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• Polynomial-size constant-rank linear decision trees can be converted to
polynomial-size depth-2 threshold circuits.

• For decision lists that query conjunctions of linear threshold functions,
constant-arity conjunction is equivalent to conjunction of two functions.

• Polynomial-size exact linear decision lists are equivalent to decision lists
querying the conjunction of two linear threshold functions, and strictly
more powerful than polynomial-size linear decision lists.
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Abstract

We show that polynomial-size constant-rank linear decision trees (LDTs) can
be converted to polynomial-size depth-2 threshold circuits LTF ◦ LTF. An
intermediate construct is polynomial-size decision lists that query a conjunc-
tion of a constant number of linear threshold functions (LTFs); we show that
these are equivalent to polynomial-size exact linear decision lists (ELDLs) i.e.
decision lists querying exact threshold functions (ELTFs).
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circuits; tree rank.

1. Introduction

Understanding the power of linear threshold functions LTFs as a primitive
operation is a significant question in complexity theory. At the frontier of
circuit lower bounds is the class TC0: polynomial-size constant-depth circuits
using LTF gates. Currently we do not know explicit lower bounds even for
polynomial-size depth-2 threshold circuits. We denote this class LTF ◦ LTF.
Restricting this circuit class further to polynomial-weight LTFs (MAJ gates)
at either one or both of the two levels gives the classes MAJ◦LTF, LTF◦MAJ,
and MAJ ◦MAJ. The exact relationship among these classes, and non-trivial
lower bounds, are known — MAJ◦MAJ equals MAJ◦LTF and is strictly weaker
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than LTF◦MAJ [1], which is strictly weaker than LTF◦LTF [2]. Another way
to use LTFs as a primitive is as a query, in linear decision lists LDLs and
linear decision trees LDTs, see [3, 4]. Here, the usual complexity measure is
query complexity, but one can also consider size, which is a measure of the
space required to store the function in this representation. In our work, the
size measure will be of particular interest. It is known that the class LDL of
functions with polynomial-size LDLs is contained in LTF ◦ LTF [4], but the
same is not known for the class LDT of functions computable by polynomial-
size LDTs. For the classes LTF ◦ LTF and LDT, a common upper bound is
MAJ ◦MAJ ◦MAJ. While we do not know even quadratic size lower bounds
against LTF◦LTF computing an explicit function, we know exponential lower
bounds against LDTs computing Inner Product; this follows from a rank-
depth trade-off obtained in [4]; further discussed below. This makes LDT
rank a very interesting measure from the lower bounds point of view.

In general, small rank in decision trees of various types points to a certain
simplicity of the function, making it easy to learn in certain settings, see for
instance [5, 6]. In the context of LTF primitives, the use of small rank has
been particularly fruitful. It was shown in [4] that LDLs (which are just rank-
1 LDTs) and constant-rank LDTs require large depth to compute the Inner
Product function. In fact, a rank-depth tradeoff was established (Corollary 8
in [4]); and this implies (as also observed in [7]) that LDTs of any rank
computing the Inner Product function must be of exponential (exp(Ω(

√
n)))

size1. Also in [4], a simple construction showed that polynomial-size LDLs
can be transformed to polynomial-size depth-2 threshold circuits, and hence
LDL ⊆ LTF ◦ LTF. In [7], this was pushed further a bit: polynomial-size
constant-rank LDTs with MAJ queries were also transformed to polynomial-
size depth-2 threshold circuits.

Our main result takes this one step further by removing the polynomial-
weight restriction. We show the following.

Theorem 1. If a function f : {0, 1}n −→ {0, 1} is computed by an LDT of
rank r and size s, then f can be computed by depth-2 threshold circuits of
size O(s · n3r logr n).

1It is not hard to see that these lower bounds, presented in [4] for Inner Product,
hold for any function with no large monochromatic squares; for any such function, the
depth-rank tradeoffs and size lower bounds hold. In particular, the functions MAJ ◦XOR,
OR ◦ EQ, SINK ◦ XOR, are all hard for LDT.
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In particular, at polynomial size, O(1)-rank-LDT is contained in LTF ◦
LTF.

In proving the above, an intermediate (between small-rank LDTs and
depth-2 circuits) computation model used is decision lists where each query
is a conjunction of LTFs. The arity of the conjunctions is crucial; in our
construction, this is the rank of the LDT we start out with. Our method
also relates such lists, with queries that are constant-arity conjunctions of
LTFs, to a related model of linear decision lists with equality queries ELDLs;
these are decision lists where each query is an exact linear threshold function
ELTF. This is an important model of computation as it can compute, in
linear size, a function that witnesses the separation between LTF ◦MAJ and
LTF ◦ LTF as shown in [2]. The relation we show is formally the following:

Theorem 2. The following are equivalent:

1. ELDLs of polynomial length.

2. Decision lists of polynomial length, querying functions in ANDr ◦ LTF
for some fixed r ≥ 2.

That r is at least 2 is crucial; at r = 1 the decision lists are LDLs,
which, by this theorem, are contained in the class ELDL of polynomial length
ELDLs, but are known to be strictly weaker (the ORn◦EQn function requires
size 2Ω(n) in LDLs and super-polynomial size even in LDTs, but can easily
be computed by an ELDL of length n).

Note that ELDL is another frontier class within LTF ◦ LTF for which no
lower bounds are currently known. By Theorem 2, obtaining lower bounds
for ELDLs is no easier than, and in fact equivalent to, showing lower bounds
for decision lists with AND2 ◦ LTF queries.

2. Some definitions, notation, and known results

We include here some basic definitions and notation; for more details, we
follow standard notation as, for instance, in [8].

A linear threshold function, denoted LTF, is a Boolean function f :
{0, 1}n → {0, 1} expressible as f(x) = 1 ⇔

∑
i wixi ≥ w0 for some

w0, w1, . . . , wn ∈ R. If f is an LTF, then so is ¬f . An exact linear threshold
function, denoted ELTF, is a Boolean function f : {0, 1}n → {0, 1} express-
ible as f(x) = 1 ⇔

∑
i wixi = w0 for some w0, w1, . . . , wn ∈ R. From a
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geometric point of view, LTFs are halfspaces, and ELTFs are hyperplanes.
The class of ELTF functions is not closed under negations2. For every ELTF
f , there are LTFs g, h such that h =⇒ g and f = g ∧ ¬h = g − h. We
denote the class of functions that can be written as an LTF (ELTF) as LTF
(ELTF respectively).

For any function classes C1, C2, the function class C1 ◦ C2 is defined as :
C1 ◦ C2 = {f(g1, g2, . . . , gm) | f ∈ C1; g1, . . . gm ∈ C2}. That is, these are
functions computable by depth-2 circuits with a C1 gate on top and C2 gates
below it. The class C1 ◦ C2 ◦ C3 is analagous to the above — depth-3 circuits
with a C1 gate on top, C2 gates at the middle layer, and C3 gates at the
bottom layer.

Of special interest in this note are the classes LTFs ◦ LTF, ANDr ◦ LTF,
ORk◦ELTF, and LTFm◦ANDr◦LTF, where the subscript denotes the arity/in-
degree of the functions/gates. (We drop the subscript where the arity is not
important.)

For function class C, a C-decision tree is a decision tree where each query
computes some function from C on the inputs. The size of such a decision
tree is the number of query nodes (or the number of leaves, which is just one
more), the depth of the tree is the maximum number of query nodes in any
root-to-leaf path, and the rank of the tree is the largest d such that a complete
binary tree of depth d can be embedded in it. (Formally, the rank of a leaf
is 0, and the rank of an internal node is the maximum rank of its children if
they have unequal rank, and is one more than the rank of its children if they
have the same rank.) Of special interest to us are LTF-decision trees, also
referred to as Linear Decision Trees (LDTs).

A C-decision tree of rank one is a C-decision list, and the depth of the tree
in this case is called the length of the list. Thus a C-decision list of length `
has the form
If f1 then b1; elseif f2 then b2; . . .; elseif f` then b`; else ¬b`,
where each fi belongs to the class C, and each bi ∈ {0, 1}. For brevity, we
shall often write such a decision list as simply a tuple ((f1, b1), . . . , (f`, b`)).
Of special interest to us are (all of polynomial size) LTF-decision lists denoted
LDL, ELTF-decision lists denoted ELDL, and (ANDr ◦ LTF)-decision lists for
some fixed constant r.

2It is easy to show that the function that is 1 on precisely the unit vectors is an ELTF,
but the negation is not.
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(Throughout this article, we shall use the standard convention, see for ex-
ample [9], of denoting the complexity class of functions computable efficiently
by some computation model using sans-serif bold-face font. For example, the
class of functions computable by polynomial size LDLs is denoted LDL.)

We collect some known facts that will be used in proving our results.

Proposition 1. 1. Any C-decision list of length s can be converted to a
depth-2 circuit of the form LTFs ◦ C.

2. An LDT of size s and rank r can be converted to an (ANDr ◦ LTF)-
decision list of length s. ([10]; see also Fact 1 in [7].)

3. Any linear threshold function on n variables can be computed as a
disjoint OR of O(n3 log n) exact threshold functions. Thus LTF ⊆
ORO(n3 logn) ◦ ELTF. ([9](Theorem 7)].)

4. AND ◦ ELTF = ELTF; any conjunction of ELTFs is also an ELTF
([9](Proposition 6 item 2)].)

5. An LDT of size s and depth d can be converted to an (ORs◦ANDd◦LTF)
circuit. In particular, LDT ⊆ MAJ ◦MAJ ◦MAJ.

Proof. Items 2,3,4 are shown in the references cited.
Item 1 is the folklore binary coding technique; ((f1, b1), . . . , (f`, b`)) evalu-

ates to 1 on input x if and only if
∑`+1

i=1(−1)1−bi2`+1−i[fi(x) = 1?] ≥ 0, where
f`+1 is the constant 1 function and b`+1 = 1− b`.

To see item 5, observe that we can check if an input reaches any specific
leaf of an LDT by a conjunction of the queried LTFs, or their negations, that
appear on the path from root to that leaf. Computing an OR over all leaves
labelled 1 gives an ORs◦ANDd◦LTF circuit. We know that OR◦AND◦LTF ⊆
MAJ ◦MAJ ◦ LTF ⊆ MAJ ◦MAJ ◦MAJ by [1].

3. Proving Theorem 1

At a high level, the conversion of a small-rank LDT to a depth-2 threshold
circuit proceeds in stages. We first convert the tree to a decision list using
Proposition 1(2), then the list to a depth-3 circuit using Proposition 1(1).
The next crucial and new step, which we describe below, is to replace each
sub-circuit feeding into the top gate by a disjoint OR of ELTFs. This gen-
eralisation of Proposition 1(3), that we show below, allows us to obtain an
equivalent LTF ◦ ELTF circuit. Expressing the ELTFs as the difference of
LTFs completes the construction.
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We now describe the details of the conversion.
Proposition 1(3) tells us that a function described by a halfspace can also

be seen as a union of disjoint hyperplanes. The lemma below extends this to
the intersection of half-spaces ANDr ◦ LTF:

Lemma 2. Let f : {0, 1}n → {0, 1} be computed by a circuit of the form
ANDr ◦ LTFn. Then there exists a set Af = {f 1, f 2, . . . , f `} where ∀i, f i ∈
ELTF and ` ∈ O(n3r logr n) such that ∀x ∈ {0, 1}n:

• If f(x) = 0 then ∀i ∈ [`] we have f i(x) = 0.

• If f(x) = 1 then ∃i ∈ [`] such that f i(x) = 1 and ∀j 6= i, f j(x) = 0.

Proof. We first describe the proof for r = 2. Let f = g∧h where g, h ∈ LTF.
Using Proposition 1(3) on g, we obtain a set S = {g1, g2, . . . , gs} of ELTF
functions with |S| ∈ O(n3 log n) such that g is the disjoint-OR of all the
gi. Similarly, we obtain a set T = {h1, h2, . . . , ht} of ELTF functions with
|T | ∈ O(n3 log n) for the function h. Define the following set:

A = {gi ∧ hj | gi ∈ S, hj ∈ T}

Note that since g (h) is a disjoint-OR of the functions in S (T respectively),
if (g ∧ h)(x) = 1, then exactly one of the functions in S and exactly one of
the functions in T will evaluate to 1 on x. Hence if f(x) = 1, then exactly
one of the functions in A evaluates to 1 on x. On the other hand if f(x) = 0,
then every function in A evaluates to 0. Thus f is the disjoint-OR of the
functions in A. As described above, A consists of AND2 ◦ ELTF functions.
By Proposition 1(4), each such function is in fact an ELTF function, and
hence the set A has all the properties stated in the lemma. Note that |A| ∈
O(n6 log2 n).

In general, for r > 2, we take A to be the cartesian product with operator
∧ of all the r sets. This will give |A| ∈ O(n3r logr n).

Using Lemma 2, we are now able to transform depth-3 circuits.

Theorem 3. For all r, s, we have

LTFs ◦ ANDr ◦ LTFn ⊆ LTFm ◦ LTFn

where m ∈ O(s · n3r logr n).
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Proof. Let C be an LTFs ◦ ANDr ◦ LTFn circuit computing a function f . Let
the top LTF gate in C be

∑s
i=1 wigi ≥ t where the gi functions are computed

by ANDr ◦ LTFn circuits.
For each gi, we use Lemma 2 to obtain a set Agi = {g1

i , g
2
i , . . . , g

`i
i } of

`i ∈ O(n3r logr n) hyperplanes.
In the top gate of C, we replace each gi with

∑`i
j=1 g

j
i to obtain a LTFs′ ◦

ELTF circuit C ′, where s′ =
∑

`i = O(s · n3r logr n). Circuit C ′ computes
the same Boolean function as C since Lemma 2 guarantees that ∀x, gi(x) =∑

j g
j
i (x). Hence f ∈ LTFs′ ◦ ELTFn via C ′.

The top gate of C ′ is
∑s′

j=1 w
′
jfj ≥ t where the fj are the ELTFs described

above. Replace each fj in this expression with fj,1 − fj,2 where fj,1, fj,2 are
LTFs whose difference is fj, to get circuit C ′′. Circuit C ′′ also computes f ,
and has the form LTFm ◦ LTFn, where m = 2s′ ∈ O(s · n3r logr n).

Now we can complete the proof of our main result.

Proof. (of Theorem 1.) Let f be an n-variate Boolean function computed
by an LDT T with rank r, size s. By Proposition 1(2), f is computed by a
decision tree of length s with queries in ANDr ◦ LTFn. By Proposition 1(1),
f is computed by a circuit of the form LTFs ◦ ANDr ◦ LTFn. By Theorem 3,
f is computed by an LTFm ◦ LTFn circuit, where m ∈ O(s · n3r logr n).

4. Proving Theorem 2

We first observe an easy manipulation of decision lists of a particular
form.

Lemma 3. A Boolean function f computable by a (OR` ◦ C)-decision list L
of length s can also be computed by a C-decision list of length s`.

Proof. Let f and L satisfy the premise. Then L is an (OR` ◦ C)-decision
list that has the form: ((f1, b1), (f2, b2), . . . , (fs, bs)). For all i ∈ [s], let
fi = g1

i ∨ · · · ∨ g`ii for some `i ≤ `, where each gji is in C. Replacing each
(fi, bi) in L with the sub-list ((g1

i , bi), (g
2
i , bi), . . . , (g

`i
i , bi) gives a C-decision

list computing f .

Now the proof of Theorem 2 is straightforward.
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Proof. (of Theorem 2) Since an ELTF is expressible as the conjunction of
two LTFs, ELDLs of length s can be expressed as decision lists of length s
with queries in ANDr ◦ LTF for any r ≥ 2.

It remains to prove that for any fixed r, decision lists of length s querying
ANDr ◦ LTF functions can be converted to ELDLs of length polynomial in s.

Let L be an ANDr ◦ LTF-decision list of length s. Using Lemma 2, we
can reframe each query as an OR` ◦ ELTF function, where ` ∈ O(n3r logr n).
Using Lemma 3, we can strip away the outer OR and obtain an ELDL with
length O(s`) = O(sn3r logr n).

Remark. We can use Theorem 2, with more careful attention to parameters,
to obtain another proof of Theorem 1 as follows. LDTs of rank r can be
transformed to (ANDr ◦ LTF)-Decision lists using Proposition 1(2), then to
ELDLs using Theorem 2, then to LTF ◦ ELTF circuits using Proposition 1(1),
and finally to LTF◦ELTF circuits using the fact, proved in [9], that LTF◦LTF =
LTF ◦ ELTF.

Using Proposition 1(2) and Theorem 2, we can convert polynomial-size
O(1)-rank LDTs to polynomial-size ELDLs. Using Theorem 2, Proposi-
tion 1(1), and Theorem 3, we can convert polynomial-size ELDLs to polynomial-
size LTF ◦ LTF circuits. Thus we obtain the following corollary.

Corollary 4. The class of functions computed by polynomial-size ELDLs
contains all functions computed by O(1)-rank polynomial-size LDTs and is
contained in the class of functions computable by polynomial-size LTF ◦ LTF
circuits. i.e., O(1)-rank-LDT ⊆ ELDL ⊆ LTF ◦ LTF.
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