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Abstract
Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic
branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific
matrices. This means that the set of noncommutative polynomials with ABP width complexity
at most k is Zariski-closed, an important property in geometric complexity theory. It follows that
approximations cannot help to reduce the required ABP width.

It was mentioned by Forbes that this result would probably break when going from single-
(source,sink) ABPs to trace ABPs. We prove that this is correct. Moreover, we study the commutative
monotone setting and prove a result similar to Nisan, but concerning the analytic closure. We
observe the same behavior here: The set of polynomials with ABP width complexity at most k is
closed for single-(source,sink) ABPs and not closed for trace ABPs. The proofs reveal an intriguing
connection between tangent spaces and the vector space of flows on the ABP. We close with additional
observations on VQP and the closure of VNP which allows us to establish a separation between the
two classes.
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1 Introduction and Results

Algebraic branching programs (ABPs) are an elegant model of computation that is widely
studied in algebraic complexity theory (see e.g. [4, 40, 30, 31, 1, 3, 25, 27, 15, 17]) and is a
focus of study in geometric complexity theory [28, 18, 19]. An ABP is a layered directed
graph with d+ 1 layers of vertices (edges only go from layers i to i+ 1) such that the first
and last layer have exactly the same number of vertices. Each vertex in the first layer has
exactly one so-called corresponding vertex in the last layer. One interesting classical case is
when the first and last layer have exactly one vertex, which is usually studied in theoretical
computer science. We call this the single-(source,sink) model. Among algebraic geometers
working on ABPs it is common to not impose restrictions on the number of vertices in the
first and last layer [28, 18, 29]. We call this the trace model. Every edge in an ABP is labeled
by a homogeneous linear form. If we denote by `(e) the homogeneous linear form of edge e,
then we say that the ABP computes

∑
p

∏
e∈p `(e), where the sum is over all paths that start

in the first layer and end in the last layer at the vertex corresponding to the start vertex.
The width of an ABP is the number of vertices in its largest layer. We denote by w(f)

the minimal width required to compute f in the trace model and we call w(f) the trace ABP
width complexity of f . We denote by w1(f) the minimal width required to compute f in the
single-(source,sink) model and we call w1(f) the single-(source,sink) ABP width complexity
of f .

The complexity class VBP is defined as the set of sequences of polynomials (fm) for
which the sequence w(fm) is polynomially bounded. Let perm :=

∑
π∈Sm

∏m
i=1 xi,π(i) be the

permanent polynomial. Valiant’s famous VBP 6= VNP conjecture can concisely be stated as
“The sequence of natural numbers

(
w(perm)

)
m

is not polynomially bounded.” Alternatively,
this is phrased with w1 or other polynomially related complexity measures in a completely
analogous way. In geometric complexity theory (GCT), one searches for lower bounds on
algebraic complexity measures over C such as w and w1 for explicit polynomials such as the
permanent. All lower bounds methods in GCT and most lower bounds methods in algebraic
complexity theory are continuous, which means that if fε is a curve of polynomials with
limε→0 fε = f (coefficient-wise limit) and w(fε) ≤ w, then these methods cannot be used
to prove w(f) > w. This is usually phrased in terms of so-called border complexity (see
e.g. [14, 28]): The border trace ABP width complexity w(f) is the smallest w such that f
can be approximated arbitrarily closely by polynomials fε with w(fε) ≤ w. Analogously, we
define the border single-(source,sink) ABP width complexity w1(f) as the smallest w such
that f can be approximated arbitrarily closely by polynomials fε with w1(fε) ≤ w. We define
VBP as the set of sequences of polynomials such that (w(fm)) is polynomially bounded.
Clearly VBP ⊆ VBP. Mulmuley and Sohoni [32, 33, 14] (see also [12, 10] for a related
conjecture) conjectured a strengthening of Valiant’s conjecture, namely that VNP 6⊆ VBP.
In principle it could be that w(f) < w(f); the gap could even be superpolynomial, which
would mean that VBP ( VBP. If VBP = VBP, then Valiant’s conjecture is the same as the
Mulmuley-Sohoni conjecture, which would mean that if VBP 6= VNP, then continuous lower
bounds methods exist that show this separation.

Border complexity is an old area of study in algebraic geometry. In theoretical computer
science it was introduced by Bini et al. [6], where [5] proves that in the study of fast matrix
multiplication, the gap between complexity and border complexity is not too large. The
study of the gap between complexity and border complexity of algebraic complexity measures
in general has started recently [21, 9, 26] as an approach to understand if strong algebraic
complexity lower bounds can be obtained from continuous methods.
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In this paper we study two very different settings of ABPs: The noncommutative and the
monotone setting. To capture commutative, noncommutative, and monotone computation,
let R be a graded semiring with homogeneous components Rd. In our case the settings for
Rd are

Rd = F[x1, . . . , xm]d the set of homogeneous degree d polynomials in m variables over a
field F,
Rd = F〈x1, . . . , xm〉d the set of homogeneous degree d polynomials in m noncommuting
variables over a field F,
Rd = R+[x1, . . . , xm]d the set of homogeneous degree d polynomials in m variables with
nonnegative coefficients.

As it is common in the theoretical computer science literature, we call elements of Rd
polynomials. Note that F〈x1, . . . , xm〉d is naturally isomorphic to the d-th tensor power of
Fm, so tensor would be the better name. We hope that no confusion arises when in the later
sections (where we use concepts from multilinear algebra) we use the tensor language. In
the homogeneous setting, all ABP edge labels are in R1, and hence the polynomial that is
computed is in Rd. In the affine setting, all ABP edge labels are in R0 +R1, and hence the
polynomial that is computed is in

⊕
d′≤dRd′ .

Noncommutative ABPs
Let Rd = F〈x1, . . . , xm〉d and consider the homogeneous setting. We write ncw instead of w
and ncw1 instead of w1 to highlight that we are in the noncommutative setting. Nisan [35]
proved:

I Theorem 1. Let Mi denote the mi × md−i matrix whose entry at position
((k1, . . . , ki), (ki+1, . . . , kd)) is the coefficient of the monomial xk1xk2 · · ·xkd in f . Then
every single-(source,sink) ABP computing f has at least rk(Mi) many vertices in layer i.
Conversely, there exists a single-(source,sink) ABP computing f with exactly rk(Mi) many
vertices in layer i.

Nisan used this formulation to prove strong complexity lower bounds for the noncommutative
determinant and permanent. Forbes [16] remarked that Theorem 1 implies that for fixed w

the set {f | ncw1(f) ≤ w} is Zariski-closed1 (1)

and hence that

ncw1(f) = ncw1(f) for all f. (2)

Proving a similar result (even up to polynomial blowups) in the commutative setting
would be spectacular: It would imply VBP = VBP and hence that Valiant’s conjecture is the
same as the Mulmuley-Sohoni conjecture. By a general principle, for all standard algebraic
complexity measures, over C we have that the Zariski-closure of a set of polynomials of
complexity at most w equals the Euclidean closure [34, §2.C].

1 We identify each m-variate homogeneous degree d polynomial with its coefficient vector. There is a
standard topology on the vector space of these coefficient vectors that we call the Euclidean topology.
The Zariski-closure of a set X of vectors is the smallest set of vectors that contains X and that is the
common zero set of a finite set of polynomials in the coordinate variables, see e.g. [7, Ch. 4] for the
commutative case.

CCC 2020
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Forbes mentioned that he believes that Nisan’s proof cannot be lifted to the trace model.
In this paper we prove that Forbes is correct, by constructing a polynomial f0 with

ncw(f0) < ncw(f0). (3)

The proof is given in Sections 5–8. It is a surprisingly subtle application of differential
geometry (inspired by [24]) and interprets tangent spaces to certain varieties as vector spaces
of flows on an ABP digraph.

The gap between ncw(f) and ncw(f) can never be very large though:

ncw(f) ≤ ncw(f) ≤ ncw1(f) (2)= ncw1(f)
2
≤
(
ncw(f)

)2 for all f. (4)

It is worth noting that for our separating polynomial f0, the gap is even less; ncw(f0) <
ncw(f0) ≤ 2ncw(f0). This is the first algebraic model of computation where complexity and
border complexity differ, but their gap is known to be polynomially bounded! For most
models of computation almost nothing is known about the gap between complexity and
border complexity. For commutative width 2 affine ABPs the gap is even as large as between
computable and non-computable [9]!

Monotone ABPs
Let Rd = R+[x1, . . . , xm]d and consider the affine or homogeneous setting.

Since R is not algebraically closed, we switch to a more algebraic definition of approx-
imation. Let R[ε, ε−1]+ denote the ring of Laurent polynomials that are nonnegative for
all sufficiently small ε > 0. Clearly, elements from R[ε, ε−1]+ can have a pole at ε = 0
of arbitrarily high order. We define mw(f) to be the smallest w such that there exists a
polynomial f ′ over the ring R[ε, ε−1]+ such that

there exists a width w ABP over R[ε, ε−1]+ that computes f ′,
no coefficient in f ′ contains an ε with negative exponent, and setting ε to 0 in f ′ yields
f , i.e., f ′ε=0 = f .

We prove a result that is comparable to (2), but uses a very different proof technique:

mw1(f) = mw1(f) for all f. (5)

In terms of complexity classes, this implies

MVBP = MVBPR
.

Our proof also works if the ABP is not layered and the labels are affine.
Intuitively, in this monotone setting, one would think that approximations do not help,

because there cannot be cancellations. But quite surprisingly the same construction as in (3)
can be used to find f0 such that

mw(f0) < mw(f0). (6)

2 Given a trace ABP Γ computing f and a pair of corresponding start and end vertices, we can extract
a single-(source,sink) ABP by deleting all other start and end vertices. If we do this for each pair of
start and end vertices, and if we then idenfity all start vertices to a single start vertex, and also all end
vertex to a single end vertex, then we obtain a single-(source,sink) ABP computing f . The width has
grown by a factor of w, where w is the number of start vertices in Γ.
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By the same reasoning as in (4), we obtain

mw(f) ≤ mw(f) ≤
(
mw(f)

)2 for all f. (7)

This gives a natural monotone model of computation where approximations speed up the
computation. Again, the gap is polynomially bounded!

Separating VQP from VNP
Bürgisser in his monograph [11] defined the complexity class VQP as the class of polynomials
with quasi-polynomially bounded straight-line programs, and established its relation to
the classes VP and VNP (see Section 9 for definitions). He showed that the determinant
polynomial is VQP-complete with respect to the so-called qp-projections (see [11], Corollary
2.29). He strengthened Valiant’s hypothesis of VNP 6⊆ VP to VNP 6⊆ VQP and called it
Valiant’s extended hypothesis (see [11], section 2.5). He further showed that VP is strictly
contained in VQP as one would intuitively expect (see [11], section 8.2). Finally, he also
showed that VQP is not contained in VNP (see [11], Proposition 8.5 and Corollary 8.9).
In this article, we observe that his proof is stronger and actually shows that VQP is not
contained in VNP either, where VNP is the closure of the complexity class VNP in the sense
as mentioned above.

Structure of the paper
In Section 4 we prove (5). Sections 5 to 8 are dedicated to proving (3) and (6) via a new
connection between tangent spaces and flow vector spaces. In Section 9, we discuss the
separation between VQP and VNP.

2 Related work

Grenet [20] showed that mw(perm) ≤
(

m
dm/2e

)
by an explicit construction of a monotone

single-(source,sink) ABP. Even though the construction is monotone, its size is optimal for
m = 3 [2] (for 4 this is already unknown). The noncommutative version of this setting has
been studied in [17]. [42] recently showed that the monotone circuit classes MVP and MVNP
are different. We refer the reader to [42] and [38] and the references therein to get more
information about monotone algebraic models of computation and their long history.

Hüttenhain and Lairez [24] present a method that can be used to show that a complexity
measure and its border variant are not the same. They used it to prove that an explicit
polynomial has border determinantal complexity 3, but higher determinantal complexity.
We use their ideas as a starting point in Section 5 and the later sections.

3 Preliminaries

For a homogeneous degree d ABP Γ, we denote by V the set of vertices of Γ and by V i the
set of vertices in layer i, 1 ≤ i ≤ d+ 1. We choose an explicit bijection between the sets V 1

and V d+1, so that each vertex v in V 1 has exactly one corresponding vertex corr(v) in V d+1.
We denote by Ei the set of edges from V i to V i+1. Let E denote the union of all Ei.

There is a classical interpretation in terms of iterated matrix multiplication: Fix some
arbitrary ordering of the vertices within each layer, such that the i-th vertex in V 1 corresponds
to the i-th vertex in V d+1. For 1 ≤ k ≤ d let Mk be the |V k| × |V k+1| matrix whose entry

CCC 2020



21:6 Algebraic branching programs, border complexity, and tangent spaces

at position (i, j) in Mk is the label from the i-th vertex in V k to the j-th vertex in V k+1.
Then Γ computes the trace∑

1≤k1≤|V 1|
1≤k2≤|V 2|

...
1≤kd≤|V d|

(M1)k1,k2(M2)k2,k3 · · · (Md−1)kd−1,kd(Md)kd,k1 = tr
(
M1M2 · · ·Md

)
. (8)

Hence the name trace model. In the single-(source,sink) model, the trace is taken of a 1× 1
matrix.

4 Monotone commutative single-(source,sink) ABPs are closed

For fixed w ∈ N we study

the set {f ∈ R+[x1, . . . , xn]d | mw1(f) ≤ w}. (9)

We first start with the simple observation that it is not Zariski-closed.

I Proposition 2. {f ∈ R+[x1, . . . , xn]d | mw1(f) ≤ w} is not Zariski-closed.

Proof. Note that a homogeneous degree d single-(source,sink) width w ABP has 2w+w2(d−2)
many edges. The label on each edge is a linear form in n variables, so such an ABP is
determined by N := n(2w + w2(d − 2)) many parameters. Let F : CN → C[x1, . . . , xn]d
be the map that maps these parameters to the polynomial computed by the ABP. Every
coordinate function of F is given by polynomials in N variables, so F is Zariski-continuous.
Therefore

F ((R+)N ) = F ((R+)N ) = F (CN ) ⊇ F (CN ) % F ((R+)N ),

where the overline means the Zariski-closure. We remark that we did not use any special
feature of the model of computation other than the fact that it is defined over R. J

Recall that an ABP has d + 1 layers of vertices. If an ABP has wi many vertices in
layer i, 1 ≤ i ≤ d, we say the ABP has format w = (w1, w2, . . . , wd). We further recall
that wd+1 = w1. The following theorem is our closure result, which proves (5) and hence
MVBP = MVBPR.

I Theorem 3. Given a polynomial f over R and given a format w single-(source,sink) ABP
with affine linear labels over R[ε, ε−1]+ computing fε such that limε→0 fε = f . Then there
exists a format w monotone single-(source,sink) ABP that computes f .

Proof. The proof is constructive and done by a two-step process. In the first step (which is
fairly standard and works in many computational models) we move all the ε with negative
exponents to edges adjacent to the source. The second step then uses the monotonicity.

Given Γ with affine linear labels over R[ε, ε−1]+ we repeat the following process until all
labels that contain an ε with a negative exponent are incident to the source vertex.

Let e be an edge whose label contains ε with a negative exponent −i < 0. Moreover,
assume that e is not incident to the source vertex. Let v be the start vertex of e. We
rescale all edges outgoing of v with εi and we rescale all edges incoming to v with ε−i.
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If we always choose the edge with the highest layer, then it is easy to see that this process
terminates. Since every path from the source to the sink that goes through a vertex v must
use exactly one edge that goes into v and exactly one edge that comes out of v, throughout
the process the value of Γ does not change. We finish this first phase by taking the highest
negative power i among all labels of edges that are incident to the source and then rescale
all these edges with εi. The resulting ABP Γi computes εifε and no label contains an ε with
negative exponent. We now start phase 2 that transforms Γi into Γi−1 that computes εi−1fε
without introducing negative exponents of ε. We repeat phase 2 until we reach Γ0 in which
we safely set ε to 0. Throughout the whole process we do not change the structure of the
ABP and only rescale edge labels with powers of ε, which preserves monotonicity, so the
proof is finished. It remains to show how Γi can be transformed into Γi−1. An edge whose
label is divisible by ε is called an ε-edge. Consider the set ∆ of vertices that are reachable
from the source using only non ε-edges in Γi. The crucial insight is that since Γi is monotone
and computes a polynomial that is divisible by ε, we know that every path in Γi from the
source to the sink uses an ε-edge. Therefore ∆ cannot contain the sink. We call a vertex in
∆ whose outdegree is zero a leaf vertex. We repeat the following procedure until the source
is the only leaf vertex:

Let v be a non-source leaf vertex in ∆. We rescale all edges outgoing of v with ε−1 and
we rescale all edges incoming to v with ε.

It is easy to see that this process terminates with the source being the only leaf vertex. Since
the source is a leaf vertex, all edges incident to the source are ε-edges. We divide all their
labels by ε to obtain Γi−1. J

5 Explicit construction of f0 with higher complexity than border
complexity

Fix some d ≥ 3. In this section for every m ≥ 2 we construct f0 such that

m = ncw(f0) < ncw(f0). (10)

A completely analogous construction can be used to find f0 with w(f0) < w(f0) and with
mw(f0) < mw(f0). For the sake of simplicity, we carry out only the proof for (10).

Recall that in a format w ABP we have wd+1 = w1. In each layer i we enumerate the
vertices V i = {vi1, . . . , viwi} and we assume without loss of generality that the correspondence
bijection between V d+1 and V 1 is the identity on the indices j of v1

j , i.e., the jth vertex in
V 1 corresponds to the jth vertex in V d+1.

Fix an ABP format w = (w1, w2, . . . , wd) such that for all i, wi ≥ 2. Let Γcom denote
the directed acyclic graph underlying an ABP of format w. An edge can be described by
the triple (a, b, i), where 1 ≤ i ≤ d, 1 ≤ a ≤ wi and 1 ≤ b ≤ wi+1. Consider the following
labeling of the edges with triple-indexed variables: `com((a, b, i)) = x

(i)
(a,b). Define fcom to be

the polynomial computed by Γcom with edge labels `com.
We now construct f0 as follows. Let d be odd (the case when d is even works analogously).

Since in each layer we enumerated the vertices, we can now assign to each vertex its parity:
even or odd. We call an edge between two even or two odd vertices parity preserving, while
we call the other edges parity changing. Let us consider the following labeling of Γcom: We
set `0((a, b, i)) := x

(i)
(a,b) if (a, b, i) is parity changing (i.e., a 6≡ b (mod 2)) and set the label

`0((a, b, i)) := εx
(i)
(a,b) otherwise, where ε ∈ C. Let f ′ε be the polynomial computed by Γcom

with edge labels `0 and set fε := 1
εf
′
ε for ε 6= 0. We define f0 := limε→0 fε (convergence

follows from the construction, because d is odd). By definition, for all ε 6= 0, fε can be

CCC 2020
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computed by a format w ABP. However, we will now prove that this property fails for the
limit point f0.

I Theorem 4. Fix an ABP format w = (w1, w2, . . . , wd) such that for all i, wi ≥ 2. Let f0
be defined as above. Then, f0 cannot be computed by an ABP of format w.

Note that for a format where m = w1 = · · · = wd, this gives the f0 which was desired in (10).
(Note, however, that f0 can be computed by an ABP of width 2m as follows. Construct an
ABP Γ′ that has, for each vertex v ∈ Γcom, vertices v′ and v′′. For each parity changing
edge (a, b) ∈ Γcom with label `0, add edges (a′, b′) and (a′′, b′′) with the same label `0. For
each parity preserving edge (a, b) ∈ Γcom with label `0, add edge (a′, b′′) with label ( 1

ε )`0.
For corresponding vertices u, v in Γcom, let v′′ be the corresponding vertex for u′ and v′ be
the corresponding vertex for u′′ in Γ′. All paths between corresponding vertices in this ABP
use exactly one parity preserving edge of Γcom, and so this ABP computes f0.)

The proof of Theorem 4 works as follows. Let G := GLw1w2 × GLw2w3 × · · · × GLwdwd+1 .
Let End := G denote its Euclidean closure, i.e., tuples of matrices in which one or several
matrices can be singular.

We consider noncommutative homogeneous polynomials in the variables x(i)
(a,b) such that

the i-th variable in each monomial is x(i)
(a,b) for some a ∈ [wi] and b ∈ [wi+1]. The vector

space of these polynomials is isomorphic to W := Cw1w2 ⊗ Cw2w3 ⊗ · · · ⊗ Cwdwd+1 and the
monoid End (and thus also the group G) acts on this space in the canonical way. The set

{f ∈W | f can be computed by a format w ABP}

is precisely the orbit Endfcom. We follow the overall proof strategy in [24]. The monoid orbit
Endfcom decomposes into two disjoint orbits:

Endfcom = Gfcom ∪ (End \ G)fcom.

Our goal is to show two things independently:

1. f0 /∈ (End \ G)fcom, and
2. f0 /∈ Gfcom,
which finishes the proof of Theorem 4.

All elements in (End \ G)fcom are not concise, a term that we define in Section 6, where
we also prove that f0 is concise. Therefore f0 /∈ (End \ G)fcom.

All elements in Gfcom have full orbit dimension, a term that we define in Section 7 and
we prove that f0 does not have full orbit dimension in Section 8. This finishes the proof of
Theorem 4.

6 Conciseness

In this section we show that f0 /∈ (End \ G)fcom. To do so we use a notion called conciseness.
Informally, it captures whether a polynomial depends on all variables independent of a change
of basis, or a tensor cannot be embedded into a tensor product of smaller spaces.

Given a tensor f in Cm1 ⊗ Cm2 ⊗ · · · ⊗ Cmd , we associate the following matrices
with f . For j ∈ [d], define a matrix M j

f of dimension mj × (
∏
i∈[d]\{j}mi) with rows

labeled by the standard basis of Cmj , and columns by elements in the Cartesian product
{standard basis of Cm1} × · · · × {standard basis of Cmj−1} × {standard basis of Cmj+1} ×
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· · · × {standard basis of Cmd}. We write the tensor f in the standard basis

f =
∑

1≤i1≤m1
1≤i2≤m2

...
1≤id≤md

αi1,...,idei1 ⊗ · · · ⊗ eid

and associate to it the matrix M j
f whose entry at position ((ij), (i1, i2, . . . , ij−1, ij+1, . . . , id))

is αi1,...,id .

I Definition 5. We say that a tensor f in Cm1 ⊗ Cm2 ⊗ · · · ⊗ Cmd is concise if and only if
for all j ∈ [d], M j

f has full rank. 3

As a warm-up exercise we now show that fcom is concise.

I Proposition 6. fcom is concise.

Proof. We know that fcom ∈ W . Let us consider the matrix M j
fcom

for some j ∈ [d]. To
establish that M j

fcom
has full rank, it suffices to show that rows are linearly independent. In

order to show that, we argue that every row is non-zero and every column has at most one
non-zero entry. In other words, rows are supported on disjoint sets of columns.

A row of M j
fcom

is labeled by an edge in the j-th layer of the ABP Γcom. Recall that only
paths that start at a vertex in V 1 and end at the corresponding vertex in V d+1 contribute
to the computation in Γcom. We call such paths valid paths. An entry in M j

fcom
is non-zero

iff the corresponding row and column labels form a valid path in Γcom. Thus, it is easily
seen that a row is non-zero iff there is a valid path in Γcom that passes through the edge
given by the row label. By the structure of Γcom, in particular that every layer is a complete
bipartite graph, we observe that passing through every edge there is some valid path. Hence,
we obtain that every row is non-zero.

The second claim now follows from the observation that fixing d− 1 edges either defines
a unique dth edge so that these d edges form a valid path, or for these d− 1 edges there is
no such dth edge. J

As mentioned in Section 5, to establish f0 /∈ (End \G)fcom we will show that f0 is concise
while any element in (End \ G)fcom is not.

I Lemma 7. f0 is concise.

Proof. Analogous to the proof of Proposition 6, we again show that every row of M j
f0

is
non-zero and every column of it has at most one non-zero entry. That is, rows of M j

f0
are

supported on disjoint sets of columns.
From the construction of f0 it is seen that a path in Γcom contributes to the computation

of f0 iff it is a valid path that comprises of exactly one parity preserving edge. The second
claim of every column having at most one non-zero entry now follows for the same reason as
in the proof of Proposition 6.

3 When f is viewed as a set-multilinear polynomial (see [36, Section 1.4]), this condition translates to the
linear independence of the partial derivatives of f . In particular, M j

f is testing if the partial derivatives
of f with respect to the j-th block of variables are all linearly independent. This partial derivatives
based criterion for testing if a polynomial depends on all the variables, independent of a change of basis,
is pretty standard: see, for instance, [23, Corollary 5.1.4].
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Before proving the first claim, we recall two assumptions in the construction of f0. The
first is that the format w = (w1, w2, . . . , wd) is such that wi ≥ 2 for all i ∈ [d] and the
second is that d is odd. To argue that a row is non-zero it suffices to show that a valid path
comprising of only one parity preserving edge passes through the edge given by the row level.
Let us consider an arbitrary edge e in Γcom. We have two cases to consider depending on
whether it is parity preserving or changing.

Case 1. Suppose e is parity preserving and it belongs to a layer j ∈ [d]. The number
of layers on the left of e is j − 1 and on the right is d − j. Since d is odd, these numbers
are either both even or both odd. We now argue for the case when they are even (the odd
case is analogous). Choose a vertex v in V 1 that has the same parity (different in the odd
case) as one of the end points of e. (Such a choice exists because w1 ≥ 2.) We now claim
that there exists a valid path starting at v that passes through e and contains exactly one
parity preserving edge. Since e is parity preserving, all edges in the claimed path must be
parity changing. We observe that e can be easily extended in both directions using parity
changing edges such that the path ends at corr(v). The existence of parity changing edges at
each layer uses the assumption that wi ≥ 2.

Case 2. Otherwise e = (a, b) is parity changing. Again as before there are two cases
based on whether both j − 1 and d− j are even or odd. Consider the case when they are
even (the odd case being analogous). We first assume that j 6= d. Choose a vertex v in
V 1 that has the same parity as a. We now construct a valid path from v to corr(v) that
passes through e and contains exactly one parity preserving edge. It is easily seen that there
exists a path from v to a using only parity changing edges. We choose a parity preserving
outgoing edge incident to b. We call its endpoint v1. Since v1 and v have different parities,
we can connect v1 to corr(v) in V d+1 using only parity changing edges. Thus we obtain the
following valid path v → · · · → a → b → v1 → · · · → corr(v) passing through exactly one
parity preserving edge (b, v1). In the case that j = d, choose an incoming parity preserving
edge incident on a instead of an outgoing edge on b. J

I Remark 8. We note that if the format w = (w1, . . . , wd) defining f0 is such that for some
j ∈ [d], wj = 1, then f0 is not concise. This can be seen as follows.

Let wj = 1, and let v denote the unique vertex in V j . Let e be the edge e = (1, 1, j). If
j < d, let e′ be the edge e′ = (1, 1, j + 1), otherwise let e′ be the edge e′ = (1, 1, j − 1). Both
e, e′ are parity preserving edges. By construction, every valid path using e′ must also use e.
Hence the corresponding row in the matrix M j+1

f0
if j < d, and in M j−1

f0
otherwise, is zero.

Therefore f0 is not concise.
This is an interesting observation, because this is the point where our proof fails for

single-(source,sink) ABPs, and this is expected, because Nisan [35] had shown that the set of
polynomials computed by such ABPs of format w is a closed set.

I Lemma 9. Let f ∈ (End \ G)fcom. Then f is not concise.

Proof. This statement is true in very high generality. In our specific case a proof goes as
follows. If f ∈ (End \ G)fcom, then f = gfcom for some g ∈ End \ G. Let g = (g1, . . . , gd),
where gi ∈ Cwiwi+1×wiwi+1 . Since g /∈ G, at least one of the gi must be singular. The crucial
property is M i

gfcom
= giM

i
fcom

, which finishes the proof. J

7 Orbit dimension, tangent spaces, and flows

In this section we introduce tangent spaces and study their dimensions. We especially study
them in the context of Gfcom, and Gf0.
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The orbit dimension of a tensor f ∈ Cw1w2 ⊗ Cw2w3 ⊗ · · · ⊗ Cwdwd+1 is the dimension
of the orbit Gf as an affine variety. It can be determined as the dimension of the tangent
space Tf of the action of G at f , which is a vector space defined as follows. Let g :=
Cw1w2×w1w2 × · · · × Cwdwd+1×wdwd+1 . For A ∈ g we define the Lie algebra action Af :=
limε→0

1
ε ((id + εA)f − f), where id ∈ G is the identity element. We define the vector space

Tf := gf = {Af | A ∈ g}.

B Claim 10. The dimension dimTh is the same for all h ∈ Gf .

Proof. Since the action of G is linear, for all g ∈ G and A ∈ g we have

A(gf) = lim
ε→0

1
ε ((id + εA)(gf)− gf) = lim

ε→0
1
ε

(
gg−1(id + εA)gf − gf

)
= g lim

ε→0
1
ε

(
(id + ε(g−1Ag))f − f

)
= g((g−1Ag)f)

Since A 7→ g−1Ag is a bijection on g, it follows that Tgf = gTf . Hence the claim follows. J

In the following we will use Claim 10 to argue f0 /∈ Gfcom by showing that dimTfcom and
dimTf0 are different.

Let e, e′ ∈ Ei and let A(i)
e,e′ ∈ g denote the matrix tuple where the i-th matrix has a 1 at

position (e, e′) and all other entries (also in all other matrices) are 0. Since these matrices
form a basis of g, it follows that

gf = linspan{A(i)
e,e′f}.

For a tensor f we define the support of f as the set of monomials (i.e., standard basis tensors)
for which f has nonzero coefficient. For a linear subspace V ⊆ Cw1w2⊗Cw2w3⊗· · ·⊗Cwdwd+1

we define the support of V as the union of the supports of all f ∈ V .
We write e∩ e′ = ∅ to indicate that two edges e and e′ do not share any vertex. We write

|e ∩ e′| = 1 if they share exactly one vertex. We observe that for f ∈ {fcom, f0} the vector
space Tf decomposes into a direct sum of three vector spaces,

g2 := linspan{A(i)
e,e′ | 1 ≤ i ≤ d, 1 ≤ e, e′ ≤ wiwi+1, e ∩ e′ = ∅}

g1 := linspan{A(i)
e,e′ | 1 ≤ i ≤ d, 1 ≤ e, e′ ≤ wiwi+1, |e ∩ e′| = 1}

g0 := linspan{A(i)
e,e | 1 ≤ i ≤ d, 1 ≤ e ≤ wiwi+1}.

g = g0 ⊕ g1 ⊕ g2

Tf = g0f ⊕ g1f ⊕ g2f

The last direct sum decomposition follows from the fact that g0f , g1f , and g2f have pairwise
disjoint supports.

We show in this section that dim g2fcom = dim g2f0, and that dim g1fcom = dim g1f0. In
Section 8 we show that dim g0fcom > dim g0f0, which then implies f0 /∈ Gfcom by Claim 10.
In fact, Theorem 13 gives the exact dimension of g0fcom by proving that g0fcom is isomorphic
to the vector space of flows on the ABP digraph when identifying vertices in V 1 with their
corresponding vertices in V d+1. Theorem 14 establishes an additional equation based on the
vertex parities that shows that g0f0 is strictly lower dimensional than g0fcom.

We start with Lemma 11, which shows that dim g2fcom and dim g2f0 have full dimension.
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I Lemma 11. Let f ∈ {fcom, f0}. The space g2f has full dimension. That is, its dimension
equals

∑d
i=1 wiwi+1(wi − 1)(wi+1 − 1).

Proof. Suppose f = fcom. The other case being analogous, we only argue this case.
We analyze the monomials that appear in the different A(i)

e,e′fcom and argue that a
monomial that appears in some A(i)

e,e′fcom can only appear in that specific A(i)
e,e′fcom. Indeed,

each monomial corresponds to a valid path in which one edge e in layer i is changed to
e′. Since e and e′ share no vertex, from this edge sequence we can reconstruct i, e, and e′
uniquely: e′ is the edge that does not have any vertex in common with the rest of the edge
sequence, i is its layer, and e is the unique edge that we can replace e′ by in order to form a
valid path. We conclude that the A(i)

e,e′fcom have disjoint support and the lemma follows. J

To establish that dim g1fcom = dim g1f0, we introduce some notation.
For a connected directed graph G = (V,E) we define a flow to be a labeling of the edge

set E by complex numbers such that at every vertex the sum of the labels of the incoming
edges equals the sum of the labels of the outgoing edges. It is easily seen that the set of flows
forms a vector space F . We have

dimF = |E| − |V |+ 1, (11)

see e.g. Theorem 20.7 in [8].
Recall that Ei denotes the set of edges from V i to V i+1. Let X := E1× · · · ×Ed denote

the direct product of the sets of edge lists. Each directed path of length d from layer 1
to d + 1 is an element of X , but X contains other edge sets as well. Define Ei := CEi .
Consider the following map ϕ from X to E1 ⊗ · · · ⊗ Ed,

ϕ(e1, . . . , ed) = xe1 ⊗ · · · ⊗ xed ∈ E1 ⊗ · · · ⊗ Ed

where (xj) is the standard basis of Ei. Note ϕ is a bijection between X and the standard
basis of E1 ⊗ · · · ⊗ Ed.

An edge set in X is called a valid path if it forms a path that starts and ends at
corresponding vertices (see Sec. 1). Let P ⊆X denote the set of valid paths.

I Proposition 12. dim g1fcom = dim g1f0 =
∑d
i=1(wi−1 + wi+1 − 1)(wi − 1)wi, where

w0 := wd.

Proof. The proof works almost analogously for fcom and f0, so we treat only the more
natural case fcom. We show that g1fcom is isomorphic to a direct sum of vector spaces of
flows on very simple digraphs. Fix 1 ≤ i ≤ d. Fix distinct 1 ≤ a, b ≤ wi. For distinct edges
e, e′ ∈ Ei, let Pe,e′ ⊆X be the set of edge sets containing e′ that are not valid paths, but
that become valid paths by removing e′ and adding e. Let Pi

a,b ⊆ X be the set of edge
sets that are not valid paths, but that become valid paths by switching the end point of the
(i− 1)-th edge to vib and that also become valid paths by switching the start point of the
i-th edge to via (if i− 1 = 0, then interpret i− 1 := d). Pictorially, this means that elements
in Pi

a,b are almost valid paths, but there is a discontinuity at layer i, where the path jumps
from vertex via to vertex vib. We have

A
(i)
e,e′fcom =

∑
p∈Pe,e′

ϕ(p).
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The vectors {A(i)
e,e′fcom | 1 ≤ i ≤ d, e, e′ ∈ Ei, |e ∩ e′| = 1} are not linearly independent,

because for a 6= b we have∑
e and e′ have the same start point

e′ ends at the a-th vertex
e ends at the b-th vertex

A
(i−1)
e,e′ fcom =

∑
p∈Pi

a,b

ϕ(p) =
∑

h and h′ have the same end point
h starts at the a-th vertex
h′ starts at the b-th vertex

A
(i)
h,h′fcom.

(12)

Define

Ta,b,i := linspan
{
A

(i−1)
e,e′ fcom

∣∣∣∣ e and e′ have the same start point
e′ ends at the a-th vertex
e ends at the b-th vertex

}
+ linspan

{
A

(i)
h,h′fcom

∣∣∣∣ h and h′ have the same end point
h starts at the a-th vertex
h′ starts at the b-th vertex

}
.

The support of Ta,b,i and Tã,b̃,̃i are disjoint, provided (a, b, i) 6= (ã, b̃, ĩ). Hence

g1fcom =
⊕

1≤i≤d
1≤a,b≤wi

a6=b

Ta,b,i

It remains to prove that the dimension of Ta,b,i is wi−1 + wi+1 − 1, because then

dim g1fcom =
∑

1≤i≤d
1≤a,b≤wi

a 6=b

(wi−1 + wi+1 − 1) =
d∑
i=1

(wi−1 + wi+1 − 1)(wi − 1)wi.

Note that Ta,b,i is defined as the linear span of wi−1 + wi+1 many vectors, but (12) shows
that these are not linearly independent. We prove that (12) is the only equality by showing
that Ta,b,i is isomorphic to a flow vector space. We define a multigraph with two vertices: ·O
and ∗O. We have wi+1 many edges from ·O to ∗O, and we have wi−1 many edges from ∗O to ·O.
We denote by ∗O k→ ·O the k-th edge from ∗O to ·O. Let Fa,b,i denote the vector space of flows
on this graph. Its dimension is wi−1 +wi+1−1, see (11). We define % : E1⊗· · ·⊗Ed → Fa,b,i
on rank 1 tensors via

%(xe1 ⊗ · · · ⊗ xed)(∗O k→ ·O) =
{

1 if ei−1 starts at k in layer i− 1 and ends at a in layer i,
0 otherwise.

%(xe1 ⊗ · · · ⊗ xed)( ·O l→ ∗O) =
{

1 if ei starts at b in layer i and ends at l in layer i+ 1,
0 otherwise.

Using (12) it is readily verified that % maps Ta,b,i to Fa,b,i. It remains to show that
% : Ta,b,i → Fa,b,i is surjective. Let α := |Pi

a,b|. We observe that

%(A(i−1)
e,e′ fcom)(∗O k→ ·O) =

{
α/wi−1 if e and e′ both start at the k-th vertex
0 if e and e′ both start at the same vertex, but not at the k-th

%(A(i−1)
e,e′ fcom)( ·O l→ ∗O) = α/(wi−1wi+1)

%(A(i)
h,h′fcom)( ·O l→ ∗O) =

{
α/wi+1 if h and h′ both end at the l-th vertex
0 if h and h′ both end at the same vertex, but not at the l-th

%(A(i)
h,h′fcom)(∗O k→ ·O) = α/(wi−1wi+1)
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Let Ξ :=
∑
A

(i−1)
e,e′ fcom. Then ∀k : %(Ξ)(∗O k→ ·O) = α/wi−1 and ∀l : %(Ξ)( ·O l→ ∗O) = α.

Therefore, for e, e′ starting at the k0-th vertex and h, h′ ending at the l0-th vertex we have
that

%

(
wi−1wi+1%(A(i−1)

e,e′ fcom) + wi−1wi+1%(Aih,h′fcom)− Ξ
)

is nonzero only on exactly two edges: ∗O k0→ ·O and ·O l0→ ∗O. Cycles form a generating set of
the vector space Fa,b,i, which finishes the proof of the surjectivity of %. J

8 Flows on ABPs

We now proceed to the analysis of g0fcom and g0f0. The connection to flow vector spaces
will be even more prevalent than in Proposition 12. The main result of this section is
dim g0fcom > dim g0f0 (Theorems 13 and 14), which implies that fcom and f0 have different
orbit dimensions. We thereby conclude that f0 /∈ Gfcom.

To each edge e we assign its path tensor ψ(e) by summing tensors over all valid paths
passing through e,

ψ(e) :=
∑

p∈P with e∈p

ϕ(p) ∈ E1 ⊗ · · · ⊗ Ed.

By linear continuation this gives a linear map ψ : CE → E1 ⊗ · · · ⊗ Ed.
Observe that ψ(e) = A

(i)
e,efcom. Let T denote the linear span of all ψ(e), e ∈ E. In other

words, T = g0fcom.
Let P ′ ⊆P ⊆X be the set of valid paths that contain exactly one parity preserving

edge. To each edge e we assign its parity path tensor ψ′(e) by summing tensors over paths in
P ′,

ψ′(e) :=
∑

p∈P′ with e∈p

ϕ(p) ∈ E1 ⊗ · · · ⊗ Ed.

By linear continuation this gives a linear map ψ′ : CE → E1 ⊗ · · · ⊗ Ed. Observe that
ψ′(e) = A

(i)
e,ef0. Let T ′ denote the linear span of all ψ′(e), e ∈ E. In other words, T ′ = g0f0.

We will establish the following bounds on the dimensions of T and T ′.

I Theorem 13. dim T = |E| −
∑d
i=1 wi + 1.

I Theorem 14. dim T ′ ≤ |E| −
∑d
i=1 wi.

The rest of this section is dedicated to the proofs of Theorem 13 and Theorem 14 by
showing that T is isomorphic to the vector space of flows “on the ABP”, while the parity
constraints lead to a smaller dimension of T ′.

From an ABP Γ we construct a digraph Γ̃ by identifying corresponding vertices from
the first and the last layer in V and calling the resulting vertex set Ṽ . Note |Ṽ | =

∑d
i=1 wi.

The directed graphs Γ and Γ̃ have the same edge set. The resulting directed graph is called
Γ̃ = (Ṽ , E). Let F denote the vector space of flows on Γ̃. Note that by (11) we have
dimF = |E| − |Ṽ | + 1. All directed cycles in Γ̃ have a length that is a multiple of d. In
particular, all cycles of length exactly d are in one-to-one correspondence with valid paths
in Γcom. For an edge e ∈ E, let χ(e) ∈ CE denote the characteristic function of e, i.e., the
function whose value is 1 on e and 0 everywhere else.

We now prove Theorem 13 by establishing a matching upper (Lemma 15) and lower
bound (Lemma 16) of |E| − |Ṽ |+ 1 = dimF on dim T .
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The upper bound
I Lemma 15. dim T ≤ |E| − |Ṽ |+ 1.

Proof. For v ∈ Ṽ , let in(v) ⊆ E denote the set of incoming edges incident to v and out(v) ⊆ E
denote the set of outgoing edges incident to v. For each v ∈ Ṽ , define the row vector

rv =
∑

e∈in(v)

χ(e)−
∑

e∈out(v)

χ(e).

These vectors are the rows of the signed incidence matrix of Γ̃, and since Γ̃ is connected,
they span a space of dimension |Ṽ | − 1 ([8, Ex. 1.5.6]). Now observe that for all v ∈ Ṽ ,∑

e∈in(v)

ψ(e) =
∑

e∈out(v)

ψ(e).

Since ψ is linear, this is equivalent to

ψ

 ∑
e∈in(v)

χ(e)−
∑

e∈out(v)

χ(e)

 = 0.

Hence each rv is in the kernel of ψ, and hence dim kerψ ≥ |Ṽ | − 1. Using (11), we obtain
dim T = dim imψ = |E| − dim kerψ ≤ |E| − |Ṽ |+ 1 = dimF . J

The lower bound
To obtain the lower bound, we define a linear map % : E1 ⊗ · · · ⊗ Ed → CE such that the
image of % restricted to T equals F . This will imply that dim T ≥ dimF , thereby achieving
the required lower bound.

We define the linear map % on standard basis elements xe1 ⊗ · · · ⊗ xed as follows,

%(xe1 ⊗ · · · ⊗ xed) := χ(e1) + · · ·+ χ(ed),

and then extend it to the domain E1 ⊗ · · · ⊗ Ed via linear continuation.

I Lemma 16. Let %|T denote the restriction of % to the linear subspace T . Then, im %|T = F .
In particular, dim T ≥ dimF = |E| − |Ṽ |+ 1.

Proof. To prove equality it suffices to show im %|T ⊆ F and F ⊆ im %|T .
The first containment is easy to see. For an edge e, consider the image of ψ(e) under the

map %,

%(ψ(e)) =
∑

e∈p∈P

∑
e′∈p

χ(e′).

Observe that for a path p ∈P,
∑
e′∈p χ(e′) is a flow on Γ̃ and hence it belongs to F . Thus,

we have %(ψ(e)) ∈ F . Since T is spanned by ψ(e), for e ∈ E, we obtain that im %|T ⊆ F .
To establish the second containment it suffices to show that the image of T under the

map % contains a basis of F . We identify a specific basis for F in Claim 17 and prove that it
is contained in im %|T in Claim 18 to complete the argument. J

We identify directed cycles with their characteristic flows, i.e., flows that have value 1
on the cycle’s edges and 0 everywhere else. We also identify directed cycles that use edges
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Figure 1 The spanning tree construction for width 4 and d = 5.

in any direction with their characteristic flow: the characteristic flow is defined to take the
value 1 on an edge e if e is traversed in the direction of e, and value −1 on e if e is traversed
against its direction.

From the theory of flows we know that for every (undirected) spanning tree T of Γ̃, the
vector space F ∈ CE has a basis given by the characteristic flows of cycles that only use
edges from T and exactly one additional edge (for example, see Theorem 20.8 in [8]). Thus,
the cycle flows corresponding to the elements not in the spanning tree form a basis of F .

B Claim 17. F is spanned by the set of directed cycles in Γ̃ of length exactly d.

Proof. We construct a spanning tree τ as follows, which will be a tree whose edges are all
directed away from its root. Informally, the tree is given by the following subgraph, we make
the first vertex in V 1 as root, and include all the outgoing edges incident to it. We then
move to the first vertex in V 2 and include all the outgoing edges incident to it. We continue
in this way until we reach V d. Upon reaching the first vertex in V d we include all but one
outgoing edges incident to it. The one that is an incoming edge to the root is not included.
Figure 1 illustrates the construction. We now formally define this.

Let vi1 ∈ V i denote the first vertex in the layer i, 1 ≤ i ≤ d. Further recall in(v) ⊆ E and
out(v) ⊆ E denote the set of incoming and outgoing edges, respectively, incident to v. Define
the edge set

τ :=
(

d⋃
i=1

out(vi1)
)
\ {(vd1 , v1

1)},

which is a spanning tree in Γ̃. We know that every edge not in the tree when added to the
tree gives a unique undirected cycle. We now show that the characteristic flows of these
undirected cycles can be expressed as a linear combination of the characteristic flows of
directed cycles of length d. For e ∈ E \ τ , let ce denote the characteristic flow of the unique
undirected cycle that uses e in its correct direction and only edges of τ . We argue depending
on which layer the edge e belongs to.

Suppose e ∈ E1 \ τ .
If e is incident to v2

1 , the first vertex in V 2, then the inclusion of e creates a directed
cycle of length d. Hence, ce equals the characteristic flow of this directed cycle.
Otherwise, the inclusion of e creates an undirected cycle of length d+2. If e = (v1

j1
, v2
j2

)
for some j1 ∈ [2, w1] and j2 ∈ [2, w2], then the cycle ce is given as follows:

vd1 − v1
j1
− v2

j2
− v1

1 − v2
1 − · · · − vd−1

1 − vd1 .
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e

Ce

= + -

C2 C3 C1

Figure 2 Decomposing a cycle of length d+ 2 as a linear combination of cycles of length d. The
figure is an illustration when d = 3. The dotted layers in each cycle from the left are V 3, V 1, V 2,
and V 3 again.

Consider the following two directed cycles:

C1 : v1
1 − v2

j2
− · · · − vd1 − v1

1 and
C2 : v1

j1
− v2

j2
− · · · − vd1 − v1

j1
,

such that the part v2
j2
−· · ·−vd1 between v2

j2
and vd1 in the two cycles is the same. Let us

denote the characteristic flow of a cycle C by χ(C). We now observe that χ(C2)−χ(C1)
equals the characteristic flow of the undirected cycle v1

j1
− v2

j2
− v1

1 − vd1 − v1
j1
. This is

because the common part in C1 and C2 cancels out. To χ(C2) − χ(C1) we add the
characteristic flow of the directed cycle,

C3 : v1
1 − v2

1 − v3
1 − · · · − vd−1

1 − vd1 − v1
1 .

It is now easily seen that χ(C2)− χ(C1) + χ(C3) equals the characteristic flow of the
cycle ce (see Figure 2 for an illustration).

Suppose e ∈ Ed \ τ .
If e is incident to v1

1 , the first vertex in V 1, then as before the inclusion of e creates
a directed cycle of length d. Hence, ce equals the characteristic flow of this directed
cycle.
Otherwise, the inclusion of e creates an undirected cycle of length 4. If e = (vdj1

, v1
j2

)
for some j1 ∈ [2, wd] and j2 ∈ [2, w1], then the cycle ce is given as follows:

vdj1
− v1

j2
− vd1 − vd−1

1 − vdj1
.

Consider the following two directed cycles:

C4 : v1
j2
− · · · − vd−1

1 − vd1 − v1
j2

and
C5 : v1

j2
− · · · − vd−1

1 − vdj1
− v1

j2
,

such that the part v1
j2
− · · · − vd−1

1 between v1
j2

and vd−1
1 in the two cycles is the same.

We now claim that χ(C5)− χ(C4) equals the characteristic flow of ce. This is because
the common part in C4 and C5 cancels out.

Otherwise e ∈ Ei \ τ for some i ∈ {2, . . . , d− 1}. In such a case inclusion of e creates an
undirected cycle of length 4. We can again argue exactly like in the previous case, and so
we omit the argument here. J

We now prove that the generating set given by the directed cycles of length d is contained
in the image of T under the map %.
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1
w4w5

1
w5 1 1

w3
1

w3w4
1

w4w5
1
w5 1 1 1

w4

Figure 3 On the left: %(ψ̄(e1)). On the right: %(ψ̄(e1))− 1
w3

∑w3−1
j=1 %(ψ̄(e(j)

2 )) + w3−1
w3

%(ψ̄(e2)).
This is the case d = 5 and format (4, 4, 4, 4, 4). Edges that are not drawn carry 0 flow. All edges
in the same layer carry either 0 flow or the value that is depicted above the edge layer. For the
purposes of illustation, e1 is the top edge in the center. Here we assume that each ei points from
the first vertex in V i to the first vertex in V i+1.

B Claim 18. im(%|T ) contains the characteristic flow of each directed cycle of length d.

Proof. Let {e1, e2, . . . , ed} ⊆ E be a directed cycle of length d, where each ei points from a
vertex in V i to a vertex in V i+1. Let {e(j)

i } denote the set of edges that start at the same
vertex as ei, but for which e(j)

i 6= ei. Thus |{e(j)
i }| = |V i+1| − 1. Let

ψ̄(e) := 1
|{p ∈P with e ∈ p}|ψ(e),

so that %(ψ̄(e)) is a flow with value 1 on the edge e. It is instructive to have a look at the left
side of Figure 3, where %(ψ̄(e1)) is depicted. Subtracting 1

w3

∑w3−1
j=1 %(ψ̄(e(j)

2 )) and adding
w3−1
w3

%(ψ̄(e2)) reduces the support significantly and brings us one step closer to the cycle,
see the right side of Figure 3. We iterate this process until only the cycle is left. Formally:

χ(e1, . . . , ed) = %(ψ̄(e1))

+ w3−1
w3

%(ψ̄(e2))− 1
w3

w3−1∑
j=1

%(ψ̄(e(j)
2 ))

+ · · ·

+ wd−1
wd

%(ψ̄(ed−1))− 1
wd

wd−1∑
j=1

%(ψ̄(e(j)
d−1)).

J

The stronger upper bound via parities
We now proceed to upper bound dim T ′ (Theorem 14). The proof is analogous to the proof
of Lemma 15.

I Theorem 19 (Restatement of Theorem 14). dim T ′ ≤ |E| − |Ṽ |.

Proof. As in the proof of Lemma 15, for v ∈ Ṽ , we have∑
e∈in(v)

ψ′(e) =
∑

e∈out(v)

ψ′(e).
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Furthermore, we have the following additional constraint on ψ′,

(d− 1)
∑

e parity preserving
ψ′(e) =

∑
e parity changing

ψ′(e).

By the linearity of ψ′, we have

ψ′

(d− 1)
∑

e parity preserving
χ(e)−

∑
e parity changing

χ(e)

 = 0.

Therefore, the kernel of ψ′ is spanned by the vectors (
∑
e∈in(v) χ(e) −

∑
e∈out(v) χ(e)), for

v ∈ Ṽ , and an additional vector ((d− 1)
∑
e parity preserving χ(e)−

∑
e parity changing χ(e)).

We now claim that the new vector is linearly independent from the earlier set of vectors.
We prove the claim by constructing a vector in CE that is orthogonal to the earlier set of
vectors but is non-orthogonal to the additional vector. One such vector is given by the
characteristic flow of the directed cycle v1

1 − v2
1 − v3

1 − · · · − vd−1
1 − vd1 − v1

1 .
Thus, it follows that dim kerψ′ ≥ |Ṽ |, and hence dim T ′ ≤ |E| − |Ṽ |. J

9 VQP versus VNP

In this section, we compare the complexity classes VQP and VNP. Valiant in his seminal
paper [41] defined the complexity classes that are now called as VP and VNP, and the central
question of algebraic complexity is to understand whether the two complexity classes are
indeed different as sets (Valiant’s hypothesis). Bürgisser [11] defined the complexity class
VQP and related it to the complexity classes VP and VNP. We proceed to define the above
three classes for establishing the context. For an exhaustive treatment of the classes, we refer
the readers to Bürgisser’s monograph [11] from where we are lifting the definitions. We first
need to define so-called p-families.

I Definition 20. A sequence f = (fn) of multivariate polynomials over a field k is called
a p-family (over k) iff the number of variables as well as the degree of fn are bounded by
polynomial functions in n.

We now need to define the model of computation and the notion of complexity in order to
define the complexity classes of interest.

I Definition 21. A straight-line program Γ (expecting m inputs) represents a sequence
(Γ1, . . . ,Γr) of instructions Γρ = (ωρ; iρ, jρ) with operation symbols ωρ ∈ {+,−, ∗} and the
address iρ, jρ which are integers satisfying −m < iρ, jρ < ρ. We call r the size of Γ.

So, essentially, in a straight-line program, we either perform addition or subtraction or
multiplication on the inputs or the previously computed elements. The size of the straight-
line program naturally induces a size complexity measure on polynomials as follows:

I Definition 22. The complexity L(f) of a polynomial f ∈ F[x1, . . . , xn] is the minimal size
of a straight-line program computing f from variables xi and constants in F.

We are now all set to define the above discussed complexity classes.

I Definition 23. A p-family f = (fn) is said to be p-computable iff the complexity L(fn) is
a polynomially bounded function of n. VPF consists of all p-computable families over the
field F.
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I Definition 24. A p-family f = (fn) is said to be p-definable iff there exists a p-computable
family g = (gn), gn ∈ F[x1, . . . , xu(n)], such that for all n

fn(x1, . . . , xv(n)) =
∑

e∈{0,1}u(n)−v(n)

gn(x1, . . . , xv(n), ev(n)+1, . . . , eu(n)).

The set of p-definable families over F forms the complexity class VNPF.

I Definition 25. A p-family f = (fn) is said to be qp-computable iff the complexity L(fn)
is a quasi-polynomially bounded function of n. The complexity class VQPF consists of all
qp-computable families over F.

In the above three definitions, if the underlying field is clear from the context, we can drop
the subscript F and simply represent the classes as VP,VNP and VQP respectively. In what
follows, the underlying field is always assumed to be Q, the field of rational numbers.

In [11], Bürgisser showed the completeness of the determinant polynomial for VQP
under qp-projections and strengthened Valiant’s hypothesis of VNP 6⊆ VP to VNP 6⊆ VQP
and called it Valiant’s extended hypothesis (see [11], Section 2.5). He also established that
VP ( VQP and went on to show that VQP 6⊆ VNP (see [11], Proposition 8.5 and Corollary
8.9). The main observation of this section is that his proof is stronger and is sufficient to
conclude that VQP is not contained in the closure of VNP either, where the closure is in the
sense as mentioned in Section 1.

In fact, Bürgisser in his monograph [11] also gives a set of conditions which if the
coefficients of a polynomial sequence satisfies, then that polynomial sequence cannot be in
VNP [11, Theorem 8.1]. His theorem and the proof is inspired by Heintz and Sieveking [22].
The second observation of this section is that this proof is even stronger and actually those
conditions are sufficient to show that the given polynomial sequence is not contained in VNP
either.

We now discuss both the observations.

9.1 VQP 6⊆ VNP
We first show that there is a logn variate polynomial of degree (n− 1) logn which is in VQP
but not in VNP. In this exposition, for the sake of better readability, we do not present the
Bürgisser’s statements in full generality since it is not essential for the theorem that we want
to show here. Moreover, the less general version that we present here contains all the ideas
for the theorem statements and their proofs.

I Theorem 26. Let Nn := {0, . . . , n − 1}logn and fn :=
∑

µ∈Nn
22j(µ)

Xµ1
1 · · ·X

µlogn
logn , where

j(µ) :=
∑logn
j=1 µjn

j−1. Then fn ∈ VQP, but fn /∈ VNP, and hence VQP 6⊆ VNP.

The theorem consists of two parts. The containment in VQP follows immediately from the
fact that the total number of monomials in fn is nlogn. For the other part, we closely follow
Bürgisser’s lower bound proof [11, Proposition 8.5] against VNP here, making transparent
the fact that the proof works also against VNP. His proof techniques were borrowed from
Strassen ([39]). The idea is to use the universal representation for polynomial sequences
in VNP, so that we get a hold on how the coefficients of the polynomials look like. Using
that, we establish polynomials Hn that vanish on all the polynomial sequences in VNP (in
other words, Hn is in the vanishing ideal of sequences in VNP), but do not vanish on fn
(because the growth rate of its coefficients is too high), hence giving the separation. Since
the vanishing ideal of a set characterizes its closure, we get the stronger separation, i.e., fn
does not belong to the closure of VNP, namely, VNP.
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Proof of Theorem 26. As stated above, the proof works in three stages: first, assuming
the contrary and writing fn using the universal representation for the polynomial sequences
in VNP, then giving polynomials Hn of special forms in the vanishing ideal of polynomial
sequences in VNP, and finally showing that Hn cannot vanish on our sequence fn, hence
arriving at a contradiction.

Assuming (fn) ∈ VNP implies the existence of a family (gn) ∈ VP, with L(gn) bounded
by a polynomial r(n), and a polynomial u(n) such that

fn(X1, . . . , Xlogn) =
∑

e∈{0,1}u(n)−logn

gn(X1, . . . , Xlogn, elogn+1, . . . , eu(n)).

Next, we use the universal representation theorem (see [39], [37]) as stated in Bürgisser’s
monograph ([11], Proposition 8.3; for a proof see [13], Proposition 9.11) for size r(n) straight-
line program to get that there exist polynomials G(n)

ν ∈ Z[Y1, . . . , Yq(n)], with q(n) being
a polynomial in n (more precisely, it is a polynomial in r(n) and u(n)) which for |ν| ≤
deg gn = nO(1), guarantee that degGν = nO(1), log wt(Gν)(n) = 2nO(1) , and also guarantee
the existence of some ζ ∈ Qq(n), such that

gn =
∑
ν

G(n)
ν (ζ)Xν1

1 · · ·X
νu(n)
u(n) ,

where weight of a polynomial f , wt(f) refers to the sum of the absolute values of its
coefficients.

Now, taking exponential sum yields that

fn =
∑
µ∈Nn

F (n)
µ (ζ)Xµ1

1 · · ·X
µlogn
logn ,

where the polynomials F (n)
µ are obtained as a sum of at most 2u(n) polynomials G(n)

ν . Thus,
we now have a good hold on F (n)

µ , i.e. degF (n)
µ ≤ α(n) and log wt(F (n)

µ ) ≤ 2β(n), where both
α(n) and β(n) are polynomially bounded functions of n.

Thus, for fn to be in VNP, the coefficients of fn should be in the image of the polynomial
map Fnµ : Qq(n) → Qn

logn

. In other words, we must have some ζ ∈ Qq(n), such that for
all µ ∈ Nn, we have Fnµ (ζ) = 22j(µ) , where j(µ) :=

∑logn
j=1 µjn

j−1. Since Fnµ takes all the
values from 220 to 22n

logn−1 , we have a subset of indices Ñn ⊆ Nn of size s(n) := b|Nn|/nc =
bnlogn/nc, such that for σ ∈ {0, 1, . . . , s(n)− 1} and a bijection δ : {0, 1, . . . , s(n)− 1} → Ñn
with σ 7→ δ(σ), we have Fnδ(σ) = 22σn+1 .

Now we can apply Lemma 9.28 from [13] which asserts that there will be polynomials
of low height (ht) (the maximum of the absolute value of the coefficients) on which these
coefficients shall vanish. More precisely, there exists non-zero forms Hn ∈ Z[Yµ | µ ∈ Ñn]
with ht(Hn) ≤ 3, degHn ≤ D(n), and such that Hn(Fnµ | µ ∈ Nn) = 0, given that
D(n)s(n)−q(n)−2 > α(n)q(n)s(n)s(n)2β(n).

It can be seen that D(n) = 2n − 1 satisfies the above inequality, since α(n), β(n) and
q(n) are polynomially bounded and 2n grows much faster than s(n) = bnlogn/nc. This
allows us to write Hn =

∑
e λe

∏
µ∈Ñn Y

eµ
µ , where the absolute values of λe are bounded by

3. Since Hn vanishes on the subset of coefficients of fn, i.e it vanishes on Fnδ(σ) = 22σn+1 with
σ ∈ {0, 1, . . . , s(n)− 1}, we have

0 = Hn(Fnµ | µ ∈ Ñn) =
∑
e

λe

s(n)−1∏
σ=0

2eδ(σ)2σn+1
=
∑
e

λe · 4
∑

σ
eδ(σ)(2n)σ .
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The last sum is essentially a 4-adic integer, since firstly, |λe| ≤ 3, and secondly, all the
exponents of 4, that is,

∑
σ eδ(σ)(2n)σ are all distinct, as they can be seen as 2n-adic

representation since eδ(σ) < 2n. Thus λe has to be zero for all e. Hence Hn must be
identically zero, which is a contradiction. J

9.2 A criterion for non-membership in VNP
In this section, we discuss a criterion Bürgisser presented in his monograph [11] based on a
proof due to Heintz and Sieveking which gives a set of conditions that puts a p-family out of
VNP. We observe that those conditions if satisfied, in fact, put a given p-family out of VNP
as well.

I Theorem 27. Let (pn) be a sequence of polynomials over Q and let N(n) denote the degree
of the field extension generated by the coefficients of pn over Q. Further suppose the following
holds:

1. The map n 7→ dlogN(n)e is not p-bounded.
2. For all n, there is a system Gn of rational polynomials of degree at most D(n) with

finite zeroset, containing the coefficient system of fn, and such that n 7→ dlogD(n)e is
p-bounded.

Then the family (pn) 6∈ VNP.

Thus the above theorem shows that certain p-families with algebraic coefficients of high
degree are not contained in VNP. We now give a simple example from [11] to illustrate the
theorem.

I Example 28. Consider the following multivariate family defined as

pn =
∑

e∈{0,1}n\0

√
pj(e)X

e,

where j(e) =
∑n
s=1 es2s−1 and pj refers to the j-th prime number. Then using the above

Theorem 27, we can conclude that pn /∈ VNP. This is because the degree of field extension
N(n) = [Q(√pj | 1 ≤ j ≤ 2n) : Q] = 22n−1 (see for example [13], Lemma 9.20), hence
condition 1 above is satisfied. Condition 2 is also satisfied because the coefficients are the
roots of the system Gn = {Z2

j − pj | 1 ≤ j < 2n}, with D(n) = 2.

For a proof of the theorem, we refer the readers to [11, Theorem 8.1]. We point out
that the proof in its original form already works. In his proof, he wanted to conclude that
fn /∈ VNP. However, along the way, he arrives at a contradiction to the assertion that fn
is contained in the Zariski-closure of VNP, which is exactly what is now known as VNP.
During the time of the original proof, the complexity class VNP was not defined.
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