡

✡
✡

✡✡

✟✟✟✟✟

❍❍❍❍❍

❍❍❍❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍

✟✟✟✟✟✟
❏
❏

❏
❏

❏
❏

❏
❏

✡
✡

✡
✡

✡
✡

✡
✡

❍❍❍❍
❍❍❍❍

❍❍❍❍
❍❍❍

✟✟✟
✟✟✟✟

✟✟✟✟
✟✟✟✟❍❍ ✟✟

Figure 2.3: Firing squad synchronisation

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 15

Initially, all cells of the worktape to the right of c| contain the blank symbol λ. A sweep begins

with the read-write-head (RWH) scanning c| and the machine in a distinguished state q0. In

the ith sweep, the machine reads ai and moves right of c| into a non-q0 state. It continues

moving right, rewriting non-λ symbols by non-λ symbols and changing states except into

q0. When the RWH reads a λ, it rewrites it by a non-λ symbol and resets to the leftmost

cell in state q0 to begin the next sweep. When $ is first read, the machine completes the

(n+ 1)th sweep, writes a $ on the (n+ 1)th tape cell, and resets to c| in state q0. Subsequent

sweeps are performed between c| and $ without expanding the workspace. $ is assumed to

be always available for reading after the input is exhausted. The input is accepted if the

machine eventually enters an accepting state at the end of a sweep.

Several techniques for programming an SA have been described in [CIV88]. For a full

description of how the techniques are implemented on an SA, the reader is referred to

[CIV88].

Lemma 2.6 [CIV88, IJ87, IPK85b] A language is accepted by an OCA if and only if it is

accepted by an SA. Further, if the OCA runs in linear time, then the SA needs exactly n

sweeps, and vice versa. A language is accepted by an lCA if and only if it is accepted by an

SA in cn sweeps for some constant c.

Note that this result also shows that lCA ⊆ OCA.

The next result gives the linear speed-up for CA and OCA. It is easy to see how speed-up

is achieved for CA; the input moves left and is packed, k letters per cell, in the leftmost

n/k cells, then these n/k cells synchronise themselves using a firing squad algorithm, and

then they simulate the original CA at the rate of k steps per transition. k is to be chosen

suitably depending on what speed-up is required. For OCA, the proof is not so trivial since

synchronisation needs two-way communication. It has been proved directly in [BC84, CC84];

a simple proof using the sequential machine characterisation of OCA (which, itself, is a non-

trivial proof!) appears in [IPK85b].

Lemma 2.7 [BC84, CC84, IPK85b, Smi72] If L can be accepted in n + R(n) time by a

CA or an OCA, then it can be accepted by a CA or an OCA in n + R(n)/k time, for any

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 16

rOCA
rCA
=

lOCA
lCA OCA

CA
=

DSPACE(n)

rNOCA
lNOCA

=
rNCA

lNCA

NOCA
=

NCA
=

NSPACE(n)

NSPACE(
√
n) ATIME(n)

✲ ✲ ✲

✲ ✲ ✲ ✲

✲

❄
❄

❄ ❄

❄
/

Figure 2.4: Known results about CA language classes

positive integer k. Thus a linear-time CA or OCA can be speeded up to n(1 + ϵ) time, for

any positive constant ϵ.

Thus multiplicative constants can be scaled down in CA operations. It has also been

shown [BC84, CC84, IKM85, IPK85b] that additive constants can be done away with alto-

gether, giving the following:

Lemma 2.8 For CA and OCA, and for T (n) ≥ n− 1, T (n) + c time can be speeded up to

T (n) time.

The known containments amongst the CA and OCA classes are summarised in the follow-

ing theorem and represented in Figure 2.4. In the figure, a (crossed) arrow denotes (proper)

containment.

Theorem 2.9 (i) rOCA ⊂ rCA

(ii) rCA = lOCA

(iii) lCA ⊆ OCA

(i) is easily shown using a pumping lemma kind of argument on the time-space unrolling of

rOCA; see [CC84, CGS84a]. The language {a2n | n ≥ 0} is a language in the difference. To

show (ii) consider the time-space diagrams of an rCA and a (2n)-time lOCA (use Lemma

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 17

❡❡
❡❡

❡❡

❡❡
❡❡

❡❡

❡❡
❡❡

❡❡

a b c d a b c d

A B C D

E F G H F G H ?
E # # #

I J K L

M N O P O P ?
N M #

Q R S T

U V W W ?
V U

X Y

Z ?
Z

Computation of C, Simulation by C ′,

a 2n-time OCA an rCA

Figure 2.5: An rCA simulating an lOCA

2.7). It is easy to construct a mapping between these two diagrams. An example is shown

in Figure 2.5; for a formal proof, see [CC84]. This result, along with Lemma 2.6, gives us a

sequential machine characterisation of rCA. (iii) follows from Lemma 2.6.

Despite the constraint of one-way communication, OCA are remarkably powerful. The

class OCA has been shown to contain QBF (the language consisting of quantified Boolean

formulae which evaluate to True), which is PSPACE-complete; see [IJ87]. It has also

been shown to contain the classes NSPACE(
√
n) and ATIME(n); again, see [IJ87] for

proofs. Thus the class OCA lies between NSPACE(
√
n) and DSPACE(n), and a proper

containment between OCA and CA would also properly separate these classes, improving

Savitch’s result [BDG88, HU79]. It is conjectured that the containment is indeed proper,

though no proof has yet been found. The problem has also been posed in terms of “resetting”

deterministic linear-bounded automata; refer [Iba91].

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 18

There is stronger evidence that lCA are properly contained in OCA; since lCA are easily

seen to lie in P and since OCA contains QBF , any proof that OCA are only as powerful

as lCA (eg., lCA = CA, lOCA = OCA etc.) will immediately imply that P = PSPACE.

On the other hand, a proof to the contrary seems extremely difficult to obtain.

Surprisingly, once nondeterminism is introduced, one-way communication is no longer a

restriction in the unbounded-time case, and the following result is easily seen [Dye80]:

Lemma 2.10 NOCA = NCA = NSPACE(n), the class of context-sensitive languages.

The equivalence of NCA and NSPACE(n) is more or less as described before Lemma 2.3

for the deterministic case. For an NOCA to simulate an NCA, each cell has to guess its

right neighbour’s state, and special signals have to travel across the array verifying that the

guesses were correct. The technique is described in detail in [Dye80].

It is also known that rNOCA contains an NP -complete problem [IK84]; thus even for

time-bounded classes, nondeterminism appears to add significantly to an OCA computation.

(Recall that for the deterministic case, even lCA are within P , as seen from a straightforward

Turing machine simulation.)

It is not known whether NCA are more powerful than CA. In fact, whether this con-

tainment of DSPACE(n) in NSPACE(n) is proper is one of the really longstanding open

problems in formal language theory, and is usualy phrased as: “Are there context-sensitive

languages which are not deterministic context-sensitive?” [HU79].

Some typical examples of languages known to lie in the real-time and linear-time CA and

OCA classes are mentioned below.

rOCA contains:

{wwR | w ∈ Σ∗}

All linear context-free languages

{anbncn | n ≥ 1}

Dyck’s languages

{xyz | |x| = |y| , ⟨z⟩ = ⟨x⟩+ ⟨y⟩}

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 19

rCA contains:

{ww | w ∈ Σ∗}

{anbm | n divides m}

{anbm | m divides n}

{a2n | n ≥ 0}

{an | n is a prime number }

lCA contains:

{

c⌈log2|x1|⌉x1cx2# . . .#xk | xi ∈ {0, 1}+, |xi+1| = ⌈log2 |xi|⌉

the number of 1s in ⟨|xk|⟩ equals the number of 1s in xk}
{

c⌈log2|x1|⌉x1cx2# . . .#xk | xi ∈ {0, 1}+, |xi+1| = ⌈log2 |xi|⌉, |xk| = 1,

the number of 1s in ⟨k⟩ equals the number of 1s in x1}

OCA contains:

QBF , the set of fully quantified Boolean formulae which evaluate to true

All languages in NSPACE(
√
n)

ATIME(n), the class of languages accepted by alternating Turing machines in linear

time

All languages that can be accepted by multihead 2-way nondeterministic pushdown

automata operating in cn/logn time for some constant c

To summarise, the following problems posed variously in [Smi72, BC84, IJ88] are still open.

(a) Are linear-time CA more powerful than real-time CA?

(b) Are non-linear-time CA more powerful than linear-time CA?

CHAPTER 2. PRELIMINARIES AND BASIC RESULTS 20

(c) Are non-linear-time CA more powerful than real-time CA?

(d) Are CA more powerful than OCA?

(e) Are real-time CA closed under reversal? In [IJ88] it has been shown that this is the case

if and only if the answer to (a) is No.

(f) Are linear-time CA more powerful than real-time CA when restricted to single letter

input alphabets (unary alphabets and tally languages)?

Chapter 3

Time-varying Cellular Automata

In this chapter, we introduce time-varying transitions in CA and study the effect on the

time complexity of language recognition. The idea of time-variant structures is not new.

Time-variation in the context of language generators (grammars) has been studied before,

the motivation being obtaining different classes of languages by regulating the usage, rather

than the form, of the rewriting rules. Time variations have been shown to vastly increase

the generative power of regular grammars [Sal73, KD84, KD85]. Analogously, time-varying

finite-state automata (FSA) and pushdown automata (PDA) have been shown to be far

more powerful language acceptors than their non-time-varying counterparts [KD86, KS88].

In another context, flexible cellular structures, where the global transition applied at each

time step need not be the same, have also been studied in [Nas79], but there the object of

study is to express non-realisable global transitions as a composition of a finite number of

realisable global transitions. This work does not deal with such considerations. Here we are

concerned with the enhancement of language recognition capabilities because of time-varying

transitions.

3.1 Time-Varying Cellular Automata (TV CA)

A TV CA is similar to a CA except in one respect: the transition function which specifies

the next state of a cell in terms of its current state and the current state of its neighbours

is not fixed. Instead, there is a finite set of local transition functions, and at each time

21

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 22

step, exactly one of them is used, depending on how many time steps have elapsed since

the TV CA operation began. The effective transition function of the TV CA thus has, as

arguments, the current states of the cell and its immediate neighbours, and the current time

t ∈ N (N is the set of natural numbers). Note that once Q is fixed, the number of distinct

possible transition functions is finite.

Definition 3.1 A k-time-varying CA is defined by a (2k + 2)-tuple

C = (Q,#, p1, p2, . . . , pk−1, δ1, δ2, . . . , δk, A)

where

• Q is a finite set of states

• pi, i = 1 to k − 1, are unary predicates over natural numbers,

pi : N→ {T, F}

• δj, j = 1 to k, are distinct transition functions, δj : Q×Q×Q→ Q

• # is the boundary state

• A ⊆ Q is the set of accepting states.

The transition function δ of C can be described as follows:

δ(x, y, z, i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if p1(i) then δ1(x, y, z)

elseif p2(i) then δ2(x, y, z)
...

...

elseif pk−1(i) then δk−1(x, y, z)

else δk(x, y, z)

Thus δ is a transition function δ : Q×Q×Q×N→ Q specified in terms of pi, i = 1 to k−1,

and δj, j = 1 to k. Acceptance is defined as for CA.

The operation of the TV CA is such that at every time instant t, there is a unique

transition function to be applied to all cells. Thus the set N is partitioned into k blocks

Bi, i = 1 to k, such that at all time instants t in block Bj, the CA applies transition

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 23

function δj. The blocks Bj can be represented through tally languages (languages over a

unary alphabet) instead of unary predicates. Each predicate pi represents membership of

strings, over a unary alphabet, in a particular language Li. Specifically, if the unary alphabet

is {0}, then Li = {0j | pi(j) = T}. Clearly, B1 = {j | p1(j) = T}, and thus B1 corresponds

directly to L1; ie. , B1 = {j | 0j ∈ L1}. However,

B2 = {j | p1(j) = F ∧ p2(j) = T}

Thus B2 corresponds to L2 − L1. In general, block Bj corresponds to the language Lj −

(L1 ∪ L2 ∪ . . . ∪ Lj−1), for j = 2 to k − 1. Block Bk corresponds to (L1 ∪ L2 ∪ . . . ∪ Lk−1).

Our interest here is in constraining the languages Li controlling the TV CA to belong

to specific classes, and then studying the capabilities of the TV CA. All the classes we will

consider in this thesis are closed under union and complementation; so the TV CA can be

specified in such a way that

Bi = {j | 0j ∈ Li}

for every i. This gives an alternative definition of TV CA as follows:

Definition 3.2 A k-time-varying CA is defined by a (2k + 3)-tuple

C = (Q,#, L1, L2, . . . , Lk, δ1, δ2, . . . , δk, A) where

• Q is a finite set of states

• Li ⊆ {0}∗, i = 1 to k, are tally languages partitioning {0}∗

• δj, j = 1 to k, are distinct transition functions δj : Q×Q×Q→ Q

• # is the boundary state

• A ⊆ Q is the set of accepting states.

The transition function δ of C can be described as follows:

δ(x, y, z, i) = δj(x, y, z) if and only if 0i ∈ Lj

Let L be any class of languages over the unary alphabet {0}. In the following sections,

k-LTV CA (k-rLTV CA and k-lLTV CA) denote k-TV CA which are controlled by languages

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 24

belonging to class L (and which accept languages in real time and linear time respectively).

LTV CA (respectively rLTV CA, lLTV CA) denotes the union, over all finite k, of the classes

k-LTV CA (k-rLTV CA, k-lLTV CA). Other classes, including those which consider one-

way communication only, are similarly defined.

3.2 Control Imposed by Different Classes of Languages

In this section we consider different instances of the class L of controlling languages, and see

how the classes k-LTV CA, k-rLTV CA and k-lLTV CA get modified.

Definition 3.3 A language L ⊆ {0}∗ is said to be ultimately periodic if there exist natural

numbers n0 ≥ 0 and p ≥ 1 such that

∀n ≥ n0, 0n+p ∈ L if and only if 0n ∈ L

Theorem 3.4 If all languages in L are ultimately periodic, then a k-LTV CA can be simu-

lated by a CA (which is not time-varying) with no loss of time. If the TV CA uses one-way

communication, so will the simulating CA.

Proof: Essentially, n0 + p copies of the state set are created, and the transition function

depends on which copy of the state is an argument. Copies of the boundary state need not

be created. Accepting states can be suitably defined. Formally, let the k-LTV CA be given

by

C = (Q,#, L1, L2, . . . , Lk, δ1, δ2, . . . , δk, A)

We will construct an equivalent non-time-varying CA C ′ = (Q′,#, δ′, A′) as follows: Let n0

and p be as in the definition of ultimate periodicity for C. Define sets Qi, i = 2 to n0+p−1,

to be disjoint copies of Q; thus Qi = {qi | q ∈ Q− {#}}. Then Q′ =
(

⋃n0+p−1
i=2 Qi

)

∪Q. Let

Ai be the restriction of Qi to copies of states in A; then A′ =
(

⋃n0+p−1
i=2 Ai

)

∪A. δ′ is defined

as follows: δ′(a, b, c) = q2 where q = δ(a, b, c, 1) and b ̸= #.

δ′(ai, bi, ci) = qi+1 where q = δ(a, b, c, i) and i < n0 + p− 1.

δ′(ai, bi, ci) = qj where i = n0 + p− 1 and q = δ(a, b, c, i) and j = n0.

δ′(a,#, b) = # for any a, b ∈ Q′.

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 25

It is easy to see that C ′ so defined simulates C and that the simulation is step-for-step, ie. ,

with no loss of time.

Proposition 3.5 [Gin66] Tally regular languages are ultimately periodic.

Corollary 3.6 If a TV CA is controlled by regular languages, then it can be simulated by a

CA with no loss of time.

This result is easier to see directly rather than as a consequence of Theorem 3.4. Since

the regular languages involved are all over unary alphabets, each cell in the simulating

CA can internally simulate the finite-state automata (FSA) accepting these languages and

independently determine which of the k transition functions to apply.

Proposition 3.7 The class of tally languages accepted by rOCA is exactly equal to the class

of tally regular sets.

Proof: In [CGS84a, CC84] it has been shown that all regular languages can be accepted by

rOCA. To see the converse when restricted to tally sets, let C = (Q,#, δ, A) be an rOCA

accepting a tally language L. We can construct a finite-state machine M accepting L as

follows: M = (q0 ∪ (Q×Q), {0}, δ′, q0, F) where

δ′(q0, 0) = [δ(#, 0), δ(0, 0)],

δ′([a, b], 0) = [δ(a, b), δ(b, b)], and

F = {[a, b] | a ∈ A}.

For instance, if the cells of C change states as shown in Figure 3.1, then M goes through

states q0, AB,CD,EF,GH,

Corollary 3.8 If a TV CA is controlled by rOCA languages, then it can be simulated by a

CA with no loss of time.

These results are, in some sense, negative; they show conditions under which TV CA are

no better than CA. We shall now look at some positive results. For any class L, let L |t
denote the class of all tally languages in L.

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 26

O O O O O

A B B B B

C D D D

E F F

G H

I

Figure 3.1: The unrolling of an rOCA

Lemma 3.9 ∀L, L |t⊆ 2-r(L |t)TV OCA.

Proof: Let L ∈ L |t. We can design a TV OCA with controlling language L, to accept L. Let

the input string be 0n. The TV OCA sends a signal $ from its leftmost cell to its rightmost

cell. The transition functions δ1 and δ2 are identical on arguments which do not contain $.

If a cell’s neighbourhood contains $, then δ1 puts it into an accepting state whereas δ2 does

not. Since $ reaches the rightmost cell (which is the accepting cell) at time n, this cell enters

an accepting state at time n if and only if δ1 is used, ie., if and only if the input belongs to

L. Thus L can be accepted by a 2-rTV OCA with controlling language L ∈ L |t, ie., by a

2-r(L |t)TV OCA.

Corollary 3.10 CA |t ⊆ 2-r(CA |t)TV OCA

OCA |t ⊆ 2-r(OCA |t)TV OCA

On the other hand, we can show that allowing the controlling language to be only as

powerful as CA or OCA languages cannot increase the power of even an lTV CA beyond

the classes CA or OCA respectively. These results are intuitively obvious, and, in the case

of CA control, easy to show. However the proof in the case of OCA control is surpris-

ingly non-trivial. The proofs given below are for k = 2; the extensions to arbitrary k are

straightforward.

Theorem 3.11 ∀k k-l(CA |t)TV CA ⊆ CA

∀k k-l(OCA |t)TV CA ⊆ OCA

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 27

Proof: To show that 2-l(CA |t)TV CA ⊆ CA, let ψ(A) be an lTV CA controlled by language

A, where A can be accepted by CA φ. Let the constant for ψ be c. Then we can construct

a CA φ′ which, for the ith step of ψ(A), first simulates φ on the i length input 0i and then

uses the outcome to simulate ψ. Since ψ is an lCA, φ has to be simulated on inputs upto

length cn. This requires a cn length array, which can be compacted onto the n length array

of φ′. φ′ thus simulates ψ(A).

Clearly, this argument can be generalised to k-TV CA.

To show that k-l(OCA |t)TV CA ⊆ OCA, we will use the sequential machine character-

isation for OCA. We will show that any language in the class 2-l(OCA |t)TV CA can be

accepted by an SA. This can be generalised to k-TV CA, and will thus prove the theorem.

Let L be a language accepted by an lTV CA ψ controlled by the OCA language A. A is

accepted by an OCA ϕ. Choose constant c sufficiently large so that L is accepted by ψ in

T (n) < cn time steps. Let the input be a1a2 . . . an. Construct SA M accepting L as follows:

The SA operates in sweeps, reading ai at the beginning of the ith sweep. In the first

sweep, M creates 2c subcells in the first worktape cell, and puts a boundary marker b on

the cth subcell. It also puts markers [and] on the (c + 1)th subcell, and writes a1 on the

(c + 1)th subcell (along with the [and]). In subsequent sweeps while reading the input, it

creates 2c new subcells per sweep (in the first λ cell read). It also moves b and [c subcells

right, and] c+1 subcells right. The characters a1 to ai−1 are shifted c subcells right, and ai

is written, with], beyond them. Thus the worktape is partitioned by b into two parts such

that after the ith sweep, each part has ci subcells. In the second part the first i subcells are

marked off between [and], and hold the input read so far, one character per subcell. Each

subcell in the left part holds the unary character 0 (apart from possibly b).

When M starts getting $ as input, it begins the actual simulation. M places a ⋆ on

subcell 1 to indicate that membership of input 01 in A is to be determined. ϕ is simulated

on input 0cn in the left part. Since an OCA has only two arguments in its transition function,

the left cell’s state and the current cell’s state, the state information can be updated in a

left-to-right sweep. Let c(i, t) denote the state of the ith cell of ϕ at time t. Because of

one-way communication, c(i, t) is the same for all input lengths n ≥ i. So simulating ϕ on

input 0cn also gives simulations of ϕ on input 0i, i ≤ cn. If in any sweep the ith subcell in

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 28

the left part enters an accepting state of ϕ, the subcell is marked with a Y indicating that

input 0i belongs to A; whenever it enters a rejecting state, the subcell is marked N. (Since

OCA are closed under complementation, accepting and rejecting states can be defined.)

In any sweep, if M encounters a Y (N) in a subcell marked ⋆, then the current query to

A has been answered, so M moves the ⋆ one subcell right to query A on the next input. It

then simulates one transition of ψ in the region between and including the subcells marked

[and] in the right part, using transition δ1 (δ2). However, since ψ is a two-way CA, a

simulation in a left-to-right sweep will shift its configuration one unit right. The [and]

markers are also correspondingly shifted. Since ψ operates within time cn, the right part is

provided with cn subcells to allow for the shifting configuration. In any sweep if an accept

state of ψ is written on the subcell marked [, then this means that the lCA ψ has accepted

the input. So M completes this sweep by moving right in a final state.

In sweeps where neither Y nor N are found on the ⋆ subcell, the ⋆ is kept where it is

and the right part is left unchanged.

Thus the membership of strings in the controlling language is answered in the cn left

subcells. As and when an answer to the next query is available, the corresponding transition

step of the TV CA is simulated in n subcells in the right part.

When M attempts to move ⋆ beyond b, all cn queries to A have been answered and this

sweep will complete the operation of ψ. So by this time if M has not found an accept state

in the [subcell, it moves right in a rejecting state.

The worktape profile for one such SA is shown in Figure 3.2 (c). (The † symbol is printed

by the SA on the first subcell in the (n+1)th sweep to allow the SA to tell this sweep apart

from subsequent sweeps. This is crucial because only in this sweep should the SA print a ⋆

on the first subcell.)

Corollary 3.12

∀k

(k-r(CA |t)TV OCA) |t= (k-r(CA |t)TV CA) |t= (k-l(CA |t)TV CA) |t= CA |t

∀k

(k-r(OCA |t)TV OCA) |t= (k-r(OCA |t)TV CA) |t= (k-l(OCA |t)TV CA) |t= OCA |t

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 29

a1 a2 a3

δ1 a b c

δ2 d e f

δ2 g h i

δ1 j k

δ2 l

(a) lCA ψ on input a1a2a3

0 0 0 0 0

z11 z12 z13 z14 z15

Y z21 z22 z23 z24 z25

z31 z32 Nz33 z34 z35

z41 Nz42 z43 z44 z45

z51 z52 z53 z54 z55

z61 z62 z63 Y z64 z65

z71 z72 z73 z74 z75

z81 z82 z83 z84 z85

z91 z92 z93 z94 Nz95

(b) Computation of OCA ϕ on 05

(Accepting states are marked Y, rejecting states N)

Figure 3.2: An SA simulating an lCA(OCA) computation (Part (c) on next page)

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 30

input cell 1 cell 2 cell 3

0

0

0

$

$

$

$

$

$

$

$

$

0 b [a1] .

0 0 0 b

0 0 0 0

†∗z11 z12 z13 z14

†Y z21 ∗z22 z23 z24

†Y z31 ∗z32 Nz33 z34

†Y z41 Nz42 ∗Nz43 z44

†Y z51 Nz52 Nz53 ∗z54

†Y z61 Nz62 Nz63 Y z64

†Y z71 Nz72 Nz73 Y z74

†Y z81 Nz82 Nz83 Y z84

†Y z91 Nz92 Nz93 Y z94

. . . .

[a1 a2] . .

0 b [a1 a2

z15 b [a1 a2

z25 b . [a

z35 b . [a

z45 b . .

z55 b . .

∗z65 b . .

∗z75 b . .

∗z85 b . .

Nz95 ∗b . .

. . . .

. . . .

a3] . . .

a3] . . .

b c] . .

b c] . .

[d e f] .

. [g h i]

. . [j k

. . [j k

. . [j k

. . . [l

(c) SA simulating ψ(ϕ)

Figure 3.2: An SA simulating an lCA(OCA) computation

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 31

The proof does not extend to include k-(CA |t)TV CA (unbounded-time CA), because

an unbounded-time TV CA can make an unbounded number of queries about membership

of strings, of arbitrary length, in the controlling language. A CA is constrained by space

and so cannot find query responses for arbitrarily long strings. As a matter of fact, there

is a TV CA controlled by a CA oracle which accepts languages provably not acceptable by

CA; this result follows from the following theorem and the space hierarchy theorem [BDG88]

which strictly separates DSPACE(n) from DSPACE(2n). Before stating the theorem we

prove a simple proposition.

Proposition 3.13 There is a CA which, given input ⟨n⟩, puts its rightmost cell into a

special state S after exactly n steps.

Proof: The CA with input ⟨n⟩ counts n time steps by subtracting 1, at each time step,

from the number in its array. The leftmost “active” cell has two bits of the number. Initially

the leftmost cell of the CA is the leftmost “active” cell and behaves as if it has 1bk, where

bk is the leftmost bit of ⟨n⟩. Subtraction occurs at the rightmost end, with “borrow” signals

travelling left as and when generated, and the leftmost “active” cell gradually shifting right.

An example for ⟨n⟩ = 011, is shown in Figure 3.3. Since the input is 011, the number

in question is the binary number 1011 (the leading 1 is implicit), ie. 11 in decimal notation.

The leftmost cell thus sets its state to 10 initially and is the leftmost “active” cell. The

rightmost cell subtracts 1 from its contents at each step. When it has only 0, it sets the 0

to 1 and also sets a b flag in its state, indicating that it has “borrowed” a 1 from its left

neighbour. A cell which sees this b flag in its right neighbour’s state subtracts one from

its own contents – if necessary, borrowing a 1 from its left neighbour in a similar fashion.

The exception is when a cell needs to borrow a 1 and finds that its left neighbour is the

leftmost “active” cell and contains 10. Clearly, this cell will become the leftmost “active”

cell after the borrowing, so it directly sets itself to 11. A cell with a 10, on seeing its right

neighbour set itself to 11, knows that it is no longer required to be “active”, and sets itself to

some special state X. The computation ends when the rightmost cell becomes the leftmost

“active” cell and decrements its contents to 00.

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 32

t = 0 # 0 1 1 #

1 # 10 1 0 #

2 # 10 1 1b #

3 # 10 0 0 #

4 # 10 0 1b #

5 # 10 11 0 #

6 # X 11 1b #

7 # X 10 0 #

8 # X 10 11 #

9 # X X 10 #

10 # X X 01 #

11 # X X S #

Figure 3.3: Computing n from ⟨n⟩ on a CA

Theorem 3.14 DSPACE(2n) ⊆ 2-(CA |t)TV CA

Proof: Let L be any language in DSPACE(2n). Consider the tally version TALLY (L)

defined as {0n | ⟨n⟩ ∈ L}. Since the length of 0n is exponential in the length of ⟨n⟩, it is easy

to see that for any language L in DSPACE(2n), TALLY (L) is in DSPACE(n) |t = CA |t.

Now it is easy to construct a TV CA which has δ1 and δ2 alike everywhere except in the

presence of S. The input to the TV CA is ⟨n⟩, and both δ1 and δ2 compute n in time, as in

the above proposition. In the presence of S, δ1 puts the TV CA in an accepting state and

δ2 puts it in a rejecting state. Such a TV CA, with a controlling language TALLY (L) from

CA |t, can thus accept any language L in DSPACE(2n).

Corollary 3.15 CA ⊂ 2-(CA |t)TV CA

Corollaries 3.8 and 3.12 consider two extremes of control, rOCA and OCA. In between

these extremes we have the classes rCA and lCA. Using these classes as classes of controlling

languages, we obtain some interesting results.

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 33

Theorem 3.16 k-r(rCA |t)TV CA ⊆ lCA

Theorem 3.17 k-l(rCA |t)TV CA = lCA

We postpone the proofs of these results to chapter 5 (Theorems 5.11 and 5.12), since their

presentation is more appropriate there. There the proofs will be presented for the case k = 2;

the extension to larger k is straightforward. Actually these results can also be obtained by

a modification of the proof for Theorem 3.11, and by using the result that SAs operating in

n or cn sweeps accept rCA or lCA languages respectively (refer Lemma 2.6). However in

chapter 5, we will give a direct construction of corresponding lCA. This direct construction

is more useful because it will be generalised to show further results; the SA-based proof

cannot be generalised in this manner.

Theorem 3.17 says that linear-time CA do not become more powerful through the ad-

dition of real-time CA control. It seems difficult to find whether their power is increased

through lCA control. If this is the case, then Theorem 3.11 will immediately imply that

lCA are properly contained in OCA and CA, a question that has been open for a long time.

Similarly, a proof that the power of real-time CA is augmented by rCA control will imply,

from Theorem 3.16, that lCA are strictly more powerful than rCA, another longstanding

open question.

3.3 The k-function Hierarchy

The power of a TV CA depends not only on the nature of the controlling languages but also

on the number of languages, ie. on the size of the partition on N that is defined by the

TV CA. The previous section explored the effect of varying the nature of the languages, ie.

varying the nature of the partition. In this section, we consider the effect of varying the size;

the importance of the parameter k is studied.

For a tally language L, let 2L and 2L − 1 denote the languages {02j | 0j ∈ L} and

{02j−1 | 0j ∈ L} respectively. We shall say that a class of tally languages L is closed under

doubling if ∀L ∈ L, 2L, 2L− 1 also belong to L. Similarly, we shall say that a class of tally

languages L is closed under compressed composition if for every Li, Lj in L, the language

Lij = {0k | 02k−1 ∈ Li ∧ 02k ∈ Lj} also belongs to L.

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 34

Lemma 3.18 rCA |t, lCA |t, OCA |t and CA |t are closed under union, doubling and

compressed composition.

Proof:

(a) Closure under union is straightforward.

(b) Closure under doubling for rCA |t languages will be shown in chapter 5 (Lemma 5.10).

Closure under doubling for lCA |t and CA |t can be seen as follows. Let L be an

lCA |t or CA |t language. 2L and 2L − 1 are to be accepted. On input 02j or 02j−1,

the extreme cells of the CA send a signal inwards. These signals meet and mark out

the left portion of the input array, of length j. On this portion, a linear-time firing

squad algorithm (refer Lemma 2.4) is run to synchronise the operation of all the cells.

When they are synchronised, the CA accepting L is run and membership of the input

is determined accordingly. Clearly, this takes linear time if L can be accepted in linear

time.

To see closure under doubling for OCA |t, let L be an OCA |t language. Consider an

SA which functions as follows: On input 02j or 02j−1, the SA writes the input on its

worktape and also places a marker B on the midpoint of the input. (This is achieved

by moving the marker one cell right in every other sweep.) When the entire input is

read, it simulates the OCA on the portion of the input upto and including the marker.

Thus the OCA is simulated on input 0j. Since SA accept the same languages as OCA

(Lemma 2.6), it follows that 2L− 1 and 2L are OCA languages.

(c) Closure under compressed composition for rCA |t, lCA |t and CA |t is seen as follows.

Let Li and Lj be the languages to be compressed, and let C1 and C2 respectively be

the CAs accepting them. The input array is of length n, so membership of 02n−1 in Li

and of 02n in Lj is to be determined. In the first time step, the CA changes state so

that each cell has two channels, and each channel has two input characters, ie. 00. The

exception is the rightmost cell, which has 0# in its first channel and 00 in its second

channel. The CA now simulates C1 in its first channel and C2 in its second channel, at

double speed. This is possible because the initial input to these CA is already packed

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 35

two characters per cell. Thus the language Lij can be accepted, within real time or

linear time if C1 and C2 are rCA or lCA.

Closure of OCA |t is seen in a similar fashion. The difference is that the rightmost cell

does not know that it is a boundary cell, but the leftmost cell does. So when the two

channels are created, each cell except the leftmost cell puts 00 in both channels. The

leftmost cell puts #0 in the first channel and 00 in the second channel. Now C1 and

C2 are simulated in the two channels, as in the previous case.

Theorem 3.19 Let L be any class of tally languages closed under union and doubling. Then,

for k > 1, a (k + 1)-LTV CA can be simulated by a k-LTV CA, in twice as much time, and

with thrice as many states.

Proof: Consider k = 2. The basic idea is that the 3-TV CA has to make a three-way

decision at every time-step. This decision can be split into a sequence of two two-way

decisions. This would require twice as much time. Different copies of the original state set

are used to indicate which decision is to be taken. The idea can be extended to larger k.

The choice between the kth and (k + 1)th functions is deferred by one time step. This can

be diagrammatically represented as in Figure 3.4.

The construction is formally described as follows:

Let C = (Q,#, L1, . . . , Lk+1, δ1, . . . , δk+1, A) be a (k + 1)-LTV CA. We construct an

equivalent k-LTV CA C ′ as follows.

C ′ = (Q′,#, L′
1, . . . , L

′
k, h1, . . . , hk, A)

where

Q′ = {q, q, q | q ∈ Q}

L′
i = {02j−1, 02j | 0j ∈ Li} for i = 1 to k − 2

L′
k−1 = {02j−1, 02j | 0j ∈ Lk−1} ∪ {02j | 0j ∈ Lk}

L′
k = {02j−1, 02j | 0j ∈ Lk+1} ∪ {02j−1 | 0j ∈ Lk}

These languages also belong to L, since L is closed under doubling and union.

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 36

✁
✁
✁
✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆
❆

❆
❆❆

✁
✁
✁
✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆

❆
❆

❆❆
+
+
+
+

+
+
+
++

❇
❇
❇
❇
❇
❇
❇
❇❇

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩❩
◦ ◦

◦ ◦ ◦ ◦

◦ ◦◦ ◦

◦

.h1 hk−1 hkδ1 δk+1

h1

= δ1
hk−1

= δk−1

hk−1

= δk
hk

= δk+1

Q

QQ Q

Figure 3.4: Reducing a (k + 1)-LTV CA to a k-TV CA in twice as much time

hi(a, b, c) = b for i = 1 to k − 1

hk(a, b, c) = b

hi(a, b, c) = δi(a, b, c) for i = 1 to k − 1

hk−1(a, b, c) = δk(a, b, c)

hk(a, b, c) = δk+1(a, b, c)

It is straightforward to see that C ′ simulates C.

Figure 3.4 shows how to reduce a (k + 1)-function computation to a k-function compu-

tation by splitting a decision into two stages. A simple improvement upon this, ensuring

that a k-way decision is made at each stage, shows that a k2-LTV CA can be simulated by

a k-LTV CA in twice as much time, though the state size will be slightly larger. See Figure

3.5.

Corollary 3.20 Let L be any class of tally languages closed under union and doubling. The

hierarchy

2-lLTV CA ⊆ 3-lLTV CA ⊆ . . . ⊆ k-lLTV CA ⊆ (k + 1)-lLTV CA ⊆ . . .

collapses to the class 2-lLTV CA, and the hierarchy

2-rLTV CA ⊆ 3-rLTV CA ⊆ . . . ⊆ k-rLTV CA ⊆ (k + 1)-rLTV CA ⊆ . . .

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 37

✔
✔
✔
✔
✔
✔
✔✔

❚
❚

❚
❚

❚
❚

❚❚

+
+
+
+

+
+
+
+

+
+
+

+
+

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

✁
✁
✁
✁
✁
✁

❆
❆

❆
❆

❆
❆

+
+
+
+

+
+

❅
❅

❅
❅

❅
❅

◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

.

. . .
.

δ1 δk2 h1 hi hk

Q

Q1 Qi Qk

hj = δ(i−1)k+j

Figure 3.5: Reducing a k2-LTV CA to a k-TV CA in twice as much time

is contained in this class 2-lLTV CA.

The analogous results for OCA classes also hold, by a similar argument.

Some non-trivial classes which do satisfy these conditions of closure under union and

doubling are rCA |t, lCA |t and CA |t. However, we have seen in the previous section

that rCA control for any k cannot enhance the power of lTV CA (Theorem 3.17). Thus for

L = rCA |t, we have the following stronger statement:

Corollary 3.21 Let L = rCA |t. The hierarchy

lCA ⊆ 2-lLTV CA ⊆ 3-lLTV CA ⊆ . . . ⊆ k-lLTV CA ⊆ (k + 1)-lLTV CA ⊆ . . .

collapses to the class lCA, and the hierarchy

2-rLTV CA ⊆ 3-rLTV CA ⊆ . . . ⊆ k-rLTV CA ⊆ (k + 1)-rLTV CA ⊆ . . .

is contained in this class lCA.

Thus the first statement of Corollary 3.20 is meaningfully applicable for L = lCA |t and

L = CA |t. By this corollary, when we consider lTV CA with lCA or CA control, it is

sufficient to consider the case of 2-TV CA only.

Reducing k in the case of real-time TV CA does not seem to be so easy. However, some

results showing the trade-off between time and two-way communication have been obtained.

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 38

Theorem 3.22 Let L be a class of tally languages closed under union and doubling. For

k > 1, a (k + 1)-rLTV CA with state set Q can be simulated by a k-lLTV OCA, in twice as

much time, and with O(∥Q∥3) states.

Proof: This proof combines the proof of Theorem 3.19 and the proof for rCA = 2n-time

OCA (Theorem 2.9(ii), Figure 2.5). The first stage in the new 2-stage decision is used by

the OCA to obtain the desired neighbourhood information of the CA. However, as the

OCA simulates the CA, the configuration slides to the right. Thus if c(i, t) and c(i, t)

represent the states of the CA’s and OCA’s ith cell at time t, then c(i, 2t) = c(i− t, t). As a

result, c(1, n), which is the state denoting acceptance, is represented at c(n + 1, 2n), which

is beyond the OCA’s accepting cell. To counter this, we make c(i, 2t) also contain, as a

component, the state which the (i − t + 1)th CA cell would have entered at time t if cell

i had been the rightmost cell. Then c(n, 2n) will contain c(1, n), denoting acceptance. A

typical computation of C ′ is shown in Figure 3.6. Note that this simulation will work only

if acceptance occurs exactly at time n, and not within time n. This is not restrictive since

any rCA can be modified to accept its input at exactly time n, by sending a signal from one

extreme of the input to the other.

Thus at even time steps 2k, the first components of the states of the lOCA reflect the

states of the rCA at time k. The diagonal states of the rCA are stored in the second

component of the rightmost cell of the lOCA. The construction is described formally below:

Let C = (Q,#, L1, . . . , Lk+1, δ1, . . . , δk+1, A) be a (k + 1)-rLTV CA. We construct an

equivalent k-lLTV OCA C ′ as follows.

C ′ = (Q′,#, L′
1, . . . , L

′
k, h1, . . . , hk, A′) where

Q′ = Q ∪ {[ab], [ab], [a, b], [ab, c], [ab, c] | a, b, c ∈ Q}

L′
i = {02j−1, 02j | 0j ∈ Li} for i = 1 to k − 2

L′
k−1 = {02j−1, 02j | 0j ∈ Lk−1} ∪ {02j | 0j ∈ Lk}

L′
k = {02j−1, 02j | 0j ∈ Lk+1} ∪ {02j−1 | 0j ∈ Lk}

These languages also belong to L, since L is closed under doubling and union.

A′ = {[a, b] | b ∈ A}.

hi(a, b) = [ab] for i = 1 to k − 1.

hk(a, b) = [ab]

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 39

input A B C D E

δ1 a b c d e

δ3 f g h i

δ2 j k l

δ1 m n

δ2 p

time-space unrolling of a 3-rTV CA

input A B C D E

h1 #A AB BC CD DE

h1 = δ1 #, ⋆ a, ⋆ b, ⋆ c, ⋆ d, e

h2 ##, ⋆ #a, ⋆ ab, ⋆ bc, ⋆ cd, e

h2 = δ3 #, ⋆ #, ⋆ f, ⋆ g, ⋆ h, i

h2 ##, ⋆ ##, ⋆ #f, ⋆ fg, ⋆ gh, i

h1 = δ2 #, ⋆ #, ⋆ #, ⋆ j, ⋆ k, l

h1 ##, ⋆ ##, ⋆ #j, ⋆ jk, l

h1 = δ1 #, ⋆ #, ⋆ m,n

h2 ##, ⋆ #m,n

h1 = δ2 #, p

time-space unrolling of corresponding 2-lTV OCA

(⋆ = don’t-care state)

Figure 3.6: Reducing a 3-rLTV CA to a 2-lLTV OCA

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 40

These two rules are used at time t = 1.

hi([ab], [bc]) = [δi(a, b, c), δi(b, c,#)] for i = 1 to k − 1.

hk−1([ab], [bc]) = [δk(a, b, c), δk(b, c,#)]

hk([ab], [bc]) = [δk+1(a, b, c), δk+1(b, c,#)]

These rules are used at time t = 2. At the leftmost cell, the first argument is not of the form

[ab] or [ab] but is #. For this cell, the above rules are used with # instead of a.

hi([a, b], [c, d]) = [ac, d] for i = 1 to k − 1.

hk([a, b], [c, d]) = [ac, d]

These rules are used at odd time steps t = 2k + 1 for k ≥ 1.

hi([ab, c], [bd, e]) = [δi(a, b, d), δi(b, d, e)] for i = 1 to k − 1

hk−1([ab, c], [bd, e]) = [δk(a, b, d), δk(b, d, e)]

hk([ab, c], [bd, e]) = [δk+1(a, b, d), δk+1(b, d, e)]

These rules are used at even time steps t = 2k for k > 1.

Similarly, we can also prove that the improved simulation depicted in Figure 3.5 is possible

in this case; ie. a k2-rLTV CA with state set Q can be simulated by a k-lLTV OCA, in twice

as much time, and with O(k∥Q∥3) states.

Thus rTV CAs can be simulated by lTV OCAs, with fewer functions. For the reverse

direction, ie. simulating an lTV OCA by an rTV CA, the first problem which arises is the

potential distinction between 2n time and linear time. In the non-time-varying case, any

linear-time CA can be sped up to 2n time. The same does not appear to hold for TV CA.

Suppose we restrict ourselves to 2n-time TV OCA. Then a containment from lTV OCA

to rTV CA can be shown, but the condition to be satisfied by L, the class of controlling

languages, is now different. L is required to be closed under compressed composition. This

result is stated in the next theorem.

Theorem 3.23 Let L be a class of tally languages closed under compressed composition.

For k > 1, a 2n-time k-LTV OCA can be simulated by a real-time k2-rLTV CA.

Proof: Let C be a k-LTV OCA accepting a language in time 2n. Consider a typical com-

putation of C as shown in Figure 3.7. We draw a diagonal from the top left corner (cell 1

at t = 1) to the bottom right corner (cell n at t = 2n − 1) and fold the array of cell states

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 41

❡❡
❡❡

❡❡

❡❡
❡❡

❡❡

❡❡
❡❡

❡❡

a b c d a b c d

δ1 A B C D

δ1 E F G H h1,1 F G H #
E # # #

δ2 I J K L

δ2 M N O P h2,2 O P #
N M #

δ2 Q R S T

δ1 U V W h2,1 W #
V U

δ1 X Y

δ2 Z h1,2 #
Z

2n-time 2-LTV OCA Simulating 4-rLTV CA

Figure 3.7: 2n-time k-LTV OCA simulated by k2-rLTV CA

along this diagonal (the dotted line in the figure). Alternate rows of the folded array, with

the rows shifting leftward, can be computed by a CA C ′, as shown in the same figure.

For a formal construction, let C = (Q,#, L1, . . . , Lk, δ1, . . . , δk, A) be the given k-lLTV OCA.

We construct the k2-rLTV CA C ′ as follows.

C ′ = (Q′,#, L′
1, . . . , L

′
m, h1, . . . , hm, A′) where m = k2,

Q′ = Q ∪ (Q×Q)

L′
k(i−1)+j = {0t | 02t−1 ∈ Li, 02t ∈ Lj} for i = 1 to k, j = 1 to k. All these languages

will belong to L, since L is closed under compressed composition.

For a, b, c, d, e, f ∈ Q,

hk(i−1)+j(a, b, c) = [δj (δi(a, b), δi(b, c)) ,#]

hk(i−1)+j(#, b, c) = [δj (δi(#, b), δi(b, c)) , δj (#, δi(b, c))]

hk(i−1)+j([a, b], [c, d], [e, f]) = [δj (δi(a, c), δi(c, e)) , δj (δi(f, d), δi(d, b))]

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 42

hk(i−1)+j(#, [c, d], [e, f]) = [δj (δi(d, c), δi(c, e)) , δj (δi(f, d), δi(d, c))]

A′ = Q× A

Corollary 3.24 For L closed under union, doubling, and compressed composition, the classes

of languages accepted by 2n-time k-LTV OCA and by k2-rLTV CA coincide.

3.4 Conclusions

In this chapter we have introduced TV CA, which are CA with an external global control

imposed uniformly on all the cells. The power of such CA has been examined when the nature

and the extent of the control is varied. The results are well summarised in Figure 3.8. In

the next few chapters of this thesis we will interpret this external control and time-variation

in different ways, giving rise to CA which are relativised, nondeterministic, probabilistic or

alternating. TV CA provide a unifying framework for studying all these models. Within the

context of TV CA themselves some interesting problems are still open, notably, whether k+1

functions are better than k for rCA. As can be seen from the Corollary 3.20, there is no

difference between k and k + 1 for linear-time TV CA and for k > 1. This does not appear

to be the case for real-time TV CA, even if the controlling languages are also constrained

to be in rCA. A proof that k + 1 is indeed better than k will, from Theorem 3.16, give a

proper separation of the classes rCA and lCA. A proof to the contrary seems difficult to

obtain. Thus a solution to this problem in either way would be of considerable interest and

significance.

CHAPTER 3. TIME-VARYING CELLULAR AUTOMATA 43

❄

❄ ❄

✲

✲

❄
...

❄

❄
...

❄

❄
...

❄

❄
...

❄

✲

✲

✛

✛

❄

❄ ❄

❄

/

/

/

rCA |t

rCA

lCA |t

2-r(rCA |t)TV CA 2-r(lCA |t)TV CA

k-r(rCA |t)TV CA k-r(lCA |t)TV CA

∀k, k-l(rCA |t)TV CA

= lCA

∀k > 1, k-l(lCA |t)TV CA

= 2-l(lCA |t)TV CA

k-l(CA |t)TV CA

∀k > 1

k-l(OCA |t)TV CA

∀k > 1

OCACA

2-(CA |t)TV CA

Figure 3.8: Inclusions amongst some TV CA classes

Chapter 4

A Study of the Oracle Access

Mechanism provided by TVCA as

Relativised CA

In this chapter, we interpret the notion of time-varying CA, introduced in the previous

chapter, as an oracle access mechanism for relativising CA. The effect of the time-variation

described here is similar to the effect of allowing a machine to access an oracle and query it on

some specific membership problem. Such oracle accesses have been used to define relativised

Turing machines, and the study of these machines has thrown up an enormously complex

body of work, providing a lot of useful insights into the structure of important complexity

classes. Motivated by the hope of obtaining similar useful insights in the context of CA

classes, we formalise the notion of relativised cellular automata from time-varying cellular

automata (TV CA), and explore the power of such an oracle access mechanism. The study of

such relativised CA has also led us to re-examine the CA complexity classes under different

restricted relativisations; this work will be taken up in the next chapter.

4.1 TVCA as Relativised CA

A frequently used technique in structural complexity theory is relativisation. The idea is to

study the power of a resource-bounded class, assuming that answers to instances of some

44

CHAPTER 4. TV CA RELATIVISED 45

specific problem can be obtained at no extra cost. (The cost of framing the question itself

is, of course, counted.) Machines describing such classes are said to be relativised, and

the problem for which they can obtain answers at no extra cost is called the oracle. Thus

a relativised Turing machine is a Turing machine with a separate tape for writing oracle

queries, and three special states q?, qy, qn. The state q? is used to ask whether the string

on the query tape belongs to the oracle set. If this is so, then at the next time step the

machine enters state qy; else it enters state qn. The computation then proceeds normally,

until a fresh query is made by entering the state q? again. Relativisation of Turing machines

and the study of the classes they define has provided a lot of insight into the structural

properties of important complexity classes [BDG88, BDG90]. We hope that similar useful

insights into the structure of the CA complexity classes rCA, lCA and CA can be obtained

through relativisation.

However, the notion of relativisation in the context of CA is difficult to formalise, because

the control of the computation is not centralised but is distributed over all the cells. Besides,

there is no tape on which to write out queries to the oracle. Even if queries were to be written

in a separate component of the state of each cell, synchronising the query procedure would

become contrived and cumbersome. We adopt the approach of using implicit oracle querying

as provided by TV CA. In TV CA, the transition rule is not fixed, but depends on how many

time steps have elapsed since the TV CA operation began. Thus an oracle is implicitly

queried on inputs t = 1, 2, . . . , and its replies tell the CA which transition rule is to be used.

We consider the simplest case where there are only two possible rules to be used, δ1 and

δ2; ie. the TV CA is a 2-TV CA. The usage of δ1 and δ2 is controlled by a tally set L. The

TV CA thus acts as if it has an oracle answering queries about the membership of strings

in L. The queries are quite restricted; the oracle must be queried at each time step, and it

must be queried on strings 01, 02, . . . in that order. However, even this restrictive notion of

querying appears to be quite non-trivial, and is the subject of this and the next chapter.

With this interpretation of 2-TV CA as oracle CA, we can now specify a 2-TV CA as

C(L), where C = (Q,#, δ1, δ2, A) and L is the oracle (the controlling language of the TV CA).

When the oracle is an empty set, this denotes the CA (Q,#, δ2, A). Classes of CA S with a

particular oracle L are denoted S(L); eg. rCA(L), CA(L) etc. Classes of CA S relative to

CHAPTER 4. TV CA RELATIVISED 46

a set of tally oracles L are denoted S(L); eg. CA(rCA) etc. By S(L) we will mean both the

class of machines in S using an oracle from L and the class of languages accepted by such

machines.

Note that while the controlling languages of the TV CA are naturally described by tally

languages, there is no reason why they may not be also described by non-tally languages.

To generalise the relativisation concept to non-tally languages—without loss of generality

we consider languages over a binary alphabet {0, 1}—we formulate the oracle queries in a

different way. The operation of a 2-TV CA is now expressed as follows:

δ(a, b, c, i) =

⎧

⎪

⎨

⎪

⎩

δ1(a, b, c) if ⟨i⟩ ∈ L

δ2(a, b, c) otherwise

where ⟨i⟩ is the standard binary representation of the natural number i, as described in

chapter 2.

Thus the TV CA is now interpreted as a relativised CA, where the oracle is a binary

language. By itself, this does not seem to be significantly different from the relativised CA

decribed earlier, where tally oracles are used to express the same partition of N. However

there is a crucial difference. If a tally oracle is used, then ∀L, L ∈ rOCA(L). This follows

from Lemma 3.9. If a binary oracle is used, then the oracle answers the query about the

membership of x after 2|x| steps (since there are those many strings of length |x| or less), so

a naive approach will require an exponential amount of time. In fact, with a binary oracle L,

if L can be accepted in a polynomial amount of time by such a CA, then this means that L

is self-reducible, and membership of x in L can be answered in polynomial time by querying

the oracle only on strings which are bounded in length by c log |x|, for some c. This is a

much stronger notion of reducibility than that obtained through relativised CA with tally

oracles, and is a motivating factor for studying relativised CA with binary oracles.

4.2 Querying Tally Oracles

The oracle access mechanism as defined above for relativising CA is quite non-standard. As

such, it makes sense to first examine how basic equalities and inclusions behave when the

corresponding classes are relativised. In this section we primarily focus on the relationship

CHAPTER 4. TV CA RELATIVISED 47

between CA and DSPACE(n), where the Turing machines defining the latter class can be

relativised in various ways. In the unrelativised case, it is well known (Lemma 2.3) that the

two classes are equal.

We assume, without loss of generality, that the DSPACE(n) machine has a single

worktape, apart from possibly a query tape. We first consider the bounded query rela-

tivisation model for Turing machines as described in [Bus88]; here the space bound for the

machine also applies to the query tape. Let us compare relativised CA with such rela-

tivised DSPACE(n) machines. Relativised DSPACE(n) Turing machines (we denote this

class byDSPACEL(n), for oracle L) have the advantage of being able to query the ora-

cle on strings in any order. On the other hand, since the space bound also applies to the

query tape, a relativised DSPACE(n) Turing machine can query its oracle only on strings

01, 02, . . . , 0cn for some constant c. A CA can query its oracle on strings of any length,

since it is not time-bounded. This gives us the following result. Here we consider only tally

oracles.

Theorem 4.1 Under the bounded query model, for any tally language A,

DSPACEA(n) ⊆ CA(A).

Proof: Let M be a DSPACE(n) machine with oracle A. M can query A on strings

01, 02, . . . , 0cn for some constant c. However the querying may take place in any order. So

the simulating CA C, in the first cn steps, merely collects the oracle responses in its n

length array, putting c answers into each cell. This is done by letting only the leftmost cell

be sensitive to the oracle during this phase. The other cells merely provide storage space for

the responses. After cn time steps are over (detected by sending a signal from end to end

at speed 1/c), the CA synchronises itself and starts simulating M . The worktape and the

query tape of M are stored in different components of the state of each cell, with each CA

cell holding the contents of c squares of each tape. The tape head position is marked by a

special symbol. As long as M does not enter state q?, it can be simulated by the CA in a

straightforward fashion. When M enters state q?, the CA suspends simulation to look up

the oracle response which it had stored in the earlier part of the computation. Based on this,

state qy or qn is entered and the simulation resumed. Such a simulation requires that after

CHAPTER 4. TV CA RELATIVISED 48

the first cn steps, the operation of the CA is no longer time-varying. But since relativised

CA have implicit oracle querying, the CA must be made insensitive to its oracle by setting a

flag, in the leftmost cell, after cn steps. δ1 and δ2 are designed to differ only in the leftmost

cell, and even there, only if the flag is not set. Thus the DSPACEA(n) machine is correctly

simulated by the CA.

In fact, since the DSPACE(n) machine must run within O(2cn) time or enter a rejecting

infinite loop, the simulation outlined above can be modified so that the CA runs for at most

O(2cn) time. So a relativised DSPACE(n) Turing machine can be simulated by an O(2cn)

time-bounded relativised CA.

The above result appears to hold because of the difference in the potential query space of

theDSPACE(n) machine and the CA. But, note that in the simulation of theDSPACE(n)

machine, the CA does not make any additional queries; despite the additional implicit

querying provided by the TV CA mechanism, the CA is sensitive only to oracle responses to

queries from the DSPACE(n) machine’s query space. And yet, the reverse containment is

not true, simply because the CA has access to a larger query space. In fact, it is quite easy

to construct a recursive oracle A such that CA(A) is not contained in DSPACEA(n), by

exploiting the additional querying that the CA can do. (The construction is not outlined

here; however, it is very similar to the oracle construction for separating lCA and CA, as in

Theorem 4.9.) Such a construction, thus, does not tell us much about the relative computing

powers of these two models. To compare the computing power, we must allow both models to

have the same potential query space; otherwise the comparison may be unfair. We may relax

the space bound on the query tape for relativised DSPACE(n) Turing machines. Consider

the unrestricted query model studied in [Bus88, LL76]. Here no space bound applies to the

query tape. This agrees with there being no time bound and hence no query bound on a

relativised CA. Comparing such machines, we have the following result:

Theorem 4.2 Under the unrestricted query model, for tally oracle A,

CA(A) ⊆ DSPACEA(n).

Proof: TheDSPACE(n) machine begins with the initial configuration on its tape. Consider

the ith step in the CA operation. At this step, either δ1 or δ2, depending on whether or not

CHAPTER 4. TV CA RELATIVISED 49

0i belongs to A, is applied to all cells synchronously. If the DSPACE(n) machine knows

which of these rules is to be applied, then it can update the contents of its tape according

to this rule in O(n) time. To find out which rule to apply, it must query its oracle on 0i.

Since at the previous stage the oracle was queried on 0i−1, all it has to do is append a 0

to the string on the query tape. Thus to simulate one step of the CA, the DSPACE(n)

machine does the following: Append 0 to the string on the query tape. Query the oracle. If

state qy is entered, update the worktape array using transition function δ1; else update using

transition function δ2.

Note that this will not work in a model where the query tape is erased after each query.

Such is the case for the deterministic query mechanism studied in [RST84]; this mechanism

was defined primarily to study relativised nondeterministic machines and works as follows:

The machine proceeds normally as long as the query tape is blank. The moment something

is written on the query tape, the machine starts acting in a deterministic fashion until the

query is actually made. When the query is answered, the query tape is automatically erased

and the machine reverts to being a nondeterministic machine. Here we are not considering

nondeterminism at all. But the automatic erasing of the query tape after each query does

make a difference to the space-bounded computation we are interested in, as can be seen

below. Apart from query tape erasure, we also impose a space bound S(n) — which is not

necessarily the same as the worktape space bound — on the query tape. This allows the

machine to make upto S(n) distinct queries to a tally oracle. An S(n)-time CA also has

the same set of potential queries. Comparing these classes, we have the following interesting

result:

Theorem 4.3 In the deterministic query model, for every tally oracle A, a DSPACE(n)

machine with oracle A and query tape space bound S(n) can simulate an S(n)-time CA with

oracle A, if S(n) belongs to O(2cn).

Proof: TheDSPACE(n) machine begins with the initial configuration on its tape. Consider

the ith step in the CA operation. At this step, either δ1 or δ2, depending on whether or not

0i belongs to A, is applied to all cells synchronously. If the DSPACE(n) machine knows

which of these rules is to be applied, then it can update the contents of its tape according

CHAPTER 4. TV CA RELATIVISED 50

to this rule in O(n) time. To find out which rule to apply, it must query its oracle on 0i.

But for this it must know i. Since the query tape gets erased after each query, the current

value of i must be stored in the worktape. The worktape is linear-space-bounded, and can

store numbers upto 2cn only, in binary notation. This is sufficient if S(n) belongs to O(2cn).

Thus the DSPACE(n) machine can simulate the CA.

As a corollary, we obtain the result that the containment lCA ⊆ DSPACE(n) always

relativises, with the lCA relativised via TV CA and the DSPACE(n) machine relativised

in any of the three ways described above.

Corollary 4.4 ∀A, lCA(A) ⊆ DSPACEA(n)

We do not know whether Theorem 4.3 can be strengthened to show the reverse simulation

as well. We suspect that it cannot, because the CA oracle access mechanism, as mentioned

earlier, is quite restrictive. Also, bounding the potential query space of the CA means

bounding its running time. Since the running time of the DSPACE(n) machine has not

been bounded, (it is only implicitly bounded by 2cn, the number of distinct configurations.

The S(n) cells on the query tape are used only with a unary alphabet, and hence generate

only S(n) ∈ O(2cn) configurations.) the comparison is again biased, this time against the

CA. So the converse is not likely to be true. But if S(n) is in θ(2cn), then the running times

of the DSPACE(n) machine and the CA are the same and the query space is also the same.

Even in this case, we suspect that the converse does not hold, the constraint now being the

order in which querying is permitted. However, we have not been able to prove this.

Another thing which is also not known is which types of oracles A leave the relativised

class CA(A) closed under complementation. DSPACEA(n) is closed under complementa-

tion for any A (except if unrestricted querying is allowed), since it is a space-bounded class

with a space-constructible bound. Thus the closure/non-closure of CA(A) appears to have a

major impact on the difference between relativised CA and relativised DSPACE(n) Turing

machines.

Before closing this section we would like to mention that as a direct consequence of

Theorem 3.11, the lCA ⊆ OCA containment also relativises for all tally oracles within

OCA.

CHAPTER 4. TV CA RELATIVISED 51

4.3 Querying Non-Tally Oracles

In this section we study relativisation of CA as in the previous section, but with respect

to non-tally oracles. Consider the analogue of Theorem 4.1 in this light. A DSPACEA(n)

machine can query the oracle A on any string of length upto cn, for some constant c, and in

any order. The CA(A) can also query A on any string, but in a specific order. So to be able

to simulate the DSPACEA(n) machine, it should first collect and store all oracle replies

that could possibly be required. But there are 2cn such strings; storing all the responses is

no longer possible within the real-space-bounded array of the CA! Already the first result

fails to carry over.

On the other hand consider Theorem 4.2, the unrestricted query model. As long as the

query tape can also be used as a worktape (to increment its contents), the same simulation

holds. However, if the query tape is write-only (ie. the query tape head cannot move left)

then the construction fails.

The deterministic query model eliminates this problem by erasing the tape contents after

each query. Now the DSPACE(n) machine needs to remember the last query made on its

worktape. In an analogue of Theorem 4.3, we now have the following conditions:

Theorem 4.5 A CA with binary oracle A, running in time S(n), can be simulated by a

DSPACE(n) machine with the same oracle and with a log(S(n)) bound on the query tape

space, provided S(n) belongs to O(2cn).

4.4 Separation Results

In this section we show how to construct oracles separating various CA language classes. We

also show how to effect strong separations via immune sets. A set X is said to be immune

to a class L (L-immune) if X is infinite and contains no infinite subset belonging to L. An

oracle L strongly separates classes L1 and L2, where L1 ⊆ L2, if L2(L) contains a set that

is L1(L)-immune.

We will construct oracle sets A and B such that lCA(A) ̸= CA(A) and rCA(B) ̸=

lCA(B). We will then generalise the construction to obtain sets C and D such that C

CHAPTER 4. TV CA RELATIVISED 52

(respectively, D) strongly separates lCA from CA (respectively, rCA from lCA). All these

separations hinge around the fact that in our model of relativisation, a time bound imposes a

stringent bound on the potential query space. Before doing so we will show some intermediate

results.

We first need to fix an enumeration of rCA and lCA. We assume that the state set of

a CA is {0, 1, . . . , k} for some finite k, and that # is the state 0. The number of distinct

transition rules is m = k(k+1)2k (since # always maps to # and no other symbol maps to #),

and the number of possible sets of accepting states is 2k (since # cannot be an accepting

state). Thus a TV CA can be specified, without the oracle language, as a 4-tuple (k, i1, i2, j)

where i1, i2 are integers between 1 and m specifying the transition rules, and j is an integer

between 1 and 2k specifying A. Let φi, i = 1, 2, . . . be an ordering of such 4-tuples. This

serves as an enumeration of CA as well as rCA. To enumerate lCA, we order pairs (φi, cj)

where φi is the machine and cj specifies the constant for linear-time acceptance. Let this

ordering be ψi, an enumeration of lCA. Since we allow the set of accepting states to be

empty, CAs accepting the empty set will occur infinitely often in both these enumerations.

Proposition 4.6 Let f : Σ+ → N be a CA-time-constructible function, and let A be some

set acting as an oracle. If A is tally, then the set Lft(A), given by

Lft(A) = {x ∈ Σ+ | 0m ∈ A, where m = f(x)}

can be accepted by a CA, with tally oracle A, in time f(x). Thus if f1 : N → N is the

function defined as f1(n) = max|x|=n f(x), then Lft(A) can be accepted by a CA, with oracle

A, in time f1(n). Similarly, if A is non-tally, then the set Lf (A), given by

Lf (A) = {x ∈ Σ+ | ⟨m⟩ ∈ A, where m = f(x)}

can be accepted by a CA, with oracle A, in time f1(n).

Proof: Since f is CA-time-constructible, we can design a relativised CA where both δ1 and

δ2 compute m = f(x). At time instant m, only δ1 puts the CA into an accepting state. Thus

Lft(A) or Lf (A) is accepted.

Lemma 4.7 1. f : {0}+ → N, where f(0n) = 2n, is CA-time-constructible.

CHAPTER 4. TV CA RELATIVISED 53

2. g : {0}+ → N, where g(0n) = n2, is CA-time-constructible.

3. h : {0, 1}+ → N, where h(⟨n⟩) = n, is CA-time-constructible in a weak sense— the

rightmost cell enters a special state after exactly n steps.

Proof: (a) This is straightforward — the CA just has to send a signal from right to left at

half speed.

(b) This is achieved as follows. At t = 1, the rightmost cell enters a special bounding state

b and also sends a signal $ left. $ travels upto a cell marked b and then returns to the

rightmost cell before setting out leftwards again. Every time $ reaches a b cell, the b marker

moves one unit left. Thus the $ goes through excursions of length 2×1, 2×2, . . . , 2× i,

When the $ reaches the leftmost cell, the number of steps elapsed is
[

∑n−1
i=1 (2× i)

]

+n = n2.

An example is shown in Figure 4.1.

(c) This has been shown in Proposition 3.13.

For tally sets A and B, let L1(A) = {0s | 0s2 ∈ A} =
√
A, and

L2(B) = {0s | 02s ∈ B} = 1
2B.

Then, in the above notation,
√
A = Lgt(A) and 1

2B = Lft(B), where f and g are as in

Lemma 4.7. Clearly, f1(n) = 2n and g1(n) = n2. The next lemma now follows from the

preceding two results.

Lemma 4.8 ∀A,
√
A ∈ CA(A).

∀B, 1
2B ∈ lCA(B).

By direct diagonalisation we can now construct sets A and B such that
√
A ̸∈ lCA(A)

and 1
2B ̸∈ rCA(B), giving the following result.

Theorem 4.9 (a) There exists an oracle A such that lCA(A) ̸= CA(A).

(b) There exists an oracle B such that rCA(B) ̸= lCA(B).

Proof: (a) Let ψ1,ψ2, . . . be an enumeration of relativised lCA, with constants c1, c2,

For any tally set X,
√
X can be accepted by a CA with oracle X. We will incrementally

construct a tally set A such that for any relativised lCA ψi, the language accepted by ψi

with oracle A differs from
√
A. This will prove the theorem’s first assertion.

CHAPTER 4. TV CA RELATIVISED 54

t 0 0 0 0 #

1 . . . b
$← #

2 . . b
$→ #

3 . . b
$← #

4 . . b
$← . #

5 . b
$→ . #

6 . b .
$→ #

7 . b .
$← #

8 . b
$← . #

9 . b
$← . . #

10 b
$→ . . #

11 b .
$→ . #

12 b . .
$→ #

13 b . .
$← #

14 b .
$← . #

15 b
$← . . #

16 b
$← . . . #

Figure 4.1: Computing n2 on a CA.

CHAPTER 4. TV CA RELATIVISED 55

Stage 0: A0 = ∅,m0 = 0.

Stage i: Choose the smallest integer mi satisfying

1. cimi < m2
i

2. ∀j < i, cjmj < m2
i

3. ∀j < i, mi ̸= mj

The first condition ensures that with input 0mi , ψi does not get a chance to query A

on 0m
2
i . The second condition ensures that the inclusion/exclusion of 0m

2
i in/from A

does not change the behaviour of the TV CA already considered. The third condition

ensures that a string once excluded from A cannot subsequently be included in A.

Simulate ψi on 0mi for cimi steps, using Ai−1 as oracle. If 0mi is accepted, then

Ai = Ai−1, else Ai = Ai−1 ∪ {0m2
i }.

A = lim
n→∞

An = {w | w belongs to all but finitely many An}

Since our construction never deletes strings from any An, A =
⋃

n>0 An.

Claim: The set A so constructed satisfies “
√
A cannot be accepted by any relativised lCA

with oracle A”.

Proof of claim: By contradiction. Assume that for some i, ψi(A) accepts
√
A. On input

0mi , ψi queries A on strings of length upto cimi. By our construction,

A ∩ {0j | j ≤ cimi} = Ai−1 ∩ {0j | j ≤ cimi}

Thus on input 0mi , ψi(A) behaves as ψi(Ai−1). Suppose ψi(Ai−1) accepts 0mi . Then

our construction excludes 0m
2
i from Ai and A. Thus 0mi is in L(ψi(Ai−1)) −

√
A. On

the other hand, if ψi(Ai−1) does not accept 0mi , then 0m
2
i is included in Ai. Since words

are never deleted from A, it remains in A, and hence 0mi is in
√
A. Thus 0mi is in

√
A− L(ψi(Ai−1)). In either case, ψi(A) cannot be correctly accepting

√
A.

Essentially, our construction ensures that ∀i, 0mi ∈ L(ψi(A))△
√
A. This proves the

claim.

CHAPTER 4. TV CA RELATIVISED 56

(b) Let φi, i = 1, 2, . . . be an enumeration of relativised rCA. We will incrementally construct

a tally set B such that 1
2B is not accepted by any φi(B). Since 1

2B can be accepted by an

lCA with oracle B, the assertion will be proved.

Stage 0: B0 = ∅.

Stage i: Simulate φi on the string 0i for i steps, using oracle Bi−1. If φi accepts the input,

then Bi = Bi−1, else Bi = Bi−1 ∪ {02i}.

B = lim
n→∞

Bn = {w | w belongs to all but finitely many Bn}

Claim: The set B so constructed satisfies “1
2B cannot be accepted by any relativised rCA

with oracle B”.

This proof is similar to that in (a). Here we ensure that ∀i, 0i ∈ L(φi(B))△ 1
2B.

Corollary 4.10 There exists an oracle X such that rCA(X) ̸= lCA(X) ̸= CA(X).

Proof: In the above theorem, we have seen how to construct oracles A and B separating

CA from lCA and lCA from rCA respectively. If the construction of A is modified so that

only odd length strings are chosen (choose odd mi), the separation is still valid. Now the

even length strings can be used to separate lCA from rCA, as in the construction of B.

φi will now be simulated on the string 02i instead of 0i, and according to the outcome 04i

may or may not be added to the oracle. It is easy to see that the oracle so constructed

simultaneously separates CA from lCA and lCA from rCA.

We now show that these results can be strengthened to strong separations. We will use

delayed diagonalisation to show the following.

Theorem 4.11 (a) There is a tally oracle C such that CA(C) contains an lCA(C)-

immune set.

(b) There is a tally oracle D such that lCA(D) contains an rCA(D)-immune set.

Proof: (a) Let ψ1,ψ2, . . . be an enumeration of oracle lCA, with constants c1, c2, For

any tally setX,
√
X can be accepted by a CA with oracleX. We will incrementally construct

a set C such that

CHAPTER 4. TV CA RELATIVISED 57

1.
√
C is infinite, and

2. For any relativised lCA ψi, the language accepted by ψi with oracle C, L(ψi(C)), is

not a subset of
√
C, except, possibly, if it is finite. This condition, for the ith lCA, is

called requirement i.

This will prove the theorem’s first assertion.

Stage 0 C0 = ∅, k0 = 0, S0 = ∅.

(Ci holds the oracle constructed at stage i. Si holds all indices less than or equal to

i, for which the requirement is not yet satisfied at stage i.)

Stage n: Sn = Sn−1 ∪ {n}

Choose the smallest integer kn satisfying

(i) ∀i ≤ n, cikn < k2
n

(ii) ∀i, j < n, cikj < k2
n

(iii) ∀i < n, ki ̸= kn

If, for some i ∈ Sn, 0kn is accepted by lCA ψi using oracle Cn−1,

then let in be the smallest such index.

Sn = Sn − {in}

Cn = Cn−1

else

Cn = Cn−1 ∪ {0k2n}

C = lim
n→∞

Cn = {w | w belongs to all but finitely many Cn}

Since our construction never deletes strings from any Cn, C =
⋃

n>0 Cn. Similarly, let

S = limn→∞ Sn.

CHAPTER 4. TV CA RELATIVISED 58

Condition (i) ensures that none of the first n lCA can query the oracle on 0k
2
n when the

input is 0kn . The second condition ensures that the behaviour of the lCA already considered

will not be affected by the inclusion/exclusion of 0k
2
n in C. The third condition ensures that

a string once included in (excluded from) C will not be subsequently excluded (included,

respectively). So from conditions (ii) and (iii) we can conclude that 0kn is accepted by ψi

with oracle Cn−1, for i ≤ n, if and only if 0kn is accepted by ψi with oracle C.

Claim 1:
√
C is infinite. To prove this, it suffices to prove that C is infinite. Suppose that

C is finite. Then there is an n0 such that after stage n0, C does not grow any more,

ie. the construction never follows the else part of the algorithm. This means that in

all subsequent stages, one index enters S and one index leaves it; S does not grow in

size any more. But there are infinitely many lCA accepting the empty set; none of the

corresponding indices can ever leave S, since to leave S, the lCA must accept some

string 0kn . So the size of S must grow unboundedly, a contradiction. Hence C and
√
C

are infinite.

Claim 2: ∀i > 0, if L(ψi(C)) is infinite, then L(ψi(C)) is not a subset of
√
C (ie. L(ψi(C))

contains a string not in
√
C).

Suppose that there is a j contrary to the claim. Then the index j is in S. L(ψj(C)) is

contained in
√
C, so it contains strings of the form 0kn only. Let n0 be the first stage

of construction satisfying

• j ≤ n0 (ie. j has already entered S).

• n0 is large enough so that all of the indices less than j either have already left S

or will remain in S forever.

• 0kn0 ∈ L(ψj(C)).

Such an n0 will exist, since by assumption L(ψj(C)) is infinite. From the preceding

discussion, we know that 0kn0 is accepted by ψj with oracle Cn0−1. Thus at stage

n0, the construction will follow the then part and choose in0
= j. So no string is

added to C at this stage. This means that 0k
2
n0 ̸∈ C, and therefore 0kn0 ̸∈

√
C. But

0kn0 ∈ L(ψj(C)), so L(ψj(C)) is not contained in
√
C.

CHAPTER 4. TV CA RELATIVISED 59

Thus the only indices which never leave S, ie. for which the requirement is not explicitly

satisfied, must correspond to lCA accepting finite sets. This shows that
√
C is lCA(C)-

immune.

(b) Let φi, i = 1, 2, . . . be an enumeration of oracle rCA. We incrementally construct a set

D such that 1
2D is infinite, and, for any relativised rCA φi, the language accepted by φi

with oracle D is not a subset of 1
2D, except, possibly, if it is finite. Since ∀D, 1

2D can be

accepted by an lCA with oracle D, the assertion will be proved.

Stage 0: D0 = ∅, k0 = 0, S0 = ∅.

Stage n: Sn = Sn−1 ∪ {n}

Let kn = n.

If for some i ∈ Sn, 0kn is accepted by rCA φi using oracle Dn−1,

then let in be the smallest such index.

Sn = Sn − {in}

Dn = Dn−1

else Dn = Dn−1 ∪ {02kn}.

D = lim
n→∞

Dn = {w | w belongs to all but finitely many Dn}

The proof that 1
2D is rCA(D)-immune is similar to the proof in part (a) above.

The proofs of both Theorem 4.9 and Theorem 4.11 are identical in nature to the corre-

sponding oracle constructions for separating P and NP ; refer [BDG90].

Before closing this section we would like to point out that the separation results of

Theorems 4.9 and 4.11 hold even if non-tally oracles are considered.

Theorem 4.12 ∃A ⊆ {0, 1}∗, lCA(A) ̸= CA(A)

∃B ⊆ {0, 1}∗, rCA(B) ̸= lCA(B)

CHAPTER 4. TV CA RELATIVISED 60

Proof: In Theorem 4.9 we have shown the existence of a tally oracle A such that
√
A ∈

CA(A) − lCA(A). The basic idea was that given an input x of length n, an lCA does not

have enough time to count upto n2. The same idea can be used here to diagonalise out of

the class lCA(A) where A is a binary oracle. We now use the sets Lg(A) and Lf (B) from

Lemma 4.7, instead of the sets Lgt(A) and Lft(B). In fact, the language in the difference,

by this construction, will still be tally, even though the separating oracle is not. The same

argument can be used for the other separation.

Theorem 4.13 (a) There is a non-tally oracle C such that
√
C ∈ CA(C)− lCA(C) and

√
C is lCA(C)-immune.

(b) There is a non-tally oracle D such that 1
2(D) ∈ lCA(D) − rCA(D) and 1

2(D) is

rCA(D)-immune.

Proof: As above.

4.5 Conclusions

In this chapter we have considered the interpretation of time-varying CA as relativised CA.

The oracle access mechanism defined by TV CA is quite non-standard, and in sections 4.2

and 4.3 we have compared it with the standard relativisation of Turing machines. It would

be interesting to strengthen these comparative statements by proving the conjecture that the

converses of Theorems 4.2 and 4.3 are false. We find that even this restrictive oracle access

mechanism suffices to exhibit separations, and even strong separations, of the relativised

classes rCA, lCA and CA. Thus it is to be hoped that the study of such relativised CA

may provide more insight into the structure of the CA complexity classes.

It is of independent interest to propose different mechanisms for relativising CA; these

would correspond to different reducibilities amongst languages using CA as the model of

computation. One such reducibility has been considered briefly in [BC84] under the name

Generalised CA (GCA). In a GCA, no single cell is designated as an accepting cell. Instead,

the entire configuration after T (n) steps is checked. Let the input be x, and let the GCA

“transform” it to y in T (n) steps. Now the GCA is said to accept x if and only if y belongs

CHAPTER 4. TV CA RELATIVISED 61

to some prespecified language L. Let the language so accepted by the GCA be L′. Then, in

a sense, L′ has been reduced to L; the GCA performs some computation, then makes a single

query to an oracle L, and reports acceptance or rejection accordingly. This corresponds to

a form of many-one CA reducibility. Under this reducibility, it has been shown [BC84] that

languages CA-reducible to rCA in real time are in lCA. This is analogous to our result of

Theorem 3.16, which uses a TV CA form of CA-reducibility (this kind of reducibility is not

many-one, since several queries are required). However, under the reducibility of [BC84], the

rCA(rCA) class coincides with the class lCA, whereas in the TV CA form of reducibility, we

only have a containment in Theorem 3.16. Such generalised acceptance criteria have been

further studied in [IPK85a, KM90, SW83] as well.

Chapter 5

Language Classes Defined by

Time-bounded Relativised CA with

CA Oracles

In the previous chapter, TV CA were interpreted as relativised CA. The focus of study

in that chapter was the power of the oracle access mechanism. Separation results were

obtained exploiting this mechanism; however, the separating oracles constructed were not

CA languages.

In this chapter we will examine the behaviour of the relativised CA language classes,

specifically the classes rCA and lCA, when the oracle classes themselves are CA and rela-

tivised CA classes. Some such results have already been mentioned in the preceding chapters

in the context of time-varying CA; they will be restated here in the context of relativised

CA. Besides, we will construct a hierarchy of languages built up from rCA and lCA at the

base level and with each level obtained by using the class at the preceding level as the oracle

class. We will show some non-trivial interesting properties of this CA hierarchy.

5.1 Relativised CA Language Classes

We first go over some elementary results. The following theorem is a direct consequence

of Corollary 3.8, and states that as an oracle class, the class rOCA |t has no effect on the

62

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 63

classes rCA, lCA and CA. Thus the problem of whether rCA are properly contained in

lCA remains unchanged in this relativised world.

Theorem 5.1 rCA(rOCA |t) = rCA

lCA(rOCA |t) = lCA

CA(rOCA |t) = CA

At the other extreme, when the classes CA |t and OCA |t are used as oracles, rCA |t become

as powerful as lCA |t, as seen in the following theorems which are special cases of Corollary

3.12.

Theorem 5.2 rCA (CA |t) |t= lCA (CA |t) |t= CA |t.

Theorem 5.3 rCA (OCA |t) |t= lCA (OCA |t) |t= OCA |t.

In these theorems, showing the containments from left to right requires only the oracle

to be tally, not the accepted languages. Thus, with minor modifications, we can also show

that

Theorem 5.4 rCA (CA |t) ⊆ lCA (CA |t) ⊆ CA ⊂ CA (CA |t)

rCA (OCA |t) ⊆ lCA (OCA |t) ⊆ OCA

Thus for the oracle class below rCA, ie. rOCA, relativisation does not alter the rCA ?=

lCA question. For the oracle classes above lCA, ie. OCA and CA, relativisation merges

rCA |t and lCA |t. The question naturally occurring at this point is: What happens

under relativisation with respect to classes between rOCA and OCA? This motivated

us to construct the cellular automata hierarchy. This hierarchy is obtained by repeatedly

relativising the classes rCA |t and lCA |t, using the previously obtained classes as oracles.

In our study, we consider only tally sets. This may seem very restrictive at first, because

tally sets are often inadequate in capturing the complexity of various classes. However

they sometimes suffice to express strong inter dependencies [Boo74]. For instance, tally

sets are present in NP − P if and only if DEXT ̸= NEXT . Even when only tally sets are

considered, the problem rCA ?= lCA is open [IJ88]. Though many conjecture that the classes

(of tally sets) are distinct, no answer is forthcoming. Book has shown (Theorem 2, [Boo74])

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 64

that if every tally language in DSPACE(n) is in P , then EXPSPACE = EXPTIME

and every tally language in PSPACE belongs to P . Since lCA languages are in P and

since DSPACE(n) = CA, we can conclude that if, for tally languages, lCA = CA, then

EXPSPACE = EXPTIME and every tally language in PSPACE belongs to P . Our

work here is based on the conjecture that if the classes rCA, lCA and CA are distinct, then

there are tally sets in the difference.

The CA hierarchy is formally defined as follows:

Definition 5.5 The cellular automata hierarchy (CAH |t) of tally languages is the structure

formed by the classes rrCAk, lrCAk, llCAk and rlCAk, for each k ≥ 0, where

1. rrCA0 = rlCA0 = rCA |t

2. llCA0 = lrCA0 = lCA |t

3. rrCAk+1 = rCA(rrCAk) |t

4. lrCAk+1 = lCA(rrCAk) |t

5. llCAk+1 = lCA(llCAk) |t

6. rlCAk+1 = rCA(llCAk) |t

Also, CAH |t=
⋃

k≥0 (rrCAk ∪ rlCAk ∪ lrCAk ∪ llCAk).

Some elementary properties of the cellular automata hierarchy are given below.

Proposition 5.6 (a) llCA0 ⊆ lrCA1.

(b) ∀k ≥ 0, llCAk ⊆ rlCAk+1.

(c) ∀k ≥ 0, rrCAk ⊆ rrCAk+1

lrCAk ⊆ lrCAk+1

rlCAk ⊆ rlCAk+1

llCAk ⊆ llCAk+1

(d) ∀k ≥ 0, rrCAk ⊆ lrCAk ⊆ llCAk

rrCAk ⊆ rlCAk ⊆ llCAk

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 65

Proof: (a), (b), (c): Obvious, because the empty set belongs to all these classes, and because

with oracle A, A can be accepted in real time.

(d): This is proved by induction. The assertion is obviously true for k = 0. Assume it is

true upto k− 1. Now rrCAk and rlCAk are both real time CA, but the oracle set of rlCAk,

by the induction hypothesis, contains the oracle set of rrCAk. So rrCAk ⊆ rlCAk. rlCAk

and llCAk both have the oracle set llCAk−1, but the CA from the class rlCAk can use only

real time, while CA from the class llCAk can use linear time. So rlCAk ⊆ llCAk. The other

inclusions are similarly shown. Thus the assertions are true for all k.

Theorem 5.7 CAH |t⊆ (OCA ∩ P) |t.

Proof: By statement (d) of the previous proposition, it suffices to show that ∀k, llCAk ⊆

(OCA ∩ P) |t. This is shown by induction. llCA0 = lCA |t is clearly in the class (OCA ∩ P) |t.

Let llCAk−1 be in (OCA ∩ P) |t. Then llCAk is contained in the class lCA(OCA |t) |t, which

by Theorem 5.4 is contained in OCA |t. Also, llCAk is contained in the class lCA(P |t) |t,

which can be easily seen to be contained in P (P) |t= P |t.

This result, along with Book’s results [Boo74], immediately yields the following corollary:

Corollary 5.8 If CAH |t= CA |t, then EXPSPACE = EXPTIME and every tally

language in PSPACE belongs to P .

This suggests that while the power of the class lCA may be increased somewhat due to

repeated relativisations with respect to previously obtained classes, it is unlikely to increase

sufficiently to equal the class CA |t, or even OCA |t.

The following theorem is mentioned in this section essentially for completeness; the actual

proof is provided only in the next section.

Theorem 5.9 If rrCA0 = llCA0, then ∀k, rrCAk = rlCAk = lrCAk = llCAk = rCA |t.

Consequently, CAH |t= rCA |t.

This theorem says that if the classes rCA |t and lCA |t are equal, then for tally sets,

linear time can be brought down to real time even in the presence of any oracle from CAH |t.

Consequently, the entire hierarchy collapses.

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 66

5.2 The Structure of the Cellular Automata Hierar-

chy

In this section we show some interesting inclusions in the cellular automata hierarchy. We

first need some preliminary results.

Lemma 5.10 Let L be a (tally) language accepted by rCA C. We can effectively construct

CAs C ′ and C ′′ which, on input On, do the following:

(a) At time step i, the accepting cell of C ′ specifies whether or not Oi ∈ L.

(b) At time step 2i− 1, the accepting cell of C ′′ specifies whether or not Oi ∈ L.

Proof: (a) Consider the time-space unrolling of C. In this diagram, the unrollings of C on

inputs 0i and 0i+1 differ only in the ith diagonal from right to left. So we can construct C ′

so that each cell stores the corresponding values in the unrollings of two input lengths. This

allows C to be simulated on all input lengths. An example is shown in Figure 5.1.

More specifically, let cn(i, t) (cn(i, t)) denote the state of the ith cell of C (C ′), on input

0n, at time t. Then cn(i, t) contains both cn(i, t) and ci+t−1(i, t). cn(1, t) will now contain

ct(1, t) as the second component of its state for t < n, denoting membership of 0t in L, and

at t = n it will contain [cn(1, n), $]. To achieve this, let δ be the transition function of C.

Then h, the transition function of C ′, is given by the following rules. The first four rules

give the transitions at t = 1 and the other rules are used at subsequent steps.

h(#, 0,#) = [δ(#, 0,#), $]

h(#, 0, 0) = [δ(#, 0, 0), δ(#, 0,#)]

h(0, 0, 0) = [δ(0, 0, 0), δ(0, 0,#)]

h(0, 0,#) = [δ(0, 0,#), $]

h(#, [c, d], [e, f]) = [δ(#, c, e), δ(#, c, f)]

h(#, [c, d], [e, $]) = [δ(#, c, e), $]

h([a, b], [c, d], [e, f]) = [δ(a, c, e), δ(a, c, f)]

h([a, b], [c, d], [e, $]) = [δ(a, c, e), $]

For arguments where h is not specified above, h maps to some don’t-care state D.

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 67

0 0 0 0 0

a b b b c

d e f g

h i j

k l

m

0 0 0 0

a b b c

d e g

h n

p

0 0 0

a b c

d q

r

0 0

a c

s

0

t

CA C on inputs 05, 04, . . . , 01

0 0 0 0 0

at bc bc bc c$

ds eq fg g$

hr in j$

kp l$

m$

CA C ′ simulating C

Figure 5.1: Simulating a CA on all prefixes of the input in real time

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 68

(b) C ′′ is merely a half-speed version of C ′.

Note that in part (b), if the machine C ′′ is treated as a real-time machine (ie. for inputs of

length n, the state of the accepting cell at time n is checked), then C ′′ accepts the language

2L − 1, defined in chapter 3. Slowing it down by one step would allow acceptance of the

language 2L. Thus through this lemma we have also proved that rCA |t are closed under

doubling, a result mentioned without proof in Lemma 3.18.

Theorem 5.11 rrCA1 ⊆ llCA0.

Proof: Let L be an rrCA1 language accepted by an rCA C1 with oracle L′, where L′ is

accepted by an rCA C2. The machines of Lemma 5.10 can be used to find responses to all

the oracle queries made by C1. These responses must then be propagated down the array.

This involves a delay; so C ′′
2 rather than C ′

2 is used. Thus at time 2i− 1, the response to the

ith oracle query is available at the leftmost cell. So the ith transition of the leftmost cell of

C1 is also implemented at this cell now. Simultaneously, the oracle response is sent right at

unit speed, so that the jth cell implements the ith transition step of C1 at time 2i−1+ j−1.

It is easily verified that at this time, if each cell stores the current and the previous value

of the corresponding cell in the simulation of C1, the arguments to the transition function

are indeed available in the cell and its neighbours. An example is shown in Figure 5.2. The

oracle queries are answered by C ′′
2 , a half-speed version of the CA C ′ shown in Figure 5.1.

For the behaviour of C1 as in Figure 5.2 (a), the simulating CA functions as in Figure 5.2

(b), recognising the input in time 2n− 1.

Formally, the transition function of such a CA can be specified in terms of those of C1

and C ′′
2 as follows.

Let C1 = (Q1,#, δ1, δ2, L′, F1) and C ′′
2 = (Q′′,#, δ, F ′′). Define a CA C = (Q,#, h, F) where

Q = {[u, v, w, x] | u, v ∈ Q1, w ∈ Q′′ and x ∈ Q′′ ∪ {?}}

u and v hold the old and current states in the simulation of C1. w holds the state in the

simulation of C ′′
2 and is updated at each time step. The value of w in the leftmost cell is

the response to the oracle query, and is propagated right at unit speed in x. When x holds

a ?, u and v are not updated. When it holds a state from Q′′, then v is stored in u and v is

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 69

0 0 0 0 0

A B B B C

D E F G

H I J

K L

M

(a) rrCA1 C on input length 5, with the oracle from Figure 5.1.

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

❜❜❜

#

#

#

#

#

#

#

#

#

#

0 0 0 0 0

0 A
at at

0 0
bc ?

0 0
bc ?

0 0
bc ?

0 0
c$?

0 A
at ?

0 B
bc at

0 0
bc ?

0 0
bc ?

0 0
c$?

A D
ds ds

0 B
eq ?

0 B
fg at

0 0
g$?

0 0
?

A D
ds ?

B E
eq ds

0 B
fg ?

0 B
g$ at

0 0
?

D H
hr hr

B E
in ?

B F
j$ ds

0 B
?

0 C
at

D H
hr ?

E I
in hr

B F
j$?

B G
ds

0 C
?

H K
kp kp

E I
l$?

F J
hr

B G
?

C
ds

H K
kp ?

I L
l$ kp

F J
?

G
hr

C
?

K M
m$ m$

I L
?

J
kp

G
? hr

(b) The simulating CA

Figure 5.2: Simulating an rrCA1 by an llCA0

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 70

updated as in C1, using the previous state u from the left neighbour and the current states

v from the cell and its right neighbour.

F = {[u, v, w, x] | u ∈ Q1, v ∈ F1, w ∈ Q′′ and x ∈ Q′′ ∪ {?}}

h(#, 0, z) = [0, A,B,C] for z = 0 or #, where

B = δ(#, 0, z), C = B, and if C ∈ F ′′

then A = δ1(#, 0, z)

else A = δ2(#, 0, z).

h(0, 0, z) = [0, 0, δ(0, 0, z), ?] for z = 0 or #.

h(#, b, c) = [A,B,C,D] for 4-tuples b and c, where

C = δ(#, b3, c3), and

if b4 ̸=? then A = b1, B = b2, D =?

else A = b2, D = C, if C ∈ F ′′

then B = δ1(#, b2, c2)

else B = δ2(#, b2, c2).

h(a, b, c) = [A,B,C,D] for 4-tuples a, b, c, where

C = δ(a3, b3, c3), and

if a4 =? then A = b1, B = b2, D =?

else A = b2, D = a4, if D ∈ F ′′

then B = δ1(a1, b2, c2)

else B = δ2(a1, b2, c2).

(If c = #, then we take ci to be # for i = 1 to 4.)

Theorem 5.12 lrCA1 = llCA0.

Proof: llCA0 ⊆ lrCA1 follows from Proposition 5.6 (a). lrCA1 ⊆ llCA0 can be shown as

above, packing c cells of C ′′
2 together to simulate C ′′

2 on input 0cn within an n length array.

Note that in the above proofs, the crucial point is that the oracle classes contain only

tally sets. The accepted language itself need not be tally; thus we can also conclude that

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 71

rCA(rCA |t) is contained in lCA which is equal to lCA(rCA |t). In other words, rCA |t
is useless as an oracle class if the CA is allowed even as much as linear time. These proofs

easily generalise to k controlling languages and thus prove Theorems 3.16 and 3.17.

Theorem 5.9 of the previous section now follows from the above two theorems, by a simple

inductive argument.

Proof of Theorem 5.9: We know that rrCA0 ⊆ rrCA1 ⊆ llCA0. So if rrCA0 = llCA0,

then rrCA0 = rrCA1. Let rrCAk = rrCA0. rrCAk+1 is the class of languages accepted by

rCA using oracles from rrCAk, ie. oracles from rrCA0, and so equals the class rrCA1. But

this is equal to rrCA0, under our assumption. So rrCAk+1 = rrCA0. Thus by induction,

∀k, rrCAk = rrCA0. From the definition, it then follows that ∀k, lrCAk = lrCA1 which

equals rrCA0 by assumption. The other classes are similarly shown to be equal to rrCA0.

Thus if rrCA0 = llCA0, then the CAH collapses to the smallest class rrCA0 = rCA |t.

We now show that the results of Lemma 5.10 and Theorems 5.11 and 5.12 ‘translate

upwards’; they also hold at higher levels of the CA hierarchy. The following lemma essentially

states that Lemma 5.10 (b) relativises if the oracle classes are rrCAk classes. Thus all rrCAk

classes are closed under doubling.

Lemma 5.13 If L ∈ rrCAk, then 2L− 1 = {02i−1 | 0i ∈ L} ∈ rrCAk.

Proof: Consider L ∈ rrCA0. Let L be accepted by rCA C. On input 02m−1, simulate

machine C ′′ described in Lemma 5.10, and also send a signal S at unit speed from the

rightmost cell to the left. S reaches the accept cell when it is specifying membership of 0m

in L. So C ′′ will accept (reject) 02m−1 if 0m ∈ L (0m ̸∈ L), in time 2m − 1, ie. in real time.

So C ′′ is an rCA accepting 2L− 1.

Assume that the statement of the lemma is true for k. Let L ∈ rrCAk+1. L is accepted

by an rCA C using oracle L′ ∈ rrCAk. By our assumption, 2L′ − 1 ∈ rrCAk. Construct

C ′′ as above, using oracle 2L′ − 1. The resulting CA accepts 2L − 1 in real time; hence

2L− 1 ∈ rrCAk+1. So the statement of the lemma is also true for k + 1.

Thus by induction, the statement is true for all k.

In Theorem 5.11, we are essentially proving that rrCA1 ⊆ lrCA0. Using the above

lemma, this generalises as follows.

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 72

Theorem 5.14 For k ≥ 0, rrCAk+1 ⊆ lrCAk.

Proof: For k = 0, this is proved in Theorem 5.11. Consider k > 0. Let C be an rrCAk+1

CA using oracle L. L ∈ rrCAk, so L is accepted by an rCA using oracle L′ ∈ rrCAk−1.

Now 2L′− 1 is also in rrCAk−1. A CA using oracle 2L′− 1 can accept the same language as

C, in linear time, as described in Theorem 5.11. But this lCA uses an oracle from rrCAk−1,

and hence will belong to lrCAk. Hence the theorem.

Similarly, reading Theorem 5.12 as lrCA1 = lrCA0 and translating it upwards in an

identical fashion, we get

Theorem 5.15 For k ≥ 0, lrCAk+1 ⊆ lrCAk.

This, along with Proposition 5.6, immediately yields

Corollary 5.16 ∀k ≥ 0, lrCAk = lCA |t.

This corollary clearly generalises Theorem 5.12; not only are rCA |t (ie. rrCA0) languages

useless as oracles for the class lCA, but so are all languages in the classes rrCAk, for any k.

Thus the rrCAk languages seem to be quite limited in their power.

Now we can combine all these known results to obtain an overall picture of the CA

hierarchy. The structure of the cellular automata hierarchy is as shown in Figure 5.3.

The following series of propositions shows how this structure changes under various as-

sumptions of equality of certain classes.

Proposition 5.17 If rrCA0 = rrCA1, then all the rrCA classes are equal.

Proof: Obvious, as seen in proof of Theorem 5.9.

Proposition 5.18 rrCA1 = lrCA1 if and only if rrCA1 = rlCA1. In this case, the struc-

ture in Figure 5.4 results.

Proof: From Figure 5.3, it is obvious that rrCA1 = rlCA1 implies rrCA1 = lrCA1. Assume

that rrCA1 = lrCA1. From Figure 5.3, we see that this implies rrCA1 = rrCA2 = llCA0.

So rlCA1 = rCA(llCA0) |t= rCA(rrCA1) | t = rrCA2 = rrCA1. Further, since under this

assumption we have rrCA2 = rrCA1, it is clear that ∀k > 0, rrCAk = rrCA1.

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 73

rrCA0 = rlCA0

rrCA1

rrCAk

llCA0 = lrCA0 = lrCA1 = lrCA2 = . . .

rlCA1 llCA1

rlCA2 llCA2

...

...

❄

❄

❄

❄

❄

✲

✲

✏✏✏✏✏✏✏✏✮

✏✏✏✏✏✏✏✏✮

✏✏✏✏✏✏✏✏✮

Figure 5.3: The structure of the CAH

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 74

rrCA0 = rlCA0

rrCA1 = rrCA2 = . . .

= llCA0 = lrCA0 = lrCA1 = lrCA2 = . . .

= rlCA1

llCA1

rlCA2 llCA2

❄

✲

✏✏✏✏✏✏✏✏✮

✏✏✏✏✏✏✏✏✮

444444445

Figure 5.4: The CAH, assuming rrCA1 = lrCA1

rrCA1 = rlCA1 means that rCA |t and lCA |t as oracles add equally to the class rCA |t.

rrCA1 = lrCA1 means that rCA |t and lCA |t coincide relative to the class of oracles rCA |t.

Equivalently, since lCA(rCA |t) = lCA, this also means that with an rCA oracle, the class

rCA |t rises up to equal lCA |t. These equalities imply each other and also imply that the

rrCAk classes are not distinct for k > 0.

Proposition 5.19 If rrCA1 = llCA1, then the cellular automata hierarchy has only two

distinct classes: rCA |t= rrCA0 = rlCA0, and lCA |t, which is equal to all the remaining

classes.

Proof: rrCA1 = llCA1 clearly implies rrCA1 = lrCA1. So from the above proposition we

immediately conclude that ∀k ≥ 1, rrCAk = rrCA1. Further, since llCA1 = llCA0, ∀k ≥ 0

llCAk = llCA0. This also implies that ∀k ≥ 1, rlCAk = llCA0. Thus rrCA0 and rlCA0 are

identical, and all other classes are identical; the CAH has at most two distinct classes.

Proposition 5.20 lrCA1 = llCA1 if and only if llCA0 = llCA1. In this case, the CAH

has the structure shown in Figure 5.5.

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 75

rrCA0 = rlCA0

rrCA1

rrCAk

lrCA0 = lrCA1 = lrCA2 = . . .

= rlCA1 = rlCA2 = . . .

= llCA0 = llCA1 = llCA2 = . . .

...

...

❄

❄

❄

❄

❄

Figure 5.5: The CAH, assuming lrCA1 = llCA1

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 76

Proof: Obvious.

A point worth examining is whether proper containments translate upwards. Equalities

do; we have, by a straightforward argument,

rrCAk = rrCAk+1 ⇔ ∀m > k, rrCAm = rrCAk

llCAk = llCAk+1 ⇔ ∀m > k, llCAm = llCAk

5.3 Conclusions

This work attempts to study the structure of the tally languages, if any, separating CA,

lCA and rCA. We have also restricted the language classes CA, lCA and rCA to tally

sets. A similar hierarchy of CA language classes can be constructed if non-tally languages

are considered for acceptance and as oracles. It is easily verified that Proposition 5.6 (a),

(c), (d) continue to hold. (b) does not appear to, because, as mentioned in section 4.1,

once we consider non-tally oracles, the containment A ∈ lCA(A) does not necessarily hold.

(A ∈ CA(A) does hold, from Proposition 4.6, since on input x = ⟨m⟩, m is CA-time-

constructible; refer Proposition 3.13.) A straightforward algorithm for recognising an llCA1

language (non-tally oracle) by a CA requires O(n log n) time, while for tally oracles such an

algorithm runs in O(n2) time. However, even for rrCA1 languages with non-tally oracles we

have been unable to improve the O(n log n) upper bound, whereas rrCA1 languages with

tally oracles can be accepted by lCA; refer Theorem 5.11. Of course, such differences are to

be expected, since tally sets are very low in information content.

An unanswered question is whether or not rCA and lCA coincide over unary alphabets.

If this is the case, then Theorem 5.9 states that the CA hierarchy collapses. In [IJ88]

it is conjectured that these classes do not coincide. Our work is motivated by a weaker

conjecture — namely, that if the classes rCA and lCA are distinct, then there are tally sets

in the difference.

Another aspect which deserves more study is finding languages complete for CA and

lCA, where completeness will have to be suitably defined. Such complete languages may

admit a relativisation under which the classes rCA, lCA and CA coincide. This, along with

CHAPTER 5. RELATIVISED CA WITH CA ORACLES 77

Theorem 4.9, will provide a contradictory relativisation of these problems, but may also

provide more information about the nature of the CA complexity classes.

Chapter 6

Nondeterministic Computation on

Cellular Array Models

In this chapter, we consider a new model of nondeterminism based on the structure of time-

varying automata, and, imposing this model upon CA and OCA, investigate the power of

the resulting classes. The notion of a time-varying CA (TV CA) was introduced in chapter

3, and in chapters 4 and 5 TV CA were interpreted as relativised CA, ie. CA which com-

pute with some help from an oracle. In this paper we further generalise this notion, and

interpret the computation of a TV CA as a nondeterministic computation. The description

and definition of this model is presented in section 6.1. In section 6.2, we compare this

form of nondeterminism with the traditional notion, and try to place our nondeterministic

CA classes amid the traditionally defined classes. In section 6.3, some restricted forms of

nondeterministic TV CA computation are studied, with the intention of trying to identify

how much nondeterminism is required, if at all, to enhance the power of a particular class.

In section 6.4, some closure properties of nondeterministic CA classes are studied.

6.1 Preliminaries and Definitions

In a TV CA, the transition function to be applied to each cell depends not only on the

states of cells in the neighbourhood but also on the number of time steps elapsed since the

CA operation began. The dependence on time is expressed in the following way: a set of

78

CHAPTER 6. NONDETERMINISTIC TV CA 79

transition functions δ1, δ2, . . . , δk is associated with the CA, and δ, the effective transition

function of the CA, agrees with one of δ1, δ2, . . . , δk depending on the time. In other words,

δ(a, b, c, i) = δfi(a, b, c)

where a, b, c ∈ Q, i ∈ N, and δfi is the transition function used at time t = i. The manner

in which fi is chosen thus crucially affects the overall computation.

One important fact to note about TV CA is that speed-up does not necessarily hold.

Neither Lemma 2.7 nor Lemma 2.8 can be shown to trivially apply to TV CA. Since we are

essentially interested in the dependence of running time on input length, we will still continue

to ignore additive constants, and treat (T (n) + c)-time as equivalent to T (n)-time. However

for multiplicative constants, there is a trade-off, as described in section 3.3. To be more

precise, consider speeding up the operation of a k-TV CA by a factor of 2. Even assuming

that an initial phase achieves the required packing of the input, to be able to simulate two

steps of the TV CA in one step calls for the ability to simulate k2 different combinations of

the form δiδj. So the simulating TV CA will need k2 different transition functions. Thus

speed-up is achieved at the cost of the number of functions required. Conversely, the number

of functions can be reduced at the expense of slowing down the computation — a k-TV CA

operating in T (n) time can be simulated by a 2-TV CA operating in (log2 k)T (n) time (refer

Theorem 3.19). Since the slowing down is only by a constant factor, for (linear-time) TV CA

it is sufficient to consider 2-TV CA. But for real-time computation, it appears that k is a

crucial parameter; whether k+1 functions are better than k for real-time TV CA is an open

problem raised in that chapter.

In chapters 4 and 5, 2-TV CA have been interpreted as relativised CA. A tally language

L ⊆ 0∗ is the oracle, and δ is now expressed as follows:

δ(a, b, c, i) =

⎧

⎪

⎨

⎪

⎩

δ1(a, b, c) if 0i ∈ L

δ2(a, b, c) otherwise

Note that for a 2-TV CA operating in time T (n), there are 2T (n) possible computation paths,

and the structure of L determines which of these paths is chosen. In the preceding chapters,

we have examined how varying the complexity of the oracle L affects the computational

power of the TV CA.

CHAPTER 6. NONDETERMINISTIC TV CA 80

In this chapter we relax the notion of a single computation path being checked for accep-

tance. First we define the characteristic bit strings of a language and of a TV CA computation

path as follows:

Definition 6.1 The characteristic bit string of a language L ⊆ Σ∗ is a bit string a0a1a2 . . .

where each ai ∈ {0, 1}, and for the standard enumeration of Σ∗, ai = 0 if and only if the ith

word of Σ∗, wi, is in L.

Thus for a tally language L, ai = 0 if and only if 0i ∈ L.

For a 2-TV CA, on input w of length n, a T (n)-time computation path is a sequence

w = w0, w1, . . . , wT (n) where for each i, |wi| = |w0|, and for i > 0, wi can be obtained from

wi−1 by applying either δ1 or δ2. It is an accepting computation if wT (n) is an accepting

configuration, ie. the leftmost state is an accepting state.

Definition 6.2 The characteristic bit string of a T (n)-time computation path is a T (n)-

length bit string b1b2 . . . bT (n) where bi = 0 if wi can be obtained from wi−1 by applying δ1,

and bi = 1 otherwise.

Note that this definition assigns a unique bit string as the characteristic bit string for

a given computation. However, more than one bit string may still determine the same

computation. This could happen if, from a particular configuration, both δ1 and δ2 lead to

the same next configuration. The unique characteristic bit string is that bit string which

uses δ1 wherever possible and thus, when interpreted as an integer, has least numerical value.

Consider Figure 6.1, a binary tree. The root node holds w0. The left (right) child of a

node holding c holds the configuration obtained by applying δ1 (δ2) to c. This binary tree,

of height T (n), gives all possible computations of a T (n)-time 2-TV CA on input w0. A bit

string of length T (n) picks out a particular path in this tree. In a relativised CA operation,

the unique computation path whose characteristic bit string is a prefix of the characteristic

bit string of the oracle is picked, and the input is accepted if and only if this computation

path ends in an accepting configuration. Instead, we can check whether at all there exists an

accepting computation, thus giving a nondeterministic interpretation to the TV CA. This

notion is formalised below.

CHAPTER 6. NONDETERMINISTIC TV CA 81

+
+

+
+
+
+

+
+
+

+
+
+
+

+
+
+
++

+
+
+

+
+
+

+
+

+
+
+
+

++

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅

❅
❅

❅

❅
❅

❅

❅
❅

❅
❅

❅
❅

❅❅

000 001 010 011 100 101 110 111

δ1 δ1 δ1 δ1δ2 δ2 δ2 δ2

δ1 δ1δ2 δ2

δ1 δ2

Figure 6.1: Binary tree of possible computations and characteristic bit strings

Definition 6.3 A nondeterministic TV CA (NTV CA) is a construct C = (Q,#, δ1, δ2, A)

defined as a 2-TV CA. A string w is accepted by C in time T (n) if ∃α ∈ {0, 1}T (|w|) such

that the computation path of C beginning with w and with characteristic bit string α is an

accepting computation.

For a T (n)-time computation, an NTV CA as defined above looks at all the 2T (n) com-

putation paths. We can define restricted versions, where only certain computation paths,

whose characteristic bit strings possess some special properties, are of interest. This takes

us closer to relativised CA, where exactly one computation path is of interest. Two such

restrictions are defined below.

Definition 6.4 A 1-turn (1-kink) NTV CA is a TV CA C which accepts input w if and only

if there is an accepting computation of C on w, with a characteristic bit string of the form

0∗1∗ (0∗(ϵ+ 10∗)).

A 1-turn NTV CA uses only δ1 for some time and then switches over to using only δ2.

The nondeterminism is in deciding when to switch from δ1 to δ2. So for a T (n)-time 1-turn

NTV CA, there are T (n) + 1 computation paths of interest. A 1-kink NTV CA can use δ2

at most once; again, for a T (n)-time 1-kink NTV CA, there are T (n)+ 1 computation paths

of interest. These paths are shown in Figure 6.2.

CHAPTER 6. NONDETERMINISTIC TV CA 82

❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅❅

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

++

❅
❅
❅
❅
❅
❅
❅
❅

+
+

+
+

+
+

+
+

❅
❅
❅❅

❅
❅
❅❅

+
+

++

+
+

++❅❅ ❅❅ ❅❅ ❅❅++ ++ ++ ++

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅❅

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

++

❅
❅
❅
❅
❅

❅
❅
❅

❅
❅
❅❅❅❅

0000 0001 0011 0111 1111

1-turn paths

❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅❅

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

++

❅
❅
❅
❅
❅
❅
❅
❅

+
+

+
+

+
+

+
+

❅
❅
❅❅

❅
❅
❅❅

+
+

++

+
+

++❅❅ ❅❅ ❅❅ ❅❅++ ++ ++ ++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

++

❅
❅
❅

❅
❅
❅
❅

❅
❅❅
+

+
+

+
+

+
+

+

❅
❅
❅
❅❅
+

+
++

❅
❅❅
++❅❅

0000
0001

0010
0100

1000

1-kink paths

Figure 6.2: Restricted nondeterminism computation paths

CHAPTER 6. NONDETERMINISTIC TV CA 83

Definitions 6.2 and 6.3 can be generalised to k-TV CA as well. The different computation

paths of the TV CA can now be represented in a k-ary tree, and the characteristic string for

a specific computation path will be a string over an alphabet of size k.

6.2 Nondeterministic Computation on TVCA

In this section we examine some of the results concerning NCA and see which of these hold

for the new mode of nondeterminism defined in section 6.1. Even seemingly trivial results

need to be re-examined, largely because speed-up does not hold for 2-TV CA. In what

follows, we assume that the TV CA are 2-TV CA, unless otherwise stated. First we consider

the unbounded-time classes of NTV CA.

Lemma 6.5 NTV CA ⊆ NSPACE(n); a T (n)-time NTV CA can be simulated by an

NSPACE(n) machine in O(nT (n)) time.

Proof: A T (n)-time NTV CA can be simulated in O(nT (n)) time by an NSPACE(n)

machine which simulates one step of the NTV CA as follows. It first decides, nondetermin-

istically, whether to use δ1 or δ2, and then moves down the entire array, deterministically

updating the state of each cell accordingly. Clearly, real space suffices for such a simulation,

and the NSPACE(n) machine needs O(nT (n)) time (n steps for each step of the NTV CA).

Lemma 6.6 NOCA ⊆ NTV OCA; an NTV OCA can simulate a T (n)-time NOCA in

O(nT (n)) time.

Proof: Let C = (Q,#, δ, A) be an NOCA, where δ maps Q×Q to subsets of Q. Let k be

the size of the largest subset of Q in the range of δ. We will construct a (k+1)-NTV OCA C ′

accepting the same language as C. Then, as described in section 6.1, an equivalent 2-function

NTV OCA can be constructed.

Each cell of C can independently choose one of upto k options when making a transition

according to δ. But in C ′, at a single time step, all cells must use the the same option. So to

simulate the n independent choices made by C in one step on an n length input, C ′ needs n

CHAPTER 6. NONDETERMINISTIC TV CA 84

steps, where at each step exactly one cell of C ′ makes a transition and all other cells merely

maintain their state. Now the first k distinct transition functions of C ′ can implement the

k options provided by δ. The leftmost cell of C ′ sends a pulse right at unit speed. As this

pulse passes through a cell, that cell makes a state transition. When the pulse reaches the

right end, all cells have updated their states and one step of C has been simulated. One row

in the time-space unrolling of C appears as a diagonal in the time-space unrolling of C ′.

The problem which now arises is that the leftmost cell does not know when to send out

the next pulse. Pulses should be at least n time steps apart, but, in the absence of two-way

communication, counting upto n is not possible. So the correct spacing of pulses has to

be guaranteed separately. The leftmost cell sends a pulse whenever δk+1 is used. If at this

time the previous pulse has not reached the right end, this can be detected by a cell which

still has the travelling pulse. This cell will now put the OCA into a rejecting configuration.

Otherwise, simulation of the next row in the time-space diagram of C begins with this pulse.

If the pulses are more than n steps apart, then in between there will be some idle steps,

when C ′ does nothing. However for a T (n)-time computation path of C, there will be a

computation path of C ′ where the pulses are exactly n steps apart; this computation path

will be of length nT (n). Figure 6.3 shows different spacing of pulses and the resulting CA

operation.

With this construction, T (n) steps of the NOCA are simulated by the NTV OCA in

nT (n) steps. This NTV OCA can be converted to one having only two transition functions,

with a slowing down only by a constant factor. This is the required NTV OCA.

Note: Strictly speaking, ensuring that the pulses are at least n time steps apart is not

necessary. If the pulses overlap, then some cells have to make related choices. But these

choices could have been made even if all cells were acting independently. What one needs to

ensure is that there are computation paths where the pulses are so spaced, guaranteeing the

checking of all possible choices. Then the other paths, with overlapping pulses, are already

simulated on some of these paths, and therefore need not be explicitly made rejecting paths.

However, we have presented this construction to bring out, more clearly, the step-by-step

simulation of the NOCA.

From these two lemmas and Lemma 2.10, we can now conclude:

CHAPTER 6. NONDETERMINISTIC TV CA 85

◗
◗

◗
◗
◗
◗

◗
◗◗7

◗
◗

◗
◗
◗
◗

◗
◗◗7

◗
◗

◗
◗
◗
◗

◗
◗◗7

◗
◗

◗
◗◗7

δk+1

δk+1

δk+1

δk+1
✲

✲

✲

✲

✲

✲

δk+1 used too early

}

}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Reject signal

simulating 3rd step

idle steps, until
δk+1 is used

simulating 2nd step

simulating 1st step
of NOCA; n steps

Figure 6.3: An NTV OCA simulating an NOCA

Theorem 6.7 NTV OCA = NTV CA = NSPACE(n).

The following lemma further strengthens the statement NTV CA ⊆ NCA; it claims that

a real-time simulation is possible.

Lemma 6.8 An NTV CA can be simulated by an NCA with no loss of time. If the NTV CA

uses only one-way communication, so does the simulating NCA.

Proof: In an NTV CA, all cells must use the same transition function, at any given time

instant. This condition can be enforced in an NCA as follows: Each cell of the NCA

nondeterministically uses δ1 or δ2 at any time instant. Additionally, each cell also records,

in its state, which transition function was used. From time step t = 2 onwards, each cell

also checks that the cells in its neighbourhood used the same transition function as itself

at the previous step. If this is not the case, a reject signal is generated and sent to the

accepting cell. Thus if the NCA accepts its input, it must be along a computation path

where all cells had used the same transition function at each time instant; ie. it must be

along a computation path corresponding to the NTV CA.

CHAPTER 6. NONDETERMINISTIC TV CA 86

We now look at the time-bounded NTV CA classes. The next result highlights the

difficulty of determining membership for real-time NTV CA languages. A similar result for

real-time NOCA also exists [IK84]. However we have not been able to improve our result

to real-time NTV OCA. We can only conclude, form the NP -completeness of the rNOCA

membership problem and from Lemma 6.6, that the membership problem is NP -complete

for NTV OCA running in O(n2) time.

Theorem 6.9 The class of real-time NTV CA languages contains an NP -complete lan-

guage.

Proof: Consider the language of satisfiable Boolean formulas in 3-clause conjunctive normal

form 3-CNFSAT . Let the formulas be coded as follows:

v1c|v2c| . . . c|vm$F1 ∧ F2 ∧ . . . ∧ Fk

where

• vi ∈ {0, 1}∗,

• |vi| = |vj| for each i, j,

• vi ̸= vj for i ̸= j, and

• each Fi is of the form w∨x∨ y, where w, x and y are of the form 0vt or 1vt for some t.

Thus the formula has a list of variables, coded as equal length bit strings separated by

c|s, followed by a $, followed by a set of clauses separated by ∧s, where each clause has

three terms separated by ∨s, and each term is either 0v, representing the variable v, or 1v,

representing the negation of the variable v, for some variable v.

This language is well known to be NP -complete [BDG88, HU79]. Consider the following

NTV CA accepting it. The NTV CA operates in four phases.

Phase 1: A signal Assign travels from the leftmost cell upto the $. As it travels, it assigns a

value to each variable encountered. Value 0 is assigned if δ1 is used and value 1 is

assigned otherwise. The assigned value can be stored in the cell holding the leftmost

bit of the encoded variable.

CHAPTER 6. NONDETERMINISTIC TV CA 87

Phase 2: From here onwards the operation of the NTV CA is deterministic. In other words,

δ1 and δ2 differ only in the presence of signal Assign; elsewhere they are identical.

In the second phase, which begins when Assign reaches $, the string to the left of $

begins moving right, in a separate channel. Each cell transfers its contents to its right

neighbour only after the right neighbour has transferred its own contents further right.

Whenever a c| (or $, initially) reaches an ∨ or an ∧, it temporarily halts.

Phase 3: When a c| or $ is positioned on an ∨ or ∧, the |vi| cells to its left have the codings of two

variables in their two channels. The cell containing c| or $ sends a signal left to check

if the codings match. If they do, then the value assigned to the variable in the second

channel is copied to the first channel (its negation is copied if the code in the first

channel is preceded by 1), and the signal returns to the cell from where it originated.

If the codings don’t match, the signal returns directly, without doing anything. When

the signal returns to its originating cell, the string in the second channel resumes its

rightward movement.

Phase 4: When a left boundary marker reaches the rightmost cell, all variables in each Fi have

been assigned values. Now an Evaluate signal moves leftwards, checking whether this

assignment satisfies the formula.

Checking the syntax of the input can be done alongwith these phases.

It can be easily verified that if |vi| = p, then the total time required is linear in p, m

and k. (Phase 1 needs pm time. Phase 2 and 3 together need 3p + 4 time for each variable

occurrence after the $ — there are 3k such occurrences — plus an additional pm steps in the

staggered rightwards movement. Phase 4 needs as many steps as the length of the input.)

The length of the input, n, is m(p+ 1) + k(3p+ 2) + k − 1. Clearly, the total time required

is linear in n.

Let the NTV CA accepting this language operate in cn time. Then consider the language

L′ = {x$(c−1)|x| | x ∈ L}. Using the above algorithm and ignoring the trailing $s, L′ can be

accepted by a real-time NTV CA. But L′ is also NP -complete, since it is a simple padded

version of L. Hence the theorem.

CHAPTER 6. NONDETERMINISTIC TV CA 88

We next look at the relationship lOCA = rCA (refer Theorem 2.9), in the context of

nondeterminism. For the traditionally defined nondeterministic classes, the equality rCA =

lOCA continues to hold, since the speed-up of lOCA to 2n-time and the simulation of an

rCA by a 2n-time lOCA and vice versa are not affected by nondeterminism in the transition

function. This is not the case for NTV CA. In fact, an equivalent result does not seem to

hold, but we have a restricted version.

Theorem 6.10 The class of NTV OCA C running in time 2n and satisfying the condition

∀x ∈ Σ∗ (x ∈ L(C)⇔ ∃ a computation path accepting x, whose characteristic bit string

a1a2 . . . a2|x| has a2i−1 = a2i for i = 1 to |x|
)

is exactly equivalent to the class of real-time NTV CA.

Proof: The condition imposed on the accepting computation paths simply means that it

suffices to check computation paths where each transition function is always used for two

consecutive instants. Though 2n steps are allowed for the computation, effectively only n

steps are allowed for the nondeterministic choice. Under such conditions, the equivalence of

2n-time NTV OCA and real-time NTV CA can be shown in a manner identical to the proof

that rCA = lOCA ([BC84], also refer Figure 2.5).

As for the containment lCA ⊆ OCA from Theorem 2.9, we show that even linear-time

NTV CA are no more powerful than deterministic OCA. We do not know whether a similar

result holds for lNCA. We do know, however, that the containment holds if both classes are

made nondeterministic using the traditional notion, ie. that lNCA are contained in NOCA,

because NOCA and NCA have the same power.

Theorem 6.11 Linear-time NTV CA ⊆ OCA.

Proof: We resort to the sequential machine characterisation of OCA to prove this result;

given a linear-time NTV CA, we will construct a sweeping automaton SA accepting exactly

the same language.

Let C be an NTVCA running in cn time. A valid computation path thus has a cn length

characteristic bit string. We design the SA to generate all cn length strings in lexicographic

CHAPTER 6. NONDETERMINISTIC TV CA 89

α β
(y)

a1 . . . an

Figure 6.4: Worktape of an SA accepting an lNTV CA language

order, and, for each string, to trace out the corresponding computation path. The SA will

accept its input if it ever finds an accepting computation in this process.

As the SA reads its input, it shifts and packs symbols on the tape. When the entire

input has been read, the worktape will be partitioned into three areas as shown in Figure

6.4.

The first area is a counter of length cn, and holds the string α. The second area is also of

length cn, for holding the bit string β currently being tested. Initially both α and β are set to

0cn. The third area is of length cn and has two tracks. The first track has a permanent copy

of the input x in its leftmost n cells, and is blank elsewhere. The second track is initially

a copy of the first track, and is to be used for tracing out the computation corresponding

to the string in the second area. This requires cn space and not n space because the SA

can only move from left to right, while the NTV CA has two-way communication. So in

simulating each step of the NTV CA, the SA shifts the configuration one cell right.

While reading $, ie. after all the input has been read, α is incremented in each sweep.

Simultaneously, a marker moves right, one cell per sweep, over the string β. If the marker

is on a 0 (1, respectively), then the NTV CA configuration y, which is stored on the second

track of the third area, is updated as per δ1 (δ2, respectively). When the marker reaches the

end of the second area, a full computation path has been traced. The marker is now erased,

and the third area is reset to its initial status. It remains unchanged in subsequent sweeps

until α overflows. When this happens (every 2cn sweeps), the next bit string is generated

in the second area (β is incremented). The marker is placed again on its leftmost bit, and

the tracing out of the corresponding computation path begins in the third area. Thus all

computation paths are traced, and an accepting computation, if any, can be found by the

SA.

CHAPTER 6. NONDETERMINISTIC TV CA 90

6.3 Modelling Restricted Nondeterminism

We now consider TV CA where only specific computation paths are of interest. Specifically,

we consider the 1-turn and 1-kink NTV CA defined in section 6.1. These classes are im-

portant in that they help us identify the amount of nondeterminism needed to enhance the

power of other classes. To make this clearer, note that a T (n)-time NTV CA has 2T (n) com-

putation paths. Picking any one of these involves choosing T (n) bits, corresponding to the

characteristic bit string of the chosen computation path. A T (n)-time 1-turn NTV CA, on

the other hand, has only T (n) + 1 computation paths of interest. Picking any one of these

involves picking one of the T (n) positions in the characteristic bit string where the TV CA

switches over from using δ1 to using δ2. Since making a choice from T (n) positions would

involve setting log(T (n)) bits, the “amount” of choice, due to nondeterminism, available to

an NTV CA and to a 1-turn NTV CA differ by an exponential factor. As is to be expected,

we will show that the 1-turn classes are quite weak compared to the other NTV CA classes.

First we show that 1-turn and 1-kink are equivalent notions; an NTV CA of one type can

be simulated by an NTV CA of the other. Before this, we first show an intermediate result.

Lemma 6.12 Let r be a regular expression denoting a subset R of {0 + 1}∗. Given any

NTV CA C, we can produce a modified NTV CA C ′ which performs the same computation

as C, but additionally, along each computation path, also indicates whether the bit string

determining the computation path belongs to R.

Proof: Let C = (Q,#, δ1, δ2, A) be an NTV CA, and let M = (Q1, {0, 1}, δ, q0, F) be a

deterministic finite-state machine (FSM) accepting R. We construct the required NTV CA

C ′ to function as follows: The states of C ′ are 2-tuples. The first component of each cell, put

together, gives the configuration of C. In the second component, which is initially q0, the

state of M while processing the bit string corresponding to the current computation path

is recorded. This component is updated as follows: If it contains p ∈ Q1, then on using δ1

(δ2, respectively) it is changed to δ(p, 0) (δ(p, 1), respectively). Thus along any computation

path, at any given time step, the second component of the state of each cell holds the same

value. The bit string determining the computation path is in R if and only if this value is

in F .

CHAPTER 6. NONDETERMINISTIC TV CA 91

This is in fact a weak result in that each cell is able to recognise R by acting as an FSM in

isolation. By collectively using all cells in the array, some non-regular subsets of bit strings

can also be recognised; however, for our purposes now, regular sets suffice.

Theorem 6.13 T (n)-time 1-turn NTV CA = T (n)-time 1-kink NTV CA.

Proof: Consider simulating a 1-turn NTV CA by a 1-kink NTV CA. Let the 1-turn

NTV CA be C = (Q,#, δ1, δ2, A). We define a 1-kink NTV CA, with transition functions

h1 and h2, and with one unmarked state and one marked state corresponding to each state

in Q. h1 on unmarked states acts as δ1. h2 on unmarked states acts as δ2 and also marks

the resulting states. Subsequently, all operation is on the marked version of the states. h1

on marked states acts as δ2. (If h2 encounters marked states, then the result is immaterial,

since this does not correspond to a 1-kink path.) Thus the 1-turn path 0i1j using δ1 and δ2

is simulated by the 1-kink path 0i10j−1 using h1 and h2.

The other inclusion can be similarly shown.

Since 1-turn and 1-kink nondeterminism allow less choice, it is to be expected that the

classes they define are contained in the unrestricted nondeterminism classes. This is shown

in the proof of the following theorem.

Theorem 6.14 T (n)-time 1-turn NTV CA ⊆ T (n)-time NTV CA.

Proof: A 1-turn NTV CA must have an accepting computation with a characteristic bit

string 0i1T (n)−i to accept its input. We can design an NTV CA which uses the transition

functions of the given 1-turn NTV CA, and also checks the regular expression 0∗1∗ along its

computation paths, as described in Lemma 6.12. A state is an accepting state if and only if

its first component is an accepting state for the 1-turn NTV CA and its second component

is an accepting state for an FSM accepting 0∗1∗. Thus if the NTV CA has an accepting

computation, then it must be along a 1-turn path. Hence the NTV CA accepts exactly the

same language as the 1-turn NTV CA, and within the same time.

Lastly, we show how restricted the 1-turn nondeterministic class is — even when allowed

linear time, it is contained in P . This is in direct contrast to Theorem 6.9, which shows the

existence of an NP -complete language in real-time NTV CA.

CHAPTER 6. NONDETERMINISTIC TV CA 92

Lemma 6.15 Linear-time 1-turn NTV CA ⊆ P .

Proof: A linear-time 1-turn NTV CA has cn + 1 computation paths of interest, where c

is some constant. Each path is of length cn; thus it can be traced out by a sequential

Turing machine in O(cn2) time. So all such paths can be checked in O(n3) time; hence the

corresponding language is in P .

In fact, for 1-turn nondeterminism, all NTV CA requiring polynomial time (T (n) is O(nk)

for some k) are contained in P .

This last result shows the limitations of 1-turn nondeterminism. However, we believe that

even this much nondeterminism can increase the power of a class. As a specific example,

consider any language L and define ∃MID(L) as follows:

∃MID(L) = {xyz ∈ Σ∗ | |x| = |z|, y ∈ L}

For any L in rCA, we can show that ∃MID(L) can be accepted by a real-time 1-turn

NTV CA (see Figure 8.5; the construction will be described in chapter 8). We do not know

whether, for L in rCA, ∃MID(L) can always be accepted by an rCA. Similarly, if we define

∃PRE(L) as follows:

∃PRE(L) = {xy ∈ Σ∗ | x ∈ L}

then we can show that for any L in lCA, ∃PRE(L) is in linear-time 1-turn NTV CA (see

Figure 8.2; the construction will be described in chapter 8). We do not know of any lCA

construction to accept ∃PRE(L). However, if L is an rCA language, then ∃PRE(L) can

also be shown to be an rCA language; this follows from an extension of Lemma 5.10 to

non-tally sets. These and other such closure properties will be examined in chapter 8.

The idea behind examining 1-turn NTV CA is essentially to see how many distinct com-

putation paths need to be checked for acceptance. The concept can be generalised to k-turn

for some constant k, and finite-turn. A k-turn NTV CA is an NTV CA where an accepting

path, if one exists, alternates between using δ1 and δ2 at most k times. Similarly, a k-kink

NTV CA uses δ2 at most k times. Clearly, k-turn is contained in (k+1)-turn. The non-trivial

question is whether the containment is strict. It is easy to see that k-turn and k-kink paths

also have characteristic bit strings representable by regular expressions; thus Theorems 6.13

CHAPTER 6. NONDETERMINISTIC TV CA 93

and 6.14 hold for k-turn (k-kink) NTV CA too. As for Lemma 6.15, we basically need to

count the number of distinct computation paths of interest in a k-turn NTV CA. A combi-

natorial counting procedure shows that the number of such paths, in a T (n)-time NTV CA,

is

⎛

⎜

⎝

m

0

⎞

⎟

⎠+

⎛

⎜

⎝

m

1

⎞

⎟

⎠+

⎛

⎜

⎝

m

2

⎞

⎟

⎠+ . . . +

⎛

⎜

⎝

m

k

⎞

⎟

⎠ where m = T (n). This number is polynomially

bounded in n for linear-time T (n) = cn; thus Lemma 6.15 also holds for linear-time k-turn

NTV CA. That is, as long as the number of turns allowed on a computation path is bounded

by a constant, no matter how large, the power of a linear-time NTV CA is weaker than P .

On the other hand, for unbounded turns, even real-time NTV CA has a membership problem

which is NP -complete.

6.4 Closure Properties

In this section we examine some closure properties of the language classes defined in the

preceding sections.

Theorem 6.16 If L1 and L2 can be accepted by NTV CA in T (n) time, then L1 ∪ L2 can

be accepted by an NTV CA in T (n) time.

Proof: Let C1 and C2 be the NTV CA accepting L1 and L2 respectively. We can construct

an NTV CA C which, on input x, creates two channels in the array of cells. Along each

path chosen nondeterministically, it simulates C1 in one channel and C2 in the other, using

the same characteristic bit string in both channels. If an accepting state is entered in either

of the channels, then C accepts x. Clearly, C accepts L1 ∪ L2.

Theorem 6.17 Let L1 and L2 be accepted by NTV CA in time T1(n) and T2(n) respectively.

(a) L1 ∩ L2 can be accepted by an NTV CA in T1(n) + 2n+ T2(n) time.

(b) If T1(n) is strongly time-constructibile, then L1 ∩ L2 can be accepted by an NTV CA

in T1(n) + T2(n) time.

Proof: A construction similar to that outlined in the above proof will not work in this case,

because even if x belongs to both L1 and L2, the accepting computations of C1 and C2 need

CHAPTER 6. NONDETERMINISTIC TV CA 94

not have the same characteristic bit string. So an NTV CA accepting L1 ∩ L2 must run

through all combinations of a computation of C1 followed by a computation of C2.

To achieve the time bound in (a), let C1 and C2 be the NTV CAs accepting L1 and

L2 respectively. The NTV CA C accepting L1 ∩ L2 begins simulating C1 along all paths.

If the input x belongs to L1, then acceptance will be detected within T1(n) steps. When

this happens, C initiates a firing squad synchronisation algorithm. This requires 2n steps.

When the cells synchronise, they start simulating C2. If x belongs to L2 as well, this will

be detected within another T2(n) steps. Thus if x is in L1 ∩ L2, C will accept x within

T1(n) + 2n+ T2(n) steps.

If T1(n) is strongly time-constructible, then the synchronisation stage can be avoided. C

simply begins simulating C1, while simultaneously computing T1(n). After T1(n) steps, the

whole array of cells switches over to simulating C2. The leftmost cell accepts its input if and

only if both parts of the simulation end in accepting states.

Corollary 6.18 Linear-time NTV CA are closed under union and intersection.

Since NTV CA = NSPACE(n), it follows that

Theorem 6.19 NTV CA are closed under complementation.

However, it does not seem likely, especially in the light of Theorem 6.9, that real-time or

linear-time NTV CA are closed under complementation.

Note that Theorem 6.16 goes through even if we consider k-turn NTV CA. Theorem

6.17 does not; applying the method described there will result in the intersection of k-turn

NTV CA languages being accepted by a 2k or (2k + 1)-turn (if k is odd) NTV CA.

Theorem 6.20 Let L1 and L2 be accepted by k-turn and m-turn NTV CA in T1(n) and

T2(n) time respectively. Then

(a) L1 ∪ L2 can be accepted by a max(k,m)-turn NTV CA in max(T1(n), T2(n)) time.

(b) L1 ∩ L2 can be accepted by a j-turn NTV CA in T1(n) + 2n + T2(n) time, where

j = k +m+ 1 if k is odd

= k +m otherwise

CHAPTER 6. NONDETERMINISTIC TV CA 95

✻

❄

✻

❄

C2

C1

(a) 1-turn followed by 1-turn

gives 3-turn paths

(b) 2-turn followed by 1-turn

gives 3-turn paths

✄
✄
✄
✄
✄
✄

✄
✄
✄
✄
✄
✄

✄
✄
✄
✄
✄
✄

✄
✄
✄
✄
✄
✄

✄
✄
✄
✄
✄
✄

✄
✄
✄
✄
✄
✄

✄
✄
✄
✄
✄
✄

✄
✄
✄
✄
✄
✄

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆
❆
❆

❆
❆
❆
❆

❆
❆
❆
❆

❆
❆
❆
❆

❆
❆
❆
❆

❆
❆

❆
❆

❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆
❆

❆
❆

❆
❆

❆
❆

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

❅
❅

❅❅

❅
❅

❅❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

✁
✁
✁✁

Figure 6.5: Intersection of finite-turn NTV CA languages

(c) If T1(n) is strongly time-constructible, then L1∩L2 can be accepted by a j-turn NTV CA

in T1(n) + T2(n) time, where j is as in (b).

Proof: (a) is straightforward. (b) and (c) are seen in a fashion similar to that in Theorem

6.17. The number of turns is explained as follows. An accepting path has at most k turns

from the simulation of C1, plus at most m turns from the simulation of C2, plus possibly one

more turn in changing over from the simulation of C1 to that of C2, and is thus a (k+m+1)-

turn path. The additional turn is not needed if k is even, because then the path of C1 with

maximum number of turns ends with δ1 in use. See Figure 6.5.

6.5 Conclusions

In this chapter, we have presented a new mechanism for introducing nondeterministic com-

putations in the cellular automaton model. We have compared our notion of nondeterminism

with the traditional notion. We have also defined restricted versions of nondeterministic com-

putations and explored the power of the resulting automata. All this investigation essentially

aims at refining the open problems in the containments

rOCA ⊂ rCA = lOCA ⊆ lCA ⊆ OCA ⊆ CA = DSPACE(n) ⊆ NSPACE(n)

CHAPTER 6. NONDETERMINISTIC TV CA 96

and thus providing an alternative approach to solving the problems. A lot more investigation

still remains to be done. A relatively unexplored area is the use of traditionally defined

nondeterminism in time-bounded CA classes, ie. studying classes like rNCA and lNCA. We

feel that some questions concerning the power of these classes can be answered independent

of the longstanding open questions regarding rCA, lCA and CA.

Chapter 7

Probabilistic and Alternating

Computations on CA

So far we have seen two interpretations of TV CA in detail — TV CA as relativised CA in

chapters 4 and 5, and TV CA as nondeterministic CA in chapter 6. In a relativised CA

operation, the unique computation path whose characteristic bit string is a prefix of the

characteristic bit string of the oracle is picked, and the input is accepted if and only if this

computation path ends in an accepting configuration. When the TV CA is given a nonde-

terministic interpretation, we check whether at all there exists an accepting computation.

We can also check, instead, whether more than half of the computation paths are accepting

computations, thus interpreting the TV CA operation as a probabilistic computation. Or,

we can mark out specific states as universal or existential, and check if all or some compu-

tations respectively from these states end in accepting configurations; this would yield an

alternating CA operation. Such computations are briefly examined in this chapter. Section

7.1 considers probabilistic computations, both unrestricted and restricted to specific com-

putation paths. Section 7.2 looks at alternating CA computations, especially in comparison

with ASPACE(n) computations of alternating Turing machines.

97

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 98

7.1 Probabilistic Computation on a TVCA

In this section we look at some of the classes obtained by viewing the operation of a TV CA as

a probabilistic computation, ie. a computation which is deemed to be accepting if more than

half of the sub-computations are accepting. For such probabilistic TV CA (PTV CA), we

impose the condition that T (n) be CA-time-constructible. This is because when we count

the number of accepting computations, we want to have a binary tree, of computations,

which is pruned at a particular height T (n). PTV CA are formally defined as follows:

Definition 7.1 Let T (n) be a CA-time-constructible function. A T (n)-time probabilistic

TV CA (PTV CA) is a construct C = (Q,#, δ1, δ2, A) defined as a 2-TV CA. Acceptance

is defined as follows: A string w is accepted by C if more than half of the T (|w|)-time

computations of C on w are accepting computations.

Henceforth, for PTV CA, when we talk of a T (n)-time computation we implicitly assume

that T (n) is CA-time-constructible.

As in the case of NTV CA, here too we can define restricted versions, where only certain

computation paths are of interest.

Definition 7.2 A 1-turn (1-kink) PTV CA is a TV CA C which accepts input w if and

only if more than half of the computation paths determined by bit strings of the form 0∗1∗

(0∗(ϵ+ 10∗)) are accepting computations.

Also, as was done in chapter 6 for NTV CA, these definitions can be generalised to

k-TV CA as well.

The following result is easily shown.

Theorem 7.3 T (n)-time NTV CA ⊆ T (n)-time PTV CA

Proof: Let C be a T (n)-timeNTV CA. On any input w of length n, it has 2T (n) computation

paths. If even one of these is an accepting path, then C accepts w. To incorporate this

condition into a probabilistic computation, we construct a PTV CA C ′ which, at t = 1,

executes a dummy step. In this step, δ1 puts the CA into an accepting configuration from

which all configurations resulting from the application of either δ1 or δ2 in any order are

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 99

accepting configurations. δ2 puts it in the same input configuration with a marker to indicate

that the dummy step is over. This configuration is now updated as in C. Thus a computation

of C with characteristic bit string b1b2 . . . bT (n) is simulated by the computation of C ′ having

characteristic bit string 1b1b2 . . . bT (n). All computation paths of C ′ having characteristic bit

strings beginning with 0 are accepting computations; exactly half of the total number of

computations are of this type. Thus C ′ will accept w if even one computation path with

characteristic bit string of the form 1α is an accepting computation, which happens if and

only if the computation of C with characteristic bit string α is an accepting computation,

in which case C also accepts w. Thus C ′ accepts its input exactly when C does.

The PTV CA C ′ so constructed requires T (n) + 1 time. To speed it up by one step, we

can modify it to get C ′′ as follows: At the first time step, δ2, instead of performing a dummy

computation, creates two channels in the array. The first channel is filled with the contents

obtained by applying δ1 to w, and the second channel is filled with the contents obtained by

applying δ2 to w. At subsequent steps, each channel is updated according to the transition

function in use at that step. Thus each computation of C ′′ with characteristic bit string 1α

holds the results of two computations of C — namely, the computations with characteristic

bit strings 1α and 0α — in its two channels. C ′′ is programmed to accept its input if either

of the two channels holds an accepting configuration. Clearly, C ′′ accepts the same language

as C ′ probabilistically, and does so in T (n) time.

Corollary 7.4 Real-time NTV CA ⊆ real-time PTV CA.

Linear-time NTV CA ⊆ linear-time PTV CA.

By a construction similar to that in the proof of Theorem 6.11, we can also show that

linear-time PTV CA are no more powerful than deterministic OCA.

Theorem 7.5 Linear-time PTV CA ⊆ OCA

Proof: Given any linear-time PTV CA, we will construct an SA (sweeping automaton)

accepting the same language as the PTV CA. This will prove the theorem. Most of the

details of the construction of the SA are as in the proof of Theorem 6.11; here we will only

describe the additional details.

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 100

While simulating the NTV CA, the SA traced out the different computation paths of

the NTV CA in lexicographic order, and accepted the input if any accepting computation

path was found. For a PTV CA simulation, the SA must check all computation paths, and

count how many of them are accepting computations. For this, a fourth area is created on

the worktape, beyond the three areas described earlier. This area has cn cells, and is used

as a counter γ initialised to zero. γ is incremented whenever an accepting computation is

found. When all computation paths have been checked, the SA checks whether γ contains

a number greater than 2cn−1. If this is the case, the SA moves right in an accepting state;

otherwise it moves right in a rejecting state. Thus the probabilistic acceptance condition is

checked.

We now consider the restricted-paths PTV CA defined in Definition 7.2. Some of the

results can be shown in a direct analogue of the corresponding results for NTV CA; others

are not so simple to see.

Theorem 7.6 T (n)-time 1-turn PTV CA = T (n)-time 1-kink PTV CA.

This is shown as in the proof of Theorem 6.13.

Since 1-turn and 1-kink nondeterminism allow less choice, it is to be expected that the

classes they define are contained in the unrestricted nondeterminism classes. For NTV CA

computation, Theorem 6.14 shows that this is indeed the case. It is also true for probabilistic

computation; however, this is not so easy to see. That the containment still holds is shown

in the proof of the following theorem.

Theorem 7.7 T (n)-time 1-turn PTV CA ⊆ T (n)-time PTV CA.

Proof: A 1-turn PTV CA has T (n) + 1 computation paths of interest. A PTV CA, on the

other hand, has to consider 2T (n) computation paths. In a simulation of a 1-turn PTV CA,

2T (n)−T (n)− 1 of these carry no information; they correspond to invalid paths. To prevent

these computation paths from affecting the overall outcome, we must ensure that exactly

half of these are accepting computations. Consider the following method of division of these

paths into accepting and rejecting paths:

Invalid paths (ie. of the form Σ∗10Σ∗): 2T (n) − T (n)− 1.

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 101

1. Paths beginning with 0 (ie. of the form 0+1+0+Σ∗): 2T (n)−1 − T (n) paths.

2. Paths beginning with 1 (ie. of the form 1+0+Σ∗): 2T (n)−1 − 1 paths.

(a) Paths of the form 1+0+: T (n)− 1 paths.

(i) Paths with odd number of 1s (ie. of the form 1k0j, where 0 < k, j < T (n)

and k is odd): ⌊T (n)/2⌋ paths.

(ii) Paths with even number of 1s (ie. of the form 1k0j, where 0 < k, j < T (n)

and k is even): ⌈T (n)/2⌉ − 1 paths.

(b) Other paths (ie. of the form 1+0+1Σ+): 2T (n)−1 − T (n) paths.

Make all paths in 1 and 2(a)(i) accepting, and all paths in 2(a)(ii) and 2(b) rejecting.

The accept cell can determine the type of the path currently being followed using the pro-

cedure described in Lemma 6.12.

Let A and R denote the number of invalid accepting and rejecting paths respectively.

Then A = 2T (n)−1 − T (n) + ⌊T (n)/2⌋, and B = 2T (n)−1 − T (n) + ⌈T (n)/2⌉ − 1. Clearly, if

T (n) is odd, then A = R, as desired. If T (n) is even, the A = R + 1. But in this case, the

number of valid paths is itself odd (T (n) + 1), and so the 1-turn PTV CA cannot have a tie

between the number of accepting and rejecting paths. So this distribution of invalid paths

does not introduce any error. Thus in either case, the PTV CA accept its input if and only

if the number of valid accept paths exceeds the number of valid reject paths; ie. if and only

if the 1-turn PTV CA accepts its input.

For these restricted choice classes also, we show below that an NTV CA class is contained

in the corresponding PTV CA class.

Theorem 7.8 T (n)-time 1-turn NTV CA ⊆ T (n)-time 1-turn PTV CA.

Proof: A T (n)-time 1-turn NTV CA has T (n) + 1 computation paths of interest, ie. valid

computation paths. If any of these is an accepting computation, then the input is to be

accepted. To achieve the same effect in a probabilistic computation, we can construct a

PTV CA which has 2T (n) + 1 valid computation paths of interest. T (n) of these can be de-

signed to always accept the input, and the remaining T (n)+1 can simulate the corresponding

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 102

computation paths of the 1-turn TV CA. However, since we want the resulting PTV CA to

be 1-turn itself, it must be a 2T (n)-time PTV CA, since only then will 2T (n) + 1 computa-

tion paths be considered for acceptance. So this approach, though the most straightforward,

does not give us a real-time simulation.

To simulate the 1-turn NTV CA probabilistically in real time using only 1-turn paths,

we construct a T (n)-time PTV CA where half of the valid computation paths are accepting

paths and each of the remaining valid computation paths simulates two distinct computation

paths of the NTV CA. (This construction is very similar to that outlined in the proof of

Theorem 7.3, the difference being that we now restrict our attention to 1-turn paths.) Thus

the nondeterministic acceptance criterion of the NTV CA is translated into a probabilistic

acceptance criterion.

The division of valid computation paths is done as follows. Note that 1-turn paths are

described by bit strings of the form 0i1j, where i + j = T (n). Let all paths described by

such strings with odd i accept. Let all paths with even i simulate the NTV CA paths with

characteristic bit strings 0i1j and 0i+11j−1. This is done by maintaining two tracks in each

cell. The second track is initially empty. As long as δ1 is being used, only the first track is

used. When δ2 is first used, let the first track contain α. Now the first (second, respectively)

track is filled with the result obtained by applying δ1 (δ2, respectively) to α. Subsequently,

δ2 is used on both tracks. The leftmost cell enters an accepting state if an accepting state

is reached in either track. The PTV CA so constructed accepts the same language as the

NTV CA.

Corollary 7.9 Real-time 1-turn NTV CA ⊆ real-time 1-turn PTV CA.

Linear-time 1-turn NTV CA ⊆ linear-time 1-turn PTV CA.

Finally, we show that even linear-time 1-turn PTV CA are contained in P . This is not

an unexpected result, and it merely points out that the weakness of 1-turn or even k-turn

computations is not overcome by going from nondeterministic to probabilistic computations.

Theorem 7.10 Linear-time 1-turn PTV CA ⊆ P .

Proof: Let the 1-turn PTV CA operate in cn time, where c > 0 is some constant. There

are cn + 1 valid computation paths. The characteristic bit strings of these paths can easily

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 103

be generated in lexicographic order by a deterministic Turing machine. For each such string

generated, the corresponding computation path of the PTV CA can be traced out by the

Turing machine in O(n2) time (O(n) time per step, and there are cn steps). Thus all paths

can be successively traced out in O(n3) time. Additionally, the Turing machine can also keep

track of how many of these paths ended in accepting configurations. So it can determine, in

O(n3) time, whether the PTV CA accepted its input.

Clearly, this argument holds even if the PTV CA requires p(n) time for some polyno-

mial p. The simulating Turing machine will then require O(np2(n)) time, which is again

polynomially bounded.

The study in restricted nondeterminism can easily be extended to 2-turn paths and in

general k-turn paths for any constant k. As an example, we show below that 1-turn T (n)-time

PTV CA are contained in 2-turn T (n)-time PTV CA. As in the proof of Theorem 7.7, we

need to show that the paths which are 2-turn but not 1-turn can be divided equally between

accepting and rejecting computations, so that they do not affect the overall outcome. A 1-

turn path has characteristic bit string 0∗1∗, while a 2-turn path has characteristic bit string

0∗1∗0∗. The difference is thus characterised by bit strings of the form 0∗1∗100∗; for strings

of length T (n), there are [T (n) − 1]T (n)/2 such paths. (The position of the last 1 can be

chosen in T (n)− 1 ways, excluding the last position. For each such position i, the position

of the first 1 can be chosen in i ways, from 1 to i.) These invalid paths can be partitioned

into accepting and rejecting paths as per the division described below. (Such a partition is

possible, since paths of each set can be described by regular expressions, and then Lemma

6.12 can be used.) The cardinalities of different sets in the partition are also indicated.

Paths which are 2-turn but not 1-turn (ie. paths of the form 0∗1+0+, ie. 0i1j0k where

i ≥ 0, j, k > 0): [T (n)− 1]T (n)/2 paths.

Case 1. T (n) is even, i+ j + k = 2m for some m: 2m2 −m paths.

1. (i + j) even. The last 1 can be in positions 2, 4, 6, . . . , 2m − 2. For each such

position j, the first 1 can be in positions 1, . . . , j. Total number of such paths,

hence, is given by Σm−1
j=1 (2j) = m2 −m.

2. (i+ j) odd: m2 paths.

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 104

(a) j = 1, i ≡ 0 (mod 4) (ie. paths of the form 04i10k): ⌈m/2⌉ paths.

(b) Other paths: m2 − ⌈m/2⌉.

Accept on paths from 1 or 2(a), and reject on paths from 2(b).

Case 2. T (n) is odd, i+ j + k = 2m+ 1 for some m: 2m2 +m paths.

1. (i + j) odd. The last 1 can be in positions 1, 3, 5, . . . , 2m − 1. For each such

position j, the first 1 can be in positions 1, . . . , j. Total number of such paths,

hence, is given by Σm
j=1(2j − 1) = m2.

2. (i+ j) even: m2 +m paths.

(a) j = 1, i ≡ 1 (mod 4) (ie. paths of the form 04i+110k): ⌈m/2⌉ paths.

(b) Other paths: m2 + ⌊m/2⌋.

Accept on paths from 2(b), and reject on paths from 1 or 2(a).

Let A1 and R1 denote the number of accepting and rejecting paths respectively of the

1-turn PTV CA, and Ae and Re denote the number of invalid accepting and rejecting paths

respectively of the 2-turn PTV CA. Then A (R respectively), the number of valid accepting

(rejecting) paths of the 2-turn PTV CA, is given by A1 + Ae (R1 +Re, respectively).

In Case 1, Ae = Re or Ae = Re + 1. Since, in this case, T (n) is even, the number of

1-turn paths is odd, and thus A1 and R1 cannot be equal. So A exceeds R if and only if A1

exceeds R1.

Similarly, in Case 2, Ae = Re or Ae = Re − 1. In this case, T (n) is odd, and the number

of 1-turn paths is even. Thus if A1 exceeds R1, it does so by at least 2. A1 and R1 can also

be equal, but then the input should be rejected. It is easy to see that in this case too, A

exceeds R if and only if A1 exceeds R1.

Thus the 2-turn PTV CA accepts the same language as the 1-turn PTV CA.

We thus have the following result:

Theorem 7.11 1-turn T (n)-time PTV CA ⊆ 2-turn T (n)-time PTV CA.

The other results in this section can be similarly generalised.

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 105

Lastly, we consider the closure of PTV CA language classes under some simple operations.

Closure under union or intersection does not seem to hold; the proofs of Theorems 6.16 and

6.17 do not carry over, since we now need to count the number of accepting computations

of C1 and C2. On the other hand, for PTV CA, closure under complementation is relatively

easy to show. Merely exchanging the accepting and the non-accepting states fails in case

there are an equal number of accepting and rejecting computations. However, using one

extra time step, this difficulty can be overcome, as is seen in the following theorem.

Theorem 7.12 If L can be accepted by a PTV CA in T (n) time, then L can be accepted by

a PTV CA in T (n) + 1 time.

Proof: Given a T (n)-time PTV CA C accepting L, we construct a (T (n)+1)-time PTV CA

C ′ accepting L as follows. A computation path of C ′ with characteristic bit string 1α

follows the computation of C with characteristic bit string α, and accepts if and only if

the computation of C rejects. All computation paths of C ′ with characteristic bit string

beginning with 0 are dummy computations, introduced to take care of the case when the

number of accepting and rejecting computations of C, A and R respectively, are tied. Dummy

paths ending with 0 accept. Dummy paths ending with 1 reject, the only exception being the

path with characteristic bit string 0T (n)1, which accepts. We can now see that the number

of accepting and rejecting computations of C ′, A′ and R′ respectively, are

A′ = R + 2T (n)−1 + 1

R′ = A+ 2T (n)−1 − 1

where A + R = 2T (n). It is easily verified that A′ > R′, making C ′ accept its input, if and

only if A ≤ R, ie. if and only if C rejected its input. Thus C ′ accepts the complement of the

language accepted by C.

7.2 Alternating Computations on TVCA

Further generalising the concept of nondeterministic and probabilistic TV CA, we now in-

troduce alternation in the CA model of computation. An alternating CA (ACA) is a CA

which, at each time step, may globally, ie. at all cells, use either of two transition functions δ1

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 106

and δ2. The states of Q are partitioned into four classes — accepting states, rejecting states,

universal states and existential states. Whether a particular configuration is a universal or

an existential configuration is determined by the state of the leftmost cell. The computation

tree of an ACA on input w is a binary tree where the root node holds w. The left (right)

child of a node holding c holds the configuration obtained by applying δ1 (δ2) to c. The input

w is said to be accepted if this binary tree has a subtree satisfying the following properties:

The root node of the subtree is the root node of the overall computation tree.

At each node, if the leftmost state in the configuration represented at that node is

universal, then both children of the node are present in the subtree.

At each node, if the leftmost state in the configuration represented at that node is

existential, then exactly one child of the node is present in the subtree.

At each node, if the leftmost state in the configuration represented at that node is

accepting, then the node is a leaf of the subtree.

No leaf of the subtree has a rejecting state as the leftmost state in its configuration.

Such a subtree represents an accepting computation of the ACA.

Investigating the power of such ACA necessarily begins with examining the relationship

DSPACE(n) = CA. We shall first show that the corresponding equality for alternating

computations also holds. Without loss of generality we assume that the Turing machines

considered have a single tape.

Lemma 7.13 ASPACE(n) ⊆ ACA.

Proof: This proof is a slight modification of the proof of Lemma 2.3, where we show that

DSPACE(n) ⊆ CA. The construction outlined there cannot be used directly because the

state of the alternating Turing machine (ATM) at each time step indicates whether the

ATM is in a universal or an existential state. So, in the simulating ACA, this state must

always be represented at the leftmost cell. The ACA holds tape configurations of the ATM

in its array in a folded fashion in two tracks, so that the tape square over which the ATM

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 107

head is positioned is always represented at the leftmost cell. When the tape head moves, the

ACA correspondingly shifts the contents of the two tracks. For details of such a construction,

see Smith’s proof [Smi72] that DSPACE(n) ⊆ CA. This requires one data movement step

after each real simulation step; thus the ACA takes twice as much time as the ATM and

finally performs the same computation.

Lemma 7.14 ACA ⊆ ASPACE(n).

Proof: This lemma is quite easy to see; given an ACA, the ASPACE(n) machine construc-

tion is akin to constructing an NSPACE(n) machine simulating an NTV CA (Lemma 6.5).

The Turing machine operates in sweeps, where each sweep requires O(n) time and simulates

one step of the CA. For simulating an ACA, the state of the ATM at the beginning of each

sweep reflects the state — universal or existential — of the ACA, while the operation within

a sweep is deterministic.

From the above two lemmas it now follows that

Theorem 7.15 ACA = ASPACE(n).

The time-bounded ACA classes correspond to time-bounded ASPACE(n) computations.

We use ASPTI(s(n), t(n)) to denote computations of alternating Turing machines which use

s(n) space and run in t(n) time, and ACA(t(n)) to denote ACA running in t(n) time. The

next two lemmas are quite easy to see; they follow from the constructions outlined in Lemmas

7.13 and 7.14.

Lemma 7.16 ASPTI(n, t(n)) ⊆ ACA(2t(n)).

Consequently, the DTIME(n) ⊆ lCA containment carries over to alternating computations

too.

Corollary 7.17 ATIME(n) ⊆ lACA.

Lemma 7.18 ACA(t(n)) ⊆ ASPTI(n,O(nt(n))).

Thus, if poly denotes the class of polynomial-valued functions, then

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 108

NSPACE(
√
n) ATIME(n) OCA

ATIME(n2)

CA
=

DSPACE(n)

NCA
=

NSPACE(n)

ACA
=

ASPACE(n)

✲ ✲

❄

✛✛

❄

Figure 7.1: Inclusions among CA and ATM classes

Corollary 7.19 ACA(poly) = ASPTI(n, poly) ⊆ PSPACE.

It is also quite easy to see, by a process similar to that outlined in Theorem 6.9, that

the language of fully quantified Boolean formulas evaluating to True, QBF , is in lACA.

Since QBF is PSPACE-complete [BDG88], the membership problem for lACA is also

PSPACE-complete.

Since it is known that NSPACE(s(n)) is contained in ATIME(s2(n)) [HU79, BDG90],

we thus have the overall setup shown in Figure 7.1.

7.3 Conclusions

In this chapter we have considered two more interpretations of TV CA — as probabilistic CA

and as alternating CA. These are both generalisations of theNTV CA defined in the previous

chapter, and have been examined only briefly here. The relations between such language

classes are depicted in Figures 7.1 and 7.2. In Figure 7.2, known (ie. existing) classes are

shown in ovals and the newly defined classes are shown in boxes. The containments depicted

between ovals are known results; the other containments have been shown in this thesis.

The alternating CA classes are useful in considering closures of rCA and lCA languages

under various operations. If lCA are not known to be closed under some operation, we

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 109

would like to identify the smallest CA class containing this closure; this gives us some idea

of the complexity of the operation considered. Alternating CA classes help in this respect.

Some such closure results are shown in the next chapter, which deals with the closure of CA

classes under a wide variety of language operations.

CHAPTER 7. PROBABILISTIC AND ALTERNATING CA 110

rOCA

rNTV OCA

rNOCA

lOCA

lNTV OCA

lNOCA

OCA

NTV OCA

NOCA

rCA

1-turn
rNTV CA

rNTV CA

rNCA

lCA

1-turn
lNTV CA

lNTV CA

lNCA

CA

NTV CA

NCA

1-turn
rPTV CA

rPTV CA lPTV CA

1-turn
lPTV CA

lPTV CA

❄

❄

❄

❄

❄

❄

✻

❄

❄

❄

❄

❄

❄

❄

❄

✻❄ ❄

✲ ✲

✲ ✲

✲ ✲

✲ ✲

✲

✲ ✲

✲ ✲

✲

✲

❳❳❳❳❳❳③
❳❳❳❳❳❳③

❍❍❍❥

❳❳❳❳❳❳③
❳❳❳❳❳❳③

❍❍❍❥
②

❳❳❳❳❳❳③
❳❳❳❳❳❳③

✚
✚
✚
✚

✚✚❃

✚
✚
✚
✚

✚✚❃

✓
✓
✓
✓✼

✴

✏✏✏✏✶
✏✏✏✏✏✮

✏✏✏✏✶
✏✏✏✏✮

✫ ✲

✘
❄
✘

❄

✠

✻
/

/

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

arrow : inclusion

crossed arrow : proper inclusion

double-sided arrow : equality

Figure 7.2: Deterministic, nondeterministic and probabilistic CA classes

Chapter 8

Language Operations on Cellular

Automata Classes

8.1 Introduction

When studying any language class, an interesting question from the language-theoretic view-

point is identifying language operations under which the class is closed. In other words, if

L is a language class and ◦ is a k-ary operation on languages, then the question is whether

L1, L2, . . . , Lk ∈ L ⇒ ◦(L1, L2, . . . , Lk) ∈ L is true. Several language operations have

been studied in the literature, especially in relation to the classes defined by the Chomsky

hierarchy [HU79]. Operations typically studied are:

• Operations with regular sets: concatenation, intersection, quotient

• Boolean operations: union, intersection, complementation

• Kleene operations: ⋆, concatenation

• Marked operations: marked union (c1L1 ∪ c2L2) and marked product (L1cL2)

• Others: MIN , MAX, reversal, homomorphisms, inverse gsms etc.

The study of closure properties is important for several reasons:

• Closure properties can be used to show that a language belongs to a particular class.

111

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 112

• Closure properties can be used to show that a language does not belong to a particular

class.

• The closure or non-closure of a class under some operation can reflect the proper

containment or equality of this class in or with some other class; thus, investigating the

closure could provide another approach to proving/disproving a proper containment.

In this chapter, we examine some closure properties of the language classes defined by

(real-space-bounded) cellular automata. Many closure properties of these classes, especially

under the Boolean and Kleene operations, have already been investigated in detail [BC84,

CGS84a, CGS84b, CGS86, IJ87, IJ88, IK84, Smi72]. Some of the known results are listed

below:

rOCA This class is closed under union, intersection, complementation, reversal, marked

concatenation and marked star, inverse morphisms, injective length-multiplying mor-

phisms, inverse deterministic gsm mappings. It is not closed under letter-to-letter

morphisms [CGS84a, CGS84b, CGS86, IK84].

rCA This class is closed under union, intersection, complementation. Its closure under

reversal and concatenation is not known. However, it is known that the class is closed

under concatenation if it is closed under reversal and that it is closed under reversal if

and only if it is equivalent in power to lCA [Smi72, IJ88].

lCA This class is closed under union, intersection, complementation, reversal [Smi72].

OCA This class is closed under union, concatenation, Kleene +, ϵ-free homomorphisms,

inverse homomorphisms, intersection, complementation, reversal [IJ87].

Here we consider closures under some other language operations. We consider the following

operations:

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 113

INIT (L) = {x | ∃y, xy ∈ L}

END(L) = {x | ∃y, yx ∈ L}

MAX(L) = {x | x ∈ L

and x is not a proper prefix of any word in L}

∃PRE(L) = {xy | x ∈ L}

= {a1 . . . an | ∃i ∈ {1, 2, . . . , n}, a1 . . . ai ∈ L}

∀PRE(L) = {a1a2 . . . an | for 1 ≤ i ≤ n, a1a2 . . . ai ∈ L}

⊕PRE(L) = {a1a2 . . . an |

∥{a1a2 . . . ai | a1a2 . . . ai ∈ L, 1 ≤ i ≤ n}∥ is odd }

MIN(L) = {x | x ∈ L and no w ∈ L is a proper prefix of x}

= {a1a2 . . . an ∈ L | for 1 ≤ i < n, a1a2 . . . ai ̸∈ L}

PADm,n(L) = {xy | m|x| = n|y|, x ∈ L}

(1/2)L = {x | ∃y, |x| = |y|, xy ∈ L}

(1/3)L = {x | ∃y, 2|x| = |y|, xy ∈ L}

MID(1/3)(L) = {x | ∃y, ∃z, |x| = |y| = |z|, yxz ∈ L}

∃MID(L) = {xyz | |x| = |z|, y ∈ L}

(1/2)CY CLE(L) = {xy | |x| = |y|, yx ∈ L}

CY CLE(L) = {xy | yx ∈ L}

SHUFFLE(L) = {a2a1a4a3 . . . a2na2n−1 | a1a2 . . . a2n ∈ L}

Most of these operations preserve regular sets; see [HU79].

The results we prove are summarised in table 8.1.

8.2 Closure Properties

In this section we consider the language classes rOCA, rCA, lCA, OCA, and CA. We

examine the complexity of the resulting languages when an operation amongst those listed in

section 8.1 is applied to languages of these classes. Our first observation is that the operations

INIT , END and MAX are very powerful; even when applied to rOCA languages, these

operations yield undecidable languages.

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 114

rOCA rCA lCA OCA CA

INIT (L) U U U U U

MAX(L) U U U U U

END(L) U U U U U

∃PRE(L) rOCA rCA O(n2) time CA OCA CA

or

1-turn lNTV CA

∀PRE(L) rOCA rCA O(n2) time CA OCA CA

or

lACA

⊕PRE(L) rOCA rCA O(n2) time CA OCA CA

or

lACA

MIN(L) rOCA rCA O(n2) time CA OCA CA

or

lACA

PADm,n(L) rCA lCA OCA CA

(1/2)(L) lNTV CA OCA CA

(1/3)(L) lNTV CA OCA CA

MID(1/3)(L) lNTV CA OCA CA

∃MID(L) 1-turn rNTV CA 1-turn lNTV CA OCA CA

(1/2)CY CLE(L) lCA OCA CA

CY CLE(L) O(n2) time CA OCA CA

or

1-turn lNTV CA

SHUFFLE(L) rCA lCA OCA CA

Table 8.1: Closure properties of CA language classes

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 115

Theorem 8.1 For an arbitrary given rOCA language L and a string x, it is undecidable

whether x ∈ INIT (L) or x ∈ END(L) or x ∈MAX(L).

Proof: It has been shown in [CGS86] that the emptiness problem for homogeneous trellis

automata (given a homogeneous trellis automata, decide whether the language accepted by

it is empty) is undecidable, and in [BC84, CC84] that homogeneous trellis automata and

rOCA accept exactly the same class of languages. Thus the emptiness problem for rOCA

languages is undecidable. The emptiness problem for L can be reduced to the membership

problem for INIT (L) as follows: Let L be the rOCA language, L ⊆ Σ+. Choose a special

symbol $ ̸∈ Σ, and define L′ as L′ = $L = {$x | x ∈ L}. Clearly, L′ is also an rOCA

language. Now, $ ∈ INIT (L′) if and only if, for some y, $y ∈ L′, if and only if, for some

y, y ∈ L, if and only if L ̸= ∅. Thus, if membership of $ in INIT (L′) were decidable, then

emptiness of L would also be decidable. But this is known to be undecidable. Hence, for an

rOCA language L, the membership problem in INIT (L) is undecidable.

The undecidability of the membership problem for END(L) is similarly shown, using

the language L$ in the reduction. To show undecidability of MAX(L), $L ∪ {$} is used in

the reduction.

None of the remaining operations generate undecidable languages from CA languages; in

fact it is easy to show that the class of CA languages is closed under all these operations.

Theorem 8.2 If L ∈ CA, then all the languages described above, except INIT (L), END(L),

and MAX(L), are also CA languages.

Proof: CA languages exactly coincide with the class DSPACE(n). It is easy to see that

for any DSPACE(n) language L, the languages obtained through the operations described

above can also be accepted by DSPACE(n) machines.

Thus when we consider these operations on classes within CA, we know that CA algorithms

exist; we will try to find the smallest sub-classes within CA containing the closures of these

classes under these operations. Our next two results consider the operations which require

prefix membership computations. For rOCA and rCA, such computations can be performed

within the same bound; however, for lCA, efficient computations do not seem to be possible.

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 116

Theorem 8.3 Let ✷ ∈ {∃, ∀,⊕}. If L is an rOCA or an lOCA (= rCA) language, then

✷PRE(L) and MIN(L) are rOCA or lOCA languages respectively.

Proof: Let L ∈ rOCA be accepted by an rOCA C. Let S be a signal sent from the

leftmost cell to the rightmost cell at unit speed. As S passes through the ith cell, this cell is

indicating whether or not the prefix of x of length i is in L. S can record all these responses

and perform the ✷ operation on them as it travels right. Thus when it reaches the right end,

it can indicate whether some, or all, or an odd number of prefixes, (depending on ✷) of x

are in L. It can also check whether any proper prefix is in L. So ✷PRE(L) or MIN(L) can

be accepted.

If L is an rCA language accepted by rCA C, then Lemma 5.10 outlines the construction

of a CA C ′ which on input x behaves as follows: At time i, the leftmost cell of C ′ indicates

whether or not the prefix of x of length i is in L. The construction given there is for tally

languages, but it is easily verified that it carries over for non-tally languages as well. See

Figure 8.1. Now C ′ can be modified so that the leftmost cell also performs the ✷ operation

on its successive states. Thus the ✷ operation is performed on the membership values of

all prefixes; thus ✷PRE(L) is accepted in real time. Similarly, the leftmost cell could check

that x is in L but no proper prefix of x is in L; thus MIN(L) can be accepted in real time.

Theorem 8.4 Let L be an lCA language, and let ✷ ∈ {∃, ∀,⊕}. Then

(a) ✷PRE(L) and MIN(L) can be accepted by a CA in O(n2) time.

(b) ∃PRE(L) can be accepted by a linear-time 1-turn NTV CA.

(c) ∀PRE(L), MIN(L) and ⊕PRE(L) can be accepted by a linear-time alternating CA.

Proof: (a) Let L be accepted by an lCA C. Construct a CA C ′, which, on input x =

a1a2 . . . an, does the following: A signal S is sent from the rightmost cell to the left. When S

first reaches the ith cell, it initiates a firing squad synchronisation algorithm on the cells to its

left. When the cells fire (2i steps), they simulate C; thus C is simulated on input a1a2 . . . ai.

When this is complete (2i steps), S moves one cell left. As and when the membership value

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 117

a b c d

1 2 3 4

5 6 7

8 9

10

a b c

1 2 11

5 12

13

a b

1 14

15

a

16

Computation of rCA C on prefixes of abcd

a b c d

1, 16 2, 14 3, 11 4, $

5, 15 6, 12 7, $

8, 13 9, $

10, $

Corresponding computation of rCA C ′

Figure 8.1: Real-time simulation on all prefixes, for an rCA language

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 118

of a1a2 . . . ai in L, for some i, reaches the leftmost cell, it updates the ✷ value. When S

reaches the leftmost cell, ✷PRE(L) is correctly computed here. Since S spends 4i steps at

each cell, the total time required is O(n2).

The leftmost cell could, instead of computing ✷, also check the prefix condition for

MIN(L); thus MIN(L) can be accepted in O(n2) time.

(The firing squad synchronisation algorithm on the first i cells, and the simulation of C on

the first i+ 1 cells, can be done in parallel. The time required still remains O(n2).)

(b) This is seen as follows. The NTV CA begins using δ1 as the transition function. While

δ1 is being used, a signal travels from right to left at unit speed. If δ1 is used for n or more

steps, then the computation is useless and does nothing. If, however, the one turn to using

δ2 is made at time n′ ≤ n, then at this point a suffix of size n′ has been identified; the suffix

is the substring in the cells which have already seen the signal pass through them. In the

subsequent computation, which uses transition function δ2, these cells behave as if they have

the boundary state #, while the remaining cells behave like cells from the lCA accepting

L. Thus only the prefix of length n − n′ acts as input to the lCA being simulated. If this

simulation ends in an accepting state, the NTV CA accepts its input. In other words, the

NTV CA accepts its input if there is some prefix of the input which is accepted by the lCA;

ie. the NTV CA accepts ∃PRE(L). A time-space unrolling for such an NTV CA is shown

in Figure 8.2. Notice that the unique turn in the characteristic bit string of the computation

path also serves to synchronise the cells in the prefix; an explicit firing squad synchronisation

algorithm is not required after a prefix has been identified.

(c) This is shown in a manner similar to (b) above. To compute ∀PRE(L), during the first

n steps, the CA remains in a universal state, while a signal S travels from right to left. δ1

propagates S while δ2 puts the array into a configuration which uses a different copy of the

state set. In this configuration, cells through which S has already passed go into a dummy

state and do not affect the remaining computation. On the remaining cells, both δ1 and δ2

behave like the lCA accepting L. Thus if δ2 is first used at time t, for 1 ≤ t ≤ n, then the

ensuing computations check whether a1 . . . at belongs to L. Since for the first n steps the CA

is in a universal state, the input is accepted if and only if all such checks return a positive

answer. (After n steps, the CA could be in a universal or an existential state; it does not

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 119

✲✛ ✛ ✲yx

+
+

+
+

+
+✠

+
+

+
+

+
+

+
++✠

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+

+
+
+

+
+
++

+
+
+

+
+
+

+
+

+
+
+

+
+
+

++

+
+
+

+
+
++

+
+
+

+
+
+

+
+
+

+
++

+
+
+

+
+

+
+
+

++

+
+
+
+

+
+
++

+
+++
+++

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δ1

δ2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Signal travels left, marking y.

(δ1 guesses y.)

In shaded region, unmarked

cells check membership of

x, in 2|x| steps.
(δ2 simulates C on x.)

Figure 8.2: For L ∈ lCA, a 1-turn lNTV CA accepting ∃PRE(L)

matter, since δ1 and δ2 are behaving identically.) Thus ∀PRE(L) is accepted. The tree of

computations that the ACA follows for accepting ∀PRE(L), where L is an lCA language,

is shown in Figure 8.3.

To accept MIN(L), the same type of computation tree is generated. However, on all

branches except the rightmost branch, ie. on all branches which check membership of a proper

prefix of x, the lCA accepting L (lCA are closed under complementation) is simulated. Thus

the ACA checks that no proper prefix of x belongs to L.

To accept ⊕PRE(L), the ACA needs to check that an odd number of prefixes of the input

x belong to L. This checking is done in two phases. In the first phase, which is existential,

some cells of the input are marked. Let the marked cells be in positions i1, i2, . . . , ik, where

0 ≤ k ≤ |x|. (The marking can be done as in the previous constructions, by sending a signal

S and making only δ1 mark a cell in the presence of this signal.) The second phase is a

universal phase; all tests here must be satisfied. The tests conducted in this phase check

that:

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 120

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

❅
❅

❅
❅❅

❅
❅

❅
❅❅

❅
❅

❅
❅❅

❍❍❍❍❍

abcd

abcd

abcd

abcd

abcd

Accept

lCA
simulation

on a

lCA
simulation

on ab
...

lCA
simulation
on abc

...

lCA
simulation
on abcd

...

δ2δ1

δ1

δ1

δ1

δ2

δ2

δ2

⎛

⎝

all nodes
universal

⎞

⎠

Figure 8.3: For L ∈ lCA, an lACA accepting ∀PRE(L)

• k is odd.

• For each marked position i, the prefix a1a2 . . . ai belongs to L.

• For each unmarked position j, the prefix a1a2 . . . aj does not belong to L (it belongs

to L).

It is easy to see how these tests can be conducted on an ACA within linear time. Checking

that k is odd is trivial; it can be done by a signal travelling across the array at unit speed.

The other two checks are similar to the algorithm for recognising MIN(L), the only dif-

ference being that some prefixes are being tested for membership in L and some others for

membership in L. In this fashion, ⊕PRE(L) is accepted.

The next theorem states that prefixes bearing a fixed length ratio to the overall string

can be tested in real or linear time, if L is real- or linear-time CA-testable respectively. We

have been unable to find a similar construction for rOCA languages.

Theorem 8.5 If L is an rCA or an lCA language, then PADm,n(L) is also an rCA or

lCA language respectively.

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 121

Proof: Let L be an rCA language. Consider the language PAD1,1(L). In Lemma 5.10 (b)

we have seen that given an rCA, there is an equivalent rCA which, at time 2i− 1, indicates

whether the prefix of length i is in L. The construction outlined there is for tally languages,

but clearly it holds for non-tally languages as well (as seen in Theorem 8.3). If this rCA

is slowed by one step initially, and also sends a signal from right to left at unit speed, then

when the signal reaches the left end this cell is denoting membership of x in L, where the

input is xy, |x| = |y|. So if the rCA accepts accordingly, it accepts exactly the language

PAD1,1(L). Now this construction can be modified for any m, n as follows. Let C be an

rCA accepting L, and let C ′, C ′′ be the rCAs constructed in Lemma 5.10. Then C ′′, which

accepts PAD1,1(L), is obtained by slowing down the operation of C ′ so that every other step

is an idle step. If C ′ is instead slowed down as follows:

Perform n steps of C ′.

Idle for m steps.

then the prefix whose membership is determined in real time is of length n/(m + n) of the

total input; thus the resulting rCA accepts PADm,n(L).

Now consider an lCA language L, accepted by C in linear time. Construct C ′ which

sends signals from left and right inwards at speeds 1/m and 1/n respectively. The signals

meet at a cell, marking a prefix x and suffix y such that m|x| = n|y|, as shown in Figure 8.4.

From this meeting point, a firing squad algorithm can be initiated on the left portion. When

all the cells in the prefix region are synchronised, they simulate C and check if x belongs to

L. Clearly, the total time required is linear in L.

PAD1,1(L) checks whether the first half of a given string is in L. On the other hand,

(1/2)L checks whether the given string is the first half of some string in L. This appears

to be a far more difficult problem, and we have only been able to show its containment in

linear-time NTV CA when L is in lCA.

Theorem 8.6 Let L be an lCA language. Then (1/2)L, (1/3)L and MID(1/3)(L) can be

accepted in linear time by NTV CA.

Proof: Let L ⊆ Σ+, where Σ = {b1, b2, . . . , bk}. L is accepted by lCA C. We will describe a

k-function linear-time NTV CA C ′ accepting (1/2)L. This can be converted to a 2-function

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 122

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆❯

+
+

+
+

+
+

+
+

+
+

++✠

+
+
+
+
+
+

+
+
+
+
+
+

✲✛ ✲✛

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
++

+
+
+
++

+
+
+
+

+
+
++

+
+
+

+
+++
+++

x y

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Firing squad
synchronisation
on x

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

lCA computation
on x

Figure 8.4: lCA accepting PAD2,1(L), where L ∈ lCA

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 123

NTV CA with only a constant factor blowup in time, so the 2-function NTV CA will also

run in linear time.

Given input x, a string y of the same length as x is to be guessed, and then C simulated

on xy. A firing squad synchronisation algorithm is initiated on the array. Simultaneously, a

signal S travels across the array at unit speed. A cell holding S guesses the letter bi if the

transition function δi is used. A cell not containing S does nothing. Thus after n steps, n

letters comprising the string y have been guessed. Simultaneously, the array fires, and C is

simulated on xy. The string y is considered to be stored in the array in reverse in a second

channel; thus it is as if a single array holding xy is folded in the middle. So the simulation

of C can be performed with local neighbourhood information. If for some y, xy belongs to

L, then there will be a computation which guessed this y, and it will end in an accepting

state. Thus C ′ correctly accepts (1/2)L, and clearly, runs in linear time.

NTV CAs to accept (1/3)L and MID(1/3)(L) can be similarly constructed. Since now

2n letters are to be guessed, the signal S travels at half speed across the array.

Notice that in the above construction, the linear-time requirement is not violated even if we

consider languages of the form

(m/n)L = {x | ∃y, n|x| = m(|x|+ |y|), xy ∈ L}

for any positive integers m and n, n > m. All such languages derived from lCA languages

can thus be accepted by lNTV CA.

The following result considers ∃MID(L). This is a generalisation of PAD1,1(L); here

a string x is padded on both sides by equal length strings, and x has to be checked for

membership in L. For one-sided padding, Theorem 8.5 tells us that rCA and lCA languages

are preserved. For two-sided padding, however, this does not appear to be the case.

Theorem 8.7 If L is an rCA or lCA language, then ∃MID(L) can be accepted in real time

and linear time respectively by a 1-turn NTV CA.

Proof: This result is shown in a manner similar to that in the proof of Theorem 8.4 (b).

Namely, while δ1 is being used, no actual computation is performed, but signals mark out

suitable substrings of the input. Here signals travel at unit speed from both the left and

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 124

✲✛ ✲✛ ✛ ✲x y z

+
+

+✠
+

+
+

+
+

+
+

+
+

+
++✠

❅
❅
❅❘

+
+
+

+
+
+

+
+

+
+
+

+
+
+

++

+
+
+

+
+
++

+
+
+

+
+
+

+
+
+

+
++

+
+
+

+
+

+
+
+

++

+
+
+
+

+
+
++

+
+++
+++

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{

δ1

δ2

}

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

}

Signals travel towards
centre, marking x and z.

Unmarked cells check
membership of y in shaded
region, in |y| steps.

Result is sent to
accepting cell.

Figure 8.5: For L ∈ rCA, a 1-turn rNTV CA accepting ∃MID(L)

right ends. So if the turn occurs at time n′ < n/2, then a prefix and a suffix of length n′

each are marked and discarded, and the rCA or lCA accepting L is subsequently simulated

on the centred substring of length n− 2n’. This simulation is performed using the transition

function δ2. The time-space unrolling for such NTV CAs is shown in Figures 8.5 and 8.6.

Theorem 8.8 If L is an lCA language, then (1/2)CY CLE(L) is also an lCA language.

CY CLE(L) can be shown to be a linear-time 1-turn NTV CA language; it can also be ac-

cepted by a CA in O(n2) time.

Proof: Let L be accepted by lCA C. Construct a new CA C ′ which, in the first n/2 steps,

marks the midpoint of the array. Let the input be xy, where x and y are of equal length. In

the next n steps, the middle cell synchronises the array (using firing squad synchronisation

algorithms on both halves). In another n steps, xy is rewritten as yx, using the block-

shifting algorithm described in [Smi72]. Simultaneously, a fast synchronisation algorithm

(with “generals” at both ends) is run. Thus, when the shifting is complete, the array also

fires, and C is simulated on the string yx. Thus membership of yx in L is checked in linear

time. Hence (1/2)CY CLE(L) is an lCA language.

To check CY CLE(L), all possible points at which the input can be split must be checked.

A 1-turn NTV CA can use the first part of its computation, corresponding to δ1, to mark

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 125

✲✛ ✲✛ ✛ ✲x y z

❅
❅
❅❘

+
+

+✠

+
+

+
+

+
+

+
+

+
+

++✠

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+

+
+
+
+

+
++

+
+
+

+
+
+

+
+

+
+
+

+
+
+

++

+
+
+

+
+
++

+
+
+

+
+
+

+
+
+

+
++

+
+
+

+
+

+
+
+

++

+
+
+
+

+
+
++

+
+++
+++

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{

δ1

δ2

}

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

}

δ1 guesses y.

δ2 checks if y ∈ L.

Result is sent to
accepting cell.

Figure 8.6: For L ∈ lCA, a 1-turn lNTV CA accepting ∃MID(L)

the input as xy. Then, when the second part begins, it can deterministically swap x and y

as above and test yx for membership in L.

The O(n2) CA algorithm is the straightforward brute-force method of systematically

checking, for each i, whether ai . . . ana1 . . . ai−1 belongs to L.

In the next result we improve Theorem 8.2 and show that it holds even when only one-way

communication is considered.

Theorem 8.9 If L ∈ OCA, then all the languages described above, except INIT (L), END(L),

and MAX(L), are also OCA languages.

Proof: First consider the languages ✷PRE(L), where ✷ ∈ {∃, ∀,⊕} and L is an OCA

language accepted by C. For an OCA, the states of a cell do not depend on the computation

to its right. Thus on input a1a2 . . . an, if c(i, 1), c(i, 2), . . . , c(i, t) are the states the ith cell

goes through, then these are the same states the cell will go through on input a1a2 . . . ai. So

the ith column in the time-space unrolling of the OCA gives the membership of the ith prefix

of the input in L.

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 126

To accept ✷PRE(L), at every time instant, the leftmost cell sends a signal travelling

right at unit speed. Simultaneously C is being simulated. Additionally, each cell records

a Y/N/? in a separate track, depending on whether it has seen an accept or reject state

so far. Each signal, as it travels right, computes the ✷ operation on the contents of this

track. The computation by any signal is aborted if a ? is encountered. At some time, no

cell will have ? in this track (since OCA are closed under complementation). The signal

sent out at this time will correctly compute ✷PRE(L) and put the rightmost cell into an

accepting/rejecting state. The signal can also check whether any proper prefix of x belongs

to L; thus MIN(L) can be accepted.

(If ✷ is ∃, then an easier construction is possible, whereby any cell on entering an accept

state sends an accept signal rightwards.)

To show the closure of OCA under the remaining operations, we use the sweeping au-

tomaton (SA) model, which is a sequential machine characterisation for OCA (refer Lemma

2.6).

First let us consider SHUFFLE(L), where L is accepted by SA M . Construct an SA

M ′ which functions as follows: In sweep i, i = 1, 3, . . . , n − 1, M ′ merely records the input

letter bi on the first cell of the worktape. In sweep i, i = 2, 4, . . . , n, M ′ simulates two

sweeps of M on input letters bi and bi−1, in that order. After n sweeps, when $ is being

read, M ′ directly simulates M . Clearly, M ′ accepts SHUFFLE(L). What is more, if M

accepts L in S(n) sweeps, then M ′ accepts SHUFFLE(L)in S(n) sweeps, giving Corollary

8.10. Examples of the worktape profiles of M and M ′ on inputs of length 2 and 4 are shown

in Figure 8.7.

Next consider (1/2)CY CLE(L), where L is accepted by OCA C. Construct an SA M

which functions as follows: While reading the input, M writes the input on its worktape, two

letters per cell. It also records the midpoint of the input read so far, by moving a marker B

one subcell right every other sweep. (A flag F in the leftmost cell can toggle in every sweep,

indicating when B is to be shifted.) Additionally, it also places a ⋆ under the first letter.

When reading $, in the first n/2 sweeps M moves a1 . . . an/2 to the region beyond an.

This is done by moving ⋆ one subcell right in every sweep. When the ⋆ reaches the marker B,

the shifting is over, and the ⋆ is erased. Now an/2+1 . . . ana1 . . . an/2 appears on the worktape

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 127

Input Worktape

a1 z11

a2 z21 z12

Input Worktape

a1 z11

a2 z21 z12

a3 z31 z22 z13

a4 z41 z32 z23 z14

$ z51 z42 z33 z24

$ z61 z52 z43 z34

Input Worktape

a2 (a2)

a1 z21 z12

Input Worktape

a2 (a2)

a1 z21 z12

a4 z21 z12

(a4)

a3 z41 z32 z23 z14

$ z51 z42 z33 z24

$ z61 z52 z43 z34

SA M accepting L SA M ′ accepting SHUFFLE(L)

Figure 8.7: SAs accepting L and SHUFFLE(L)

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 128

Input Worktape

a1 F a1
∗B

.

a2 F a1
∗B

a2 ..

a3 F a1
∗

a2
B

a3. ..

a4 F a1
∗

a2
B

a3a4

a5 F a1
∗

a2 a3
B

a4 a5.

a6 F a1
∗

a2 a3
B

a4 a5a6

$ X a2
∗

a3
B

a4 a5a6 a1.

$ X X a3
∗B

a4 a5a6 a1a2

$ X X X
B

a4 a5a6 a1a2 a3. ..

$ X X X
B OCA Simulation

...
...

. ..

Figure 8.8: SA accepting (1/2)CY CLE(L)

beyond the marker B. In subsequent sweeps, M directly simulates C on this string, and

moves right into an accepting state if and only if C accepts the string. Thus, M accepts

(1/2)CY CLE(L). An example of the worktape profile of M is shown in Figure 8.8.

Note: Clearly, if C is an lCA, then M requires 7n/2 sweeps for inputs of length n (n sweeps

to read the input, n/2 sweeps to shift half of the input, and 2n sweeps to simulate C). So

(1/2)CY CLE(L) is also an lCA language. Thus this gives another proof of one part of

Theorem 8.8. The rewriting of the input xy as yx, where |x| = |y|, can be done within

the first n sweeps while the input is being read. This will save n/2 sweeps from the above

construction. But this still does not allow us to make any stronger statement about how fast

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 129

(a) Worktape after reading the input:

α β

0 . . . 0

a1 . . . an

(b) Worktape just before stage i:

1 . . . 1
. . .#ai . . . an a1 . . .ai−1

(y)

(c) Worktape just after stage i begins:

0 . . . 0
. . . #ai+1. . . ana1. . . ai

. . . #ai+1. . . ana1. . . ai

Figure 8.9: Worktape of an SA accepting CY CLE(L)

(1/2)CY CLE(L) can be accepted when L is an rCA language.

Consider accepting CY CLE(L). This is an extension of the above algorithm. While

reading the input, the SA divides the worktape into two regions α and β, where α is an n

length counter initialised to 0, and β is a 2-track region with 2n subcells, with the input

string initially written on the first track in the first n of these subcells. See Figure 8.9 (a).

Once the input is read, the SA operates in stages. The counter is incremented in every stage.

Every time the counter overflows, a new stage begins.

Stage i begins with the first track of β holding #i−1ai . . . ana1 . . . ai−1. See Figure 8.9

(b). In the first sweep of this stage (ie. when the region α has all 0s), # is written in place of

ai, and ai is written beyond ai−1, as shown in Figure 8.9 (c). The contents of the first track

are also copied onto the second track. In subsequent sweeps, C is simulated on the string

ai+1 . . . ana1 . . . ai on the second track (string (y)) of β. The counter α can be large enough

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 130

so that this simulation is completed before it overflows again. If the simulation ends in an

accepting state, then the SA M also moves right in an accepting state. Otherwise, when

the counter next overflows, it moves on to stage i + 1. Thus the SA systematically checks

all cyclic shifts of the input for membership in L; thus it accepts CY CLE(L).

The algorithms for (1/2)L, (1/3)L and MID(1/3)(L) are fairly similar. Here we will

only describe the SA accepting (1/2)L. Given an input x, the SA systematically generates

all strings y of the same length as x, in lexicographic order. For each such y generated, xy

is tested for membership in L. Without loss of generality, assume that L ⊆ {0, 1}+. Clearly,

there are 2|x| candidates for y. For each such y, the membership of xy in L can be determined

by the OCA accepting L in k|xy| = k2|x| = c|x| steps, for some constants k and c. So the

SA should generate successive values of y at least c|x| sweeps apart. This is ensured by

creating a |x| length c-ary counter α in the initial region of the worktape, as shown in Figure

8.10. Every time the counter overflows, the lexicographically next string y is generated. In

subsequent sweeps before the counter overflows again, the OCA accepting L is simulated

directly on xy, in a separate track γ. If, for any choice of y, the OCA simulation results in

an accepting state, then the SA moves right in an accepting state. Clearly, this SA accepts

(1/2)L.

Now consider accepting PADm,n(L). Construct a SA which, while reading its input, also

marks out the prefix which is of length n/(m + n) of the total input. (This can be done

by setting a fixed-length counter in the initial part of the worktape to count upto m + n.)

When the entire input is read, the SA can directly simulate the OCA in the marked prefix.

This SA will thus accept PADm,n(L).

α
ya1 . . . an

γ

Figure 8.10: Worktape of an SA accepting (1/2)(L)

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 131

It remains now to show that for L ∈ OCA, ∃MID(L) is also an OCA language. Note

that if L is an lCA language, then ∃MID(L) can be accepted by a 1-turn linear-time

NTV CA, whereas MID(1/3)(L) requires a linear-time NTV CA. It would thus appear that

∃MID(L) is an easier language operation than MID(1/3)(L). However, when L ∈ OCA,

the construction for ∃MID(L) appears to be more complex. This is because if the input

string is written as xyz where y belongs to L, the OCA or SA must check that x and z are

of the same length. It must also do this check for all such y. An SA which correctly does

this is described below. Let C be the OCA accepting L.

While reading the input, the SA packs and shifts the input in such a way that when the

entire input is read, the worktape is partitioned into 3 regions, α, β, γ. α and β are counters

of length n, initialised to zero. γ is a 5-track region with n subcells; the input string is

written on the first track, with a ⋆ on the second track under the first letter. The worktape

at this point appears as shown in Figure 8.11 (a).

α is incremented in every sweep. β is incremented whenever α overflows. Every time

β overflows, the ⋆ is moved one subcell right. Then, until α overflows for the first time,

C is simulated on the string to the right of (including) the ⋆ position (let the ⋆ be under

ai), in the third track. If any subcell in this simulation enters an accept/reject state, this is

recorded in the fourth track. Thus when α overflows again, the fourth track records all j ≥ i

such that the substring ai . . . aj belongs to L. See Figure 8.11 (b).

Now, for each such j, the SA must check whether i− 1 = n− j. This is done by placing

two pointers † in track 5, beneath a1 and aj+1, and moving these one subcell right in each

sweep. In these sweeps, the SA checks whether the characters in the first track of the subcells

marked by the †s are identical. See Figure 8.11 (c). If the pointers simulatneously reach ai

and the end of the string respectively, then a witness to the input being in ∃MID(L) has

been found, and the SA accepts its input.

Otherwise, the SA should go on to checking the next value of j. Since information cannot

be carried backwards in the SA, the SA does not know exactly when checking a particular

j is over. So it just waits until α overflows again before checking for the next j. This allows

more than enough time for checking; thus quite a few sweeps of the SA are dummy sweeps.

There are at most n values of j to be checked. So by the time β overflows, all checks have

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 132

(a) Worktape after reading the input:

α β γ
a1 . . . an
⋆

(b) Worktape during simulation:

α 00 . . . 0

ai
⋆
Simulation

A A R

(c) Worktape while checking whether a middle string has been found:

β ̸= 000 . . . 0

ai an−i+1

⋆

† †
A

Figure 8.11: Worktape of an SA accepting ∃MID(L)

CHAPTER 8. LANGUAGE OPERATIONS ON CA CLASSES 133

been completed and the SA can begin simulating C on the string beginning from position

i+ 1.

Corollary 8.10 If L is an rCA or lCA language, then SHUFFLE(L) is also an rCA or

lCA language respectively.

8.3 Conclusions

In this chapter, we have considered the closure of some language classes defined by cellular

automata. The results are summarised in table 8.1. As can be seen, there are quite a few

operations for which tight results are not known for rOCA and rCA. (Of course, the class

containing the closure of a higher class, say lCA, under that operation, also gives a bound

on the closure of the smaller class.) It would be of interest to resolve these questions. We

feel that some of these closures are related to the open problem of whether lCA are more

powerful than rCA. For instance, we believe that rCA are closed under (1/2)CY CLE(L)

only if rCA and lCA have the same power. Finding a proof of this conjecture is a problem

worth investigating.

In chapters 6 and 7 of this thesis, some new models of computation, namely nondetermin-

istic, probabilistic and alternating time-varying computation, on cellular arrays, have been

defined. These generate classes lying between rCA and OCA. For some of the operations

listed above, namely CY CLE(L), (1/2)L, (1/3)L, MID(1/3)L, we have shown that the

closure of lCA is contained in some of these classes. This gives some indication of the power

of the new computation models. It seems an interesting problem to further tighten such re-

sults, in an effort to characterise, more precisely, the power of such nondeterministic classes.

Another problem worth studying is finding the closures, under various language operations,

of the classes defined by these new models of computation.

Chapter 9

Conclusions

This thesis introduces TV CA, which are CA augmented by an external control device, and

examines the language recognition capabilities of such CA. The external control and time-

variation of the TV CA has been interpreted in various ways — as an oracle answering

queries made implicitly by relativised CA, as a model of nondeterministic computation, and

as models of probabilistic and alternating computation. Under these different interpreta-

tions, a whole lot of new language classes have arisen, lying in between the known CA and

NSPACE(n) classes. The inter-relations amongst these classes are shown in Figures 3.8,

7.1 and 7.2.

A major contribution of this work has been to provide new different approaches to solve

the rCA ?= lCA ?= OCA ?= CA questions. These questions themselves remain unsolved,

but now, proving proper containments can be reattempted via studying the power of the

oracle access mechanism or the mode of nondeterminism defined by TV CA. Since direct

simulations or counterexamples have not hitherto provided a solution, such indirect solutions

seem to be called for; we are hopeful that through such techniques these problems will soon

be solved.

From a practical viewpoint, TV CA could help in making V LSI implementations of CAs

even more easy. For instance, consider the class rrCA1. Languages in this class are all

contained in lCA. However, the two rCAs involved in the rrCA1 automaton may both be

considerably simpler, or have fewer states, than the one equivalent lCA. In such a case, if a

control signal from one rCA (the controlling or “oracle” rCA) can be globally broadcast to

134

CHAPTER 9. CONCLUSIONS 135

another rCA (the time-varying or relativised CA), then it may be easier to implement two

rCAs rather than one lCA. Studying the feasibiltiy of such schemes will require a careful

examination of the state-space trade-off between rrCAk and lCA languages, and between

llCAk and OCA languages. Such an investigation is beyond the scope of this thesis; it merits

a detailed independent investigation.

From a purely language-theoretic viewpoint, exactly characterising the complexity of the

newly defined language classes should be of considerable interest. The problem of whether

k + 1 controlling languages are better than k for real-time TV CA computation, raised in

chapter 3, has been left open. Solving this problem will give more insight into the exact

nature and the complexity of real-time TV CA computation. We have also left open the

problem of defining suitable reducibilities and finding languages complete for TV CA classes.

Finding such languages will considerably aid a more systematic investigation into the power

of these classes.

The study of closure properties, dealt with in chapter 8, is again of great interest from the

language-theoretic point of view. Obtaining tighter bounds on the results obtained there,

and also investigating closure under more language operations, could lead to interesting

insights into the containment problems.

Bibliography

[BC84] W. Bucher and K. Culik II. On real-time and linear-time cellular automata.

R.A.I.R.O. Informatique theoretique, 18(4):307–325, 1984.

[BDG88] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I, volume 11 of

EATCS Monograph Series. Springer-Verlag, Berlin, 1988.

[BDG90] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity II, volume 22 of

EATCS Monograph Series. Springer-Verlag, Berlin, 1990.

[Boo74] R. V. Book. Tally languages and complexity classes. Information and Control,

26:186–193, 1974.

[Bus88] J. F. Buss. Relativized alternation and space-bounded computation. Journal of

Computer and System Sciences, 36:351–378, 1988.

[CC84] C. Choffrut and K. Culik II. On real-time cellular automata and trellis automata.

Acta Informatica, 21:393–409, 1984.

[CGS84a] K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata Part I. Inter-

national Journal of Computer Mathematics, 15:195–212, 1984.

[CGS84b] K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata Part II. Inter-

national Journal of Computer Mathematics, 16:3–22, 1984.

[CGS86] K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata: stability, decid-

ability and complexity. Information and Control, 71:218–230, 1986.

136

BIBLIOGRAPHY 137

[CIV88] J. H. Chang, O. H. Ibarra, and A. Vergis. On the power of one-way communication.

Journal of the ACM, 35(3):697–726, July 1988.

[Cod68] E. F. Codd. Cellular Automata. ACM Monograph Series. Academic Press, New

York, 1968.

[Col69] S. Cole. Real-time computation by n-dimensional iterative arrays of finite-state

machines. IEEE Transactions on Computers, C-18(4):349–365, 1969.

[DGT85] J. Demongeot, E. Goles, and M. Tchuente. Dynamical Systems and Cellular Au-

tomata. Academic Press, New York, 1985.

[DP88] A. K. Das and P. Pal Chaudhari. An efficient on-chip deterministic test pattern

generation scheme. In Proceedings of the 2nd International Workshop on VLSI

Design, pages 250–266, December 1988.

[Dye80] C. Dyer. One-way bounded cellular automata. Information and Control, 44:261–281,

1980.

[Gin66] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill

Inc., 1966.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading, MA, 1979.

[Iba91] O. H. Ibarra. On resetting DLBAs. SIGACT NEWS, 22(1), 1991. also in EATCS

Bulletin 44:190-191, June 1991.

[IJ87] O. H. Ibarra and T. Jiang. On one-way cellular arrays. SIAM Journal of Computing,

16(6):1135–1154, December 1987.

[IJ88] O. H. Ibarra and T. Jiang. Relating the power of cellular arrays to their closure

properties. Theoretical Computer Science, 57:225–238, 1988.

[IK84] O. H. Ibarra and S. M. Kim. Characterizations and computational complexity of

systolic trellis automata. Theoretical Computer Science, 29:123–153, 1984.

BIBLIOGRAPHY 138

[IKM85] O. H. Ibarra, S. M. Kim, and S. Moran. Sequential machine characterizations

of trellis and cellular automata and applications. SIAM Journal of Computing,

14:426–447, 1985.

[IKP86] O. H. Ibarra, S. M. Kim, and M. Palis. Designing systolic algorithms using sequen-

tial machines. IEEE Transactions on Computers, C-35(6):531–542, June 1986. also

in Proceedings of the IEEE Conference on Foundations of Computer Science (1984).

[IPK85a] O. H. Ibarra, M. Palis, and S. M. Kim. Fast parallel language recognition by

cellular automata. Theoretical Computer Science, 41:231–246, 1985.

[IPK85b] O. H. Ibarra, M. Palis, and S. M. Kim. Some results concerning linear iterative

(systolic) arrays. Journal of Parallel and Distributed Computing, 2:182–218, 1985.

[KA87] M. Khare and A. Albicki. Cellular automata used for test pattern generation. In

Proceedings of the International Test Conference, pages 56–59, September 1987.

[KD84] K. Krithivasan and A. Das. Treating terminals as function values of time. In

Proceedings of the 4th FST&TCS conference, pages 188–201. Springer-Verlag, 1984.

LNCS 181.

[KD85] K. Krithivasan and A. Das. Terminal weighted grammars and picture description.

Computer Vision, Graphics and Image Processing, 30:13–31, 1985.

[KD86] K. Krithivasan and A. Das. Time-varying finite automata. International Journal of

Computer Mathematics, 19:103–123, 1986.

[KM90] S. M. Kim and R. McCloskey. A characterization of constant-time cellular automata

computation. Physica D, 45:404–419, 1990.

[KS88] K. Krithivasan and V. Srinivasan. Time varying pushdown automata. International

Journal of Computer Mathematics, 24:223–236, 1988.

[Kun79] H. T. Kung. Let’s design algorithms for VLSI systems. In L.Seifz, editor, Proceed-

ings of the Caltech Conference on VLSI, pages 65–90, Pasadena, California, 1979.

BIBLIOGRAPHY 139

[Kun80] H. T. Kung. Advances in Computers, volume 19, chapter The structure of parallel

algorithms, pages 65–112. Academic Press, 1980.

[Kun82] H. T. Kung. Why systolic architectures. Computer magazine, January 1982. special

issue on Highly Parallel Computing.

[LL76] R. Ladner and N. Lynch. Relativization of questions about log-space reducibility.

Mathematical Systems Theory, 10:19–32, 1976.

[LM68] G. C. Langdon and F. R. Moore. A generalised firing squad problem. Information

and Control, 12:212–220, 1968.

[Nas79] M. Nasu. Indecomposable local maps of tessellation automata. Mathematical System

Theory, 13:81–93, 1979.

[Neu66] John von Neumann. Theory of Self-Reproducing Automata. University of Illinois

Press, 1966. edited and compiled by Arthur W. Burks.

[PTC86] W. Pries, A. Thanailakis, and H. C. Card. Group properties of cellular automata

and VLSI applications. IEEE Transactions on Computers, C-35(12):1013–1024,

1986.

[RST84] W.L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and probabilistic

computations. Journal of Computer and Systems Sciences, 28:216–230, 1984.

[Sal73] A. Salomaa. Formal Languages. Academic Press, 1973.

[Smi71] A. R. Smith III. Cellular automata complexity trade-offs. Information and Control,

18:466–482, 1971.

[Smi72] A. R. Smith III. Real-time language recognition by one-dimensional cellular au-

tomata. Journal of Computer and System Sciences, 6:233–253, 1972.

[Smi76] A. R. Smith III. Introduction to and survey of polyautomata theory. In A. Lin-

denmayer and G.Rozenberg, editors, Automata, Languages and Development, pages

405–422. North Holland, 1976.

BIBLIOGRAPHY 140

[SW83] R. Sommerhalder and S. C. van Westrhenen. Parallel language recognition in con-

stant time by cellular automata. Acta Informatica, 19:397–407, 1983.

[UMS82] H. Umeo, K. Morita, and K. Sugata. Deterministic one-way simulation of two-

way real-time cellular automata and its related problems. Information Processing

Letters, 14:158–161, 1982.

[Wak66] A. Waksman. An optimum solution to the firing squad synchronization problem.

Information and Control, 9:66–78, 1966.

[Wol86] S. Wolfram. Theory and Applications of Cellular Automata. World Scientific, Sin-

gapore, 1986.

Publications by the author related to

the thesis

1. M. Mahajan and K. Krithivasan. Some results on time-varying and relativised cellular

automata. International Journal of Computer Mathematics, 43(1&2):21-38, 1992.

2. M. Mahajan and K. Krithivasan. Relativised cellular automata and complexity classes.

presented at theNational Seminar on Theoretical Computer Science July 1991 (Madras).

also, in Proceedings of the 11th International FST&TCS Conference, LNCS 560, pages

172-185, December 1991 (New Delhi).

3. M. Mahajan and K. Krithivasan. Languages classes defined by time-bounded rela-

tivised cellular automata. R.A.I.R.O. Theoretical Informatics and Applications, Vol.

27 (5) (1993), pp. 403–432.

4. K. Krithivasan and M. Mahajan. Nondeterministic, probabilistic and alternating com-

putations on cellular array models. to appear in Theoretical Computer Science. prelim-

inary version presented at the Developments in Language Theory Conference, Turku,

Finland, 12–15 July 1993.

5. M. Mahajan and K. Krithivasan. Language operations on cellular automata classes.

Journal of Mathematical and Physical Sciences, Vol. 27 (1993).

141

