
Short Proofs in QBF Expansion

Olaf Beyersdorff1, Leroy Chew2, Judith Clymo2, and Meena Mahajan3

1 Institute of Computer Science, Friedrich Schiller University Jena, Germany
2 School of Computing, University of Leeds, United Kingdom

3 The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract. For quantified Boolean formulas (QBF) there are two main
different approaches to solving: conflict-driven clause learning (QCDCL)
and expansion solving. In this paper we compare the underlying proof
systems and show that expansion systems admit strictly shorter proofs
than QCDCL systems for formulas of bounded quantifier complexity, thus
pointing towards potential advantages of expansion solving techniques
over QCDCL solving.
Our first result shows that tree-like expansion systems allow short proofs
of QBFs that are a source of hardness for QCDCL, i.e. tree-like ∀Exp+Res
is strictly stronger than tree-like Q-Resolution.
In our second result we efficiently transform dag-like Q-Resolution proofs
of QBFs with bounded quantifier complexity into ∀Exp+Res proofs. This
is theoretical confirmation of experimental findings by Lonsing and Egly,
who observed that expansion QBF solvers often outperform QCDCL
solvers on instances with few quantifier alternations.

Keywords: QBF · Proof Complexity · Resolution · SC · Polynomial
Hierarchy

1 Introduction

Quantified Boolean formulas (QBFs) generalise propositional logic by adding
Boolean quantification. While not more expressive than propositional formulas,
QBFs allow more succinct encodings of many practical problems, including
automated planning [12], verification [2], and ontologies [19]. From a complexity
point of view, they capture all problems from PSPACE.

Following the enormous success of SAT solving [25], there has been increased
attention on QBF solving in the past two decades. Currently, many QBF solvers
such as DepQBF [21], RAReQS [14], GhostQ [18], and CAQE [24], to name but a
few, compete on thousands of QBF instances. However, lifting the success of SAT
to QBF presents significant additional challenges stemming from quantification,
and solvers use quite different techniques to do this.

We consider two popular paradigms for QBF solving. In the first, QBF solvers
use Conflict Driven Clause Learning (CDCL) techniques from SAT solving,
together with a ‘reduction’ rule to deal with universally quantified literals. In the
second method, QBF solvers use quantifier expansion and remove the universally
quantified literals in order to use SAT-based reasoning on the formulas.

2 O. Beyersdorff et al.

These two paradigms can be modelled by different QBF proof systems. Mod-
ern SAT solvers correspond to the Resolution proof system [10, 23]; similarly
QBF solvers correspond to different QBF Resolution calculi. CDCL-style QBF
(QCDCL) systems correspond to the QBF resolution system Q-resolution (Q-
Res) [17], although algorithms implementing QCDCL, such as DepQBF, typically
also implement additional reasoning techniques. In contrast, ∀Exp+Res was
developed to model RAReQS [15], an expansion based QBF solver.

The proof systems ∀Exp+Res and Q-Res are known to be incomparable, i.e.
there are families of QBFs that have polynomial-size refutations in one system,
but require exponential-size refutations in the other [4,15]. As such we would not
expect either QCDCL or expansion-based algorithms to be consistently stronger
than the other, but would instead anticipate that solvers implementing the two
systems would complement each other. An experimental comparison of this
situation was recently conducted in the paper [22] where the authors conclude
that QCDCL solvers perform better on instances with high quantifier complexity,
whereas expansion-based solving appears superior on QBFs with few quantifier
alternations.

In this paper we offer a theoretical explanation of these experimental findings.
For this we closely re-examine the relations between the base systems Q-Res for
QCDCL and ∀Exp+Res for expansion-based solving. As we know already that the
two systems are incomparable in general, we consider two natural and practically
important settings to obtain a more fine-grained analysis.

In the first setting, we require proofs to be tree-like, i.e. derived clauses may
not be reused, a model corresponding to the classic (Q)DPLL algorithm [10].
While it is known that tree-like ∀Exp+Res p-simulates tree-like Q-Res [5, 15], we
show that this simulation is strict by providing an exponential separation. This
separation uses the QParity formulas [4], which are known to be hard in (even
dag-like) Q-Res [4]. Here we construct short tree-like proofs in ∀Exp+Res, using
a Prover-Delayer game that characterises tree-like Resolution [7].

We generalise this technique for Q-C formulas based on descriptions of
circuits C. For suitably chosen circuits, such QBFs yield lower bounds for quite
strong QBF calculi, even including QBF Frege systems [3]. In contrast, we show
that under certain width conditions on the circuit they have short proofs in tree-
like ∀Exp+Res. In particular, for bounded-width circuits we obtain polynomial-
size tree-like ∀Exp+Res proofs, and for circuits from the class SC we get quasi-
polynomial-size proofs in tree-like ∀Exp+Res for the corresponding QBF family
Q-C. Using this construction for the QInnerProduct formulas [6], we show
that tree-like ∀Exp+Res and the QBF extension of the Cutting Planes proof
system CP+∀red are incomparable and exponentially separated.

In our second setting we consider families of QBFs of bounded quantifier
complexity, which express exactly all problems from the polynomial hierarchy
and thus cover most application scenarios. In this case, we show that (dag-like)
Q-Res is p-simulated by ∀Exp+Res. The technically involved simulation increases
in complexity as the number of quantification levels grows, and indeed there is
an exponential separation between the two systems on a family of QBFs with an

Short Proofs in QBF Expansion 3

unbounded number of quantification levels [15]. For practitioners, our result offers
a partial explanation for the observation that “solvers implementing orthogonal
solving paradigms, such as variable expansion or backtracking search with clause
learning, perform better on instances having either few or many alternations,
respectively” [12].

2 Preliminaries

A literal is a propositional variable or its negation. The literals x, ¬x are comple-
mentary to each other. A clause is a disjunction of literals. A CNF formula is a
conjunction of clauses.

Quantified Boolean formulas (QBFs). Propositional logic extended with the
quantifiers ∀,∃ gives rise to quantified Boolean logic [16]. Semantically, ∀x. Ψ is
satisfied by the same truth assignments as Ψ [0/x] ∧ Ψ [1/x] and ∃x. Ψ is satisfied
by the same truth assignments as Ψ [0/x] ∨ Ψ [1/x].

A closed QBF is a QBF where all variables are quantified. We consider only
closed QBFs in this paper. A closed QBF is either true or false, since if we
semantically expand all the quantifiers we have a Boolean connective structure
on 0, 1. A prenex QBF is a QBF where all quantification is done outside of the
propositional connectives. A prenex QBF Φ thus has a propositional part φ called
the matrix and a prefix of quantifiers Π and can be written as Φ = Π · φ. When
the propositional matrix of a prenex QBF is a CNF, then we have a PCNF.

Let Q1X1 . . .QkXk. φ be a prenex QBF, where for 1 ≤ i ≤ k Qi ∈ {∃,∀},
Qi 6= Qi+1, Xi are pairwise disjoint sequences of variables. If x ∈ Xi, we say that
x is at level i and write lv(x) = i. We write lv(l) for lv(var(l)), where var(l) is
the variable such that l = var(l) or l = ¬ var(l). For fixed k, the class Σb

k contains
all prenex QBFs of the above form with k quantifier blocks where the first block
is existential.

Without loss of generality, we assume that the last block is existential in all
QBFs we consider.

Proof systems. Formally, a proof system [11] for a language L over alphabet Γ
is a polynomial-time computable partial function f : Γ? ⇁ Γ? with rng(f) = L.
For x ∈ L, a y ∈ Γ? such that f(y) = x is a proof of x ∈ L. If f and g are proof
systems for the same language, then f p-simulates g if and only if there is a
polynomially computable function mapping a proof in g to a proof of the same
formula in f [11].

Q-Resolution. Introduced by Kleine Büning, Karpinski, and Flögel in [17],
Q-Resolution (Q-Res) is a refutational system that operates on PCNFs. It uses
the propositional resolution rule on existential variables with a side condition
that prevents tautological clauses (cf. Figure 1). Tautologies are also forbidden
from being introduced in the proof as axioms. In addition, Q-Res has a universal
reduction rule (∀-Red) to remove universal variables. A Q-Res proof of false QBF
Φ is a sequence of clauses C1 . . . Cm such that Cm is the empty clause (denoted
⊥) and each Ci is either introduced by rule Ax, derived by rule Res from Cj and

4 O. Beyersdorff et al.

(Ax)
C

C ∨ x D ∨ ¬x (Res)
C ∨D

Ax : C is a non-tautological clause in the propositional matrix.
Res: variable x is existential, and if literal z ∈ C, then ¬z /∈ D.

C ∨ u
C

C ∨ ¬u (∀-Red)
C

u is universal and all other variables x ∈ C are left of u in the prefix.

Fig. 1. The rules of Q-Res [17]

Ck on pivot x (j, k < i), or derived by ∀-Red from Cj (j < i). Clauses need not
be unique in the proof. The parent(s) of a clause are the clause(s) used to derive
it; the derived clause is called the child.

The size of a Q-Res proof π is the number of clauses it contains, denoted |π|.
The size of refuting QBF Φ in Q-Res is minimum over the size of all possible
Q-Res proofs.

A proof C1 . . . Cm induces a directed acyclic graph (dag) with nodes corre-
sponding to clauses, and edges to derivation steps. Clauses introduced by the
rule Ax are source nodes and edges point from parent(s) of a proof step to the
clause derived. If the induced dag is a tree then the proof is called tree-like. In
tree-like Q-Res, only tree-like proofs are allowed.

QBF expansion. In addition to Q-Res we consider an alternative way of extend-
ing the resolution calculus based on instantiation of universal variables that was
introduced to model expansion-based QBF solving. We operate on clauses that
comprise only existential variables from the original QBF, which are addition-
ally annotated by a substitution to universal variables, e.g. ¬x0/u,1/v. For any
annotated literal lσ, the substitution σ must not make assignments to variables
right of l, i.e. if u ∈ dom(σ), then u is universal and lv(u) < lv(l). To preserve
this invariant, we use the auxiliary notation l[σ], which for an existential literal l
and an assignment σ to the universal variables filters out all assignments that
are not permitted, i.e. l[σ] = l{c/u∈σ | lv(u)<lv(l)}. We say that an assignment is
complete if its domain is all universal variables. Likewise, we say that a literal xτ

is fully annotated if all universal variables u with lv(u) < lv(x) in the QBF are
in dom(τ), and a clause is fully annotated if all its literals are fully annotated.

The calculus ∀Exp+Res from [15] works with fully annotated clauses on which
resolution is performed. For each clause C from the matrix and an assignment τ
to all universal variables, falsifying all universal literals in C, ∀Exp+Res can use
the axiom

{
l[τ] | l ∈ C, l existential

}
.

As its only rule it uses the resolution rule on annotated clauses, the pivot
literals must have matching annotations.

C ∨ xτ D ∨ ¬xτ (Res).
C ∪D

Short Proofs in QBF Expansion 5

An ∀Exp+Res proof is a sequence of clauses where every clause is either a
valid expansion of a clause in the input formula, or is derived by resolution from
previous clauses. The size of a proof is the number of clauses it contains, and the
size of refuting a formula is the smallest valid proof. A proof induces a dag, and
we may restrict our attention to tree-like proofs.

The Prover-Delayer game. The Prover-Delayer game from [7] gives a charac-
terisation of the size of tree-like resolution proofs of unsatisfiable formulas. The
game has two players, who construct a partial assignment. The game terminates
when the (partial) assignment constructed falsifies some clause. The Delayer tries
to score as many points as possible before the inevitable termination, while the
Prover tries to limit the Delayer’s score. Starting with the empty assignment, the
game proceeds in rounds:

– Prover chooses an unassigned variable x.
– Delayer assigns weights 0 ≤ w0, w1 ≤ 1, such that w0 + w1 = 1.
– Prover now chooses to set the variable x either to 0 or to 1.
– If the variable is set to i ∈ {0, 1} then Delayer scores log(1

wi
) points.

Note that if the Delayer chooses wb = 1 for some b, then the Prover can respond
in this round by setting x to b, and the Delayer scores nothing in this round. For
such a Delayer response (w0 = 1 or w1 = 1), we say that the Delayer chooses the
value of the variable. Otherwise the actual choice is made by the Prover.

Theorem 1 (Beyersdorff, Galesi and Lauria; [7]). Let φ be an unsatisfiable
false CNF with shortest tree-like Resolution refutation of size S. Then, there is
a Delayer strategy such that the Delayer scores at least log(dS2 e) points in any
game on φ against any Prover. Furthermore, no Delayer strategy can guarantee
more; there is a Prover strategy that limits the Delayer score to log(dS2 e) points.

3 Short tree-like expansion proofs for QBFs based on
Parity and thin circuits

The false QBFs QParity, introduced in [4], express the contradiction that for
some binary string x, for every z, the parity of the number of 1s in x is different
from z. The propositional matrix is falsified whenever z = Parity(x1, . . . , xn).
The QParityn QBFs are given as

∃x1 . . . ∃xn∀z∃t0 . . . ∃tn(¬t0) ∧ (z ∨ tn) ∧ (¬z ∨ ¬tn) ∧
n∧
i=1

(ti = ti−1 ⊕ xi),

where the formulas (ti ≡ ti−1⊕xi) are expressed by the four clauses (¬ti−1∨xi∨ti),
(ti−1 ∨ ¬xi ∨ ti), (ti−1 ∨ xi ∨ ¬ti), (¬ti−1 ∨ ¬xi ∨ ¬ti).

These formulas are known to be hard for both tree-like and dag-like Q-Res [4].
Here we show that they have short tree-like proofs in ∀Exp+Res.

Theorem 2. QParityn have polynomial-size tree-like ∀Exp+Res proofs.

6 O. Beyersdorff et al.

Proof. In order to analyse ∀Exp+Res proofs, it suffices to simply expand all
clauses in every universal assignment and look at all propositional resolution
refutations from tree-like resolution. We expand out all the clauses of QParityn
based on the two settings to the single universal variable z. The formula now
contains twice as many clauses. We now need to construct a tree-like resolution
proof from these clauses. We use the asymmetric Prover-Delayer game. The
Prover strategy is given in Algorithm 1.

Algorithm 1 Prover Strategy
i = 0, j = n.
The Prover queries the variables of the unit clauses ¬t0/z0 ,¬t1/z0 , t

0/z
n ,¬t1/zn . The

Delayer is forced to satisfy these clauses or get a constant score.
while j − i > 1 do

k ← b i+j
2
c.

The Prover queries the variable t
1/z
k .

The Prover chooses the value that gives the Delayer the least score.
The Prover queries the variable t

0/z
k .

The Prover chooses the value that gives the Delayer the least score.
if t

0/z
k = t

1/z
k then i← k else j ← k

The Prover now queries xj , and chooses the value that gives the Delayer the least
score.
. The game ends here because t

0/z
i = t

1/z
i , t

0/z
j 6= t

1/z
j , and for c ∈ {0, 1}, there are

clauses expressing t
c/z
j ≡ xj ⊕ t

c/z
i .

The Delayer can score at most 2 points per loop iteration, hence a total score
of at most 2dlog(n)e. By Theorem 1, there are tree-like resolution refutations
with O(n2) leaves.

One nice feature of the Prover-Delayer technique is that we can construct
a tree-like Resolution proof from a Prover strategy. To simplify, let us suppose
n = 2r. We proceed in rounds. The idea is that inductively, in the kth round, for
each 0 ≤ i < 2r−k, we produce 2r−k copies of the clauses

t
0/z

2ki
∨ t1/z

2ki
∨ ¬t0/z

2k(i+1)
∨ t1/z

2k(i+1)
, ¬t0/z

2ki
∨ ¬t1/z

2ki
∨ ¬t0/z

2k(i+1)
∨ t1/z

2k(i+1)
,

t
0/z

2ki
∨ t1/z

2ki
∨ t0/z

2k(i+1)
∨ ¬t1/z

2k(i+1)
, ¬t0/z

2ki
∨ ¬t1/z

2ki
∨ t0/z

2k(i+1)
∨ ¬t1/z

2k(i+1)
.

For the base case k = 0, these clauses are produced using the axioms. For instance,

the clause t
0/z
i−1 ∨ t

1/z
i−1 ∨¬t

0/z
i ∨ t1/zi is produced by resolving t

0/z
i−1 ∨xi ∨¬t

0/z
i and

t
1/z
i−1 ∨ ¬xi ∨ t

1/z
i .

Once we reach round r, we have the clause t
0/z
0 ∨ t1/z0 ∨¬t0/z2r ∨ t

1/z
2r which we

resolve with ¬t0/z0 ,¬t1/z0 , t
0/z
2r and ¬t1/z2r to get a contradiction.

Corollary 1. Tree-like ∀Exp+Res p-simulates tree-like Q-Res, but tree-like Q-
Res does not simulate ∀Exp+Res, and there are QBFs providing an exponential
separation.

Short Proofs in QBF Expansion 7

Proof. From [15] we know that tree-like ∀Exp+Res p-simulates tree-like Q-Res.
The QBF QParity requires exponential size proofs for tree-like Q-Res (shown
in [4]). Consequently, by Theorem 2, we conclude that tree-like ∀Exp+Res is
strictly stronger than tree-like Q-Res.

We extend the method demonstrated above for other QBFs based on Boolean
circuits.

Definition 1. Let C be a Boolean circuit over variables x1, . . . , xn, with gates
computing binary Boolean functions. Let the gates of C be g1, . . . , gm in topological
order, with gm being the output gate. The QBF Q-C expresses the contradiction
∃x1 . . . xn∀z [z 6= C(x1, . . . , xn)] and is constructed as follows.

The variable set X = {x1, . . . , xn} contains all the input variables of C.
The variable set T has one variable tj corresponding to each gate gj of C;
T = {t1, . . . , tm}. The quantifier prefix is ∃X∀z∃T . The QBF is of the form

(z ∨ tm) ∧ (¬z ∨ ¬tm) ∧
S∧
j=1

[tj is consistent with the inputs to gate gj].

The predicate [tj is consistent] depends on tj and at most two other variables in
X ∪ T , depending on the connections in C. Hence it can be written as a short
CNF formula; we include these clauses. (E.g. if g2 = g1 ∧ x1 then we add clauses
(t2 ∨ ¬t1 ∨ ¬x1), (¬t2 ∨ t1), (¬t2 ∨ x1).)

Note that the QBF Q-C is of size O(m), where m is the number of gates in
the circuit C. In particular, if C is of size poly(n), then so is Q-C.

The following result appears in [4].

Proposition 1 (Proposition 28 in [4]). For every family of polynomial-
size circuits {Cn}, the QBF family {Q-Cn} has poly(n)-size proofs in dag-like
∀Exp+Res.

The proof of this result reuses derivations of clauses expressing t
0/z
j = t

1/z
j

at all stages i where gj is an input to gi. For tree-like ∀Exp+Res, we cannot
reuse them. Instead we generalise our idea from Theorem 2 of a Prover strategy
using binary search. Note that this technique works precisely because the circuits
underlying QParity formulas have very small “width”.

Definition 2 (Layered Circuits, and Circuit Width). A circuit is said to
be layered if its gates can be partitioned into disjoint sets Si for 1 ≤ i ≤ `,
such that for each i, for each gate in layer Si, all its inputs are either input
variables or the outputs of gates in Si−1. The output gate is in the final layer
S`. The width of a layered circuit is the maximum number of gates in any layer;
width(C) = max{|Si| | i ∈ `]}.

Theorem 3. Let C be a layered circuit of size m and width w, and let Q-C be
the corresponding QBF (as in Definition 1). Then Q-C has a proof, in tree-like
∀Exp+Res, of size mO(w).

8 O. Beyersdorff et al.

Proof (Proof Sketch). Consider the expanded CNF obtained from Q-C. Let X
be the set of x variables, U be the set of t0/z variables and V be the set of
t1/z variables. Let the clauses expressing that the t variables correspond to the
computation of C on x be denoted F (X,T). A proof in (tree-like) ∀Exp+Res
that Q-C is false is a proof in (tree-like) Resolution that the CNF G(X,U, V),
defined below, is unsatisfiable.

G(X,U, V) = F (X,U) ∧ F (X,V) ∧ t0/zm ∧ ¬t1/zm

Let the number of layers be `; note that ` ≤ m. We will describe a Prover
strategy that limits the Delayer’s score to O(w log `) and then invoke Theorem 1.

Let W` be the variables corresponding to the output gate; W` = {t0/zm , t
1/z
m }.

For i ∈ [`], let Wi−1 ⊆ X ∪U ∪ V be the variables feeding into gates at layer i of
C.

The Prover uses binary search to identify a layer j where all corresponding
variables of Wj−1 from U and V are in agreement, whereas some corresponding

variables of Wj from U and V disagree. There are variables t
0/z
b 6= t

1/z
b in Wj ,

but for all ta variables in Wj−1, t
0/z
a = t

1/z
a . Furthermore all X variables in Wj−1

are set. So t
0/z
b 6= t

1/z
b must cause a contradiction with the copies of the clauses

expressing consistency of gate gb with its inputs.
For every layer i where the Prover queries variables from Wi, there are at

most 4w variables to query, and this is the maximum score for the Delayer on
Wi. The Prover looks at no more than dlog `e sets Wi. Hence the score for the
Delayer is at most 4w log `+ 1 and by Theorem 1, there are tree-like Resolution
proofs of size 2l4w.

Corollary 2. Suppose {Cn} is a family of layered circuits with width bounded by
a constant. Then the family of QBFs Q-Cn has polynomial-size proofs in tree-like
∀Exp+Res.

If we relax our desire for polynomial-size proofs to just quasi-polynomial size
we can allow circuits with non-constant width: QBFs constructed from circuits
with poly-logarithmic width have quasi-polynomial size proofs.

Let C be a circuit that is layered, where every gate has fan-in (number of
incoming wires) at most two, where the number of variables is n, the total size
(number of gates) is s, the width of any layer is at most w, and the depth is d.
Let C compute an n-variate Boolean function f : {0, 1}n → {0, 1}.

A language L ⊆ {0, 1}∗ is in P/poly if there is a family of circuits {Cn}n≥1
where the size of each Cn is nO(1), such that Cn computes the characteristic
function of L ∩ {0, 1}n. If, furthermore, the depth of Cn is (log n)O(1), then the
language is in NC. If, instead, the width of Cn is (log n)O(1), then the language
is in SC. Note that P/poly and SC so defined are the non-uniform analogues of
the complexity classes P and TIME,SPACE(nO(1), (log n)O(1)).

Corollary 3. Suppose {Cn} is an SC family of circuits. Then the family of
QBFs Q-Cn has quasi-polynomial size proofs in tree-like ∀Exp+Res.

Short Proofs in QBF Expansion 9

In essence, we show that these Q-C formulas, which can give lower bounds in
QCDCL style systems [3], are easy even for tree-like ∀Exp+Res. Notice that the
false Q-C formulas are all Σb

3; this is the minimum quantifier complexity needed
to separate Q-Res and ∀Exp+Res.

The QInnerProduct formulas, introduced in [6], extend the QParity
formulas in a simple way: each variable xi in QParity is replaced by the logical
AND of two new variables yi and zi. As with parity, the Inner Product function
also has constant-width circuits. Hence, by Theorem 3, the QInnerProduct
formulas have short tree-like proofs in ∀Exp+Res. However, it is shown in [6]
that these formulas require exp(Ω(n)) size in the proof system CP+∀red, that
augments the propositional Cutting Planes proof system with the universal
reduction rule. Thus CP+∀red cannot even p-simulate tree-like ∀Exp+Res. On the
other hand, it is also shown in [6] that CP+∀red is incomparable with ∀Exp+Res,
with exponential separation. Thus we now obtain the following strengthening of
Theorem 7 from [6].

Corollary 4. Tree-like ∀Exp+Res and CP+∀red are incomparable, and there are
QBFs providing exponential separation in both directions.

4 ∀Exp+Res simulates dag-like Q-Res for bounded
alternations

We now move from the tree-like systems to the stronger dag-like model. While it
is known that ∀Exp+Res and Q-Res are in general incomparable [4], we will show
here a simulation of dag-like Q-Res by ∀Exp+Res for QBFs of bounded quantifier
complexity.

A single clause in a Q-Res refutation of Φ can be naturally turned into a
clause in a ∀Exp+Res refutation in the same way that axioms are instantiated in
∀Exp+Res. We define some complete assignment α to the universal variables of Φ
that does not satisfy the clause. All universal literals are removed (since they are
falsified under α), and each existential literal x is replaced by x[α] (recall that
[α] indicates that the assignment α is restricted to those variables that appear
before the annotated literal in the quantifier prefix). In a ∀Exp+Res proof the
pivot literal of a resolution step must have the same annotation in both parent
clauses. In general it is not possible to annotate the clauses in a Q-Res proof so
that this requirement is respected.

Consider the simple example in Figure 2. (y∨x) is resolved once with a clause
containing universal literal u, and separately with another clause containing ¬u.
It is not possible to define a single annotation for x in (y ∨ x) so that both
these steps are valid in ∀Exp+Res. As shown, (y ∨ x) could be duplicated to
accommodate both annotations. Overall a clause could be repeated once for
each path between that clause and the root to ensure that it can be annotated
consistently with its neighbours. In the worst case this means making the proof
fully tree-like and incurring an exponential increase in the proof size. We show
how to modify this simple idea to efficiently transform a Q-Res proof of QBF
with bounded quantifier complexity into a ∀Exp+Res proof.

10 O. Beyersdorff et al.

⊥

¬ww

¬w ∨ ¬uw ∨ u

¬w ∨ ¬y
¬u ∨ y

w ∨ ¬y
u ∨ y

y ∨ x

¬u ∨ ¬xu ∨ ¬x

⊥

¬ww

¬ww

¬w ∨ ¬y1/uy1/u

w ∨ ¬y0/u y0/u

y1/u ∨ x1/uy0/u ∨ x0/u

¬x1/u¬x0/u

Fig. 2. Duplicating clauses to create an expansion refutation of QBF with prefix
∃w∀u∃xy

Recall that a Q-Res proof is a sequence of clauses, not necessarily unique, and
induces a dag by the inference relationship. Our aim is to construct from a Q-Res
proof of PCNF Φ a sequence of new Q-Res proofs of Φ, the last of which can be
readily turned into a valid ∀Exp+Res proof.

4.1 Expanding a Q-Resolution proof

We start with a few useful definitions and observations regarding Q-Res proofs.
In a Q-Res refutation there is no benefit to delaying a ∀-Red step since it

cannot cause a later step to be blocked, and the result of ∀-Red is stronger than
its parent, so it is safe to assume that ∀-Red is carried out as soon as possible. If
a clause is used in a ∀-Red step then it is not used in any other proof step, since
this would delay a possible ∀-Red on that path, so all possible ∀-Red steps for a
clause are carried out consecutively, without branching.

Where the proof contains consecutive ∀-Red steps, they may be re-ordered so
that innermost literals are removed first. This allows consecutive ∀-Red which
remove literals from the same level in the quantifier prefix to be treated as a
single step in the construction below. Literals removed in consecutive ∀-Red steps
cannot be complementary, since they must all appear together in the clause prior
to the sequence and clauses in a Q-Res proof are never tautologous.

For the remainder of this subsection let π = C1 . . . Cm be a Q-Res proof of
PCNF Φ = Q1X1 . . .QkXk. φ. We assume that Q1 = ∀, since X1 may be empty.

Definition 3. A ∀-Red step in π is at level i if the universal literal(s) removed
by the step belong to Xi.

Definition 4. Let A and B be two clauses in π. Then A is i-connected to
B if there is a subsequence Ca1 . . . Can of π such that Ca1 = A, Can = B,
∀l ∈ {1 . . . n− 1} Cal is a parent of Cal+1

in π, and no member of the sequence
is derived by ∀-Red at any level j ≤ i in π.

Short Proofs in QBF Expansion 11

Definition 5. The level i derivation of a clause C in π, denoted π(C, i), is the
subsequence of π ending at C and containing exactly those clauses which are
i-connected to C.

Definition 6. Aiπ is the set of clauses that are parents of a ∀-Red step at level i
in π.

The main idea in the following construction is to use the level i derivation
of ∀-Red steps at level i to find and isolate sections of a proof that contain no
complementary universal literals at level i and which therefore could be given
the same (level i) annotation in a ∀Exp+Res proof.

Definition 7 (Level i expansion of π). For π a Q-Res refutation of PCNF
Φ = Q1X1 . . .QkXk. φ with Qi = ∀, the level i expansion of π is defined by the
following construction.

Let P ∈ Aiπ and C the unique child of P . We have assumed that consecutive
∀-Red steps are carried out in reverse level order, and with steps at the same
level collapsed together so P was not derived by ∀-Red at level i or at any level
j < i in π.

Find π(P, i), the level i derivation of P , and copy this section of the proof. The
original is not discarded until later. Each identified clause D ∈ π(P, i) generates
a new (identical) clause D′. Suppose Ca ∈ π(P, i) and Cb is a parent of Ca in
π. Then C ′a has parent C ′b if it exists, and otherwise Cb. Update C to be derived
from the copy P ′ of its parent P .

Repeat this process for each member of Aiπ. Then the clauses are ordered so
that clause Ca comes before any copies of Ca, and if a > b then every copy of
Cb comes before Ca or any of its copies. This ensures that the parent(s) of a
proof step always appear before the clause they derive. Among copies of the same
clause, assume an ordering based on the order in which ∀-Red steps appear in π.

Clauses from the original refutation which no longer have any children (i.e. if
copies of that clause are used for every derivation it was involved in) are removed.
The result is the level i expansion of π, written ei (π).

Lemma 1. Let π be a valid Q-Res refutation of Φ. For every universal level i in
Φ, ei(π) is a valid Q-Res refutation of Φ.

Proof. Every derivation is an exact copy of a derivation in π, and the imposed
ordering respects the order of derivations.

Lemma 2. Let π be a Q-Res proof of Φ and i a universal level in Φ, then ei(π)
and π have the same number of ∀-Red steps at levels j ≤ i, for j a universal
level.

Proof. A clause which is the result of a ∀-Red step at level j ≤ i does not belong
to any level i derivation of a member of Aiei(π), by definition, so will never be
copied.

Lemma 3. Let π be a Q-Res proof of Φ and i a universal level in Φ. The level i
derivations of clauses in Aiei(π) are disjoint.

12 O. Beyersdorff et al.

Proof. The clauses copied for P ∈ Aiπ are exactly the level i derivation of
P ′ ∈ Aiei(π).

Lemma 4. Any clause in ei(π) that is not in a level i derivation of some
P ′ ∈ Aiei(π) does not contain any literal at level i.

Proof. Let clause C contain level i literal u. For every path in ei(π) between C
and the empty clause there is sub-path beginning at C and ending at the first
clause not containing u, which must immediately follow ∀-Red since there is no
other way to remove universal literals from a clause. The parent of that ∀-Red is
P ′ and by definition C belongs to the level i derivation of P ′.

Lemma 5. Let π be a Q-Res proof of Φ and i a universal level in Φ. The parent
and child of any proof step in ei(π) cannot belong to level i derivations of different
members of Aiei(π). Similarly, the two parents of a resolution step in ei(π) cannot

belong to level i derivations of different members of Aiei(π).

Proof. Let B be a parent of A in ei(π). By construction, if A is in the level i
derivation of P ∈ Aiei(π) and B is not then B is the result of a ∀-Red step at
some level j ≤ i and so cannot be included in the level i derivation of any clause.
If A is derived by resolution and does not belong to any level i derivation of
P ∈ Aiei(π) then neither can its parents.

Lemma 6. Let π be a Q-Res proof of Φ and i a universal level in Φ. The size of
the level i expansion of Q-Res refutation π is at most |π|2.

Proof. If there are S distinct ∀-Red steps at level i, then each clause in π may
be copied up to S times, so the size of the level i expansion of π is at most
|π| · (S + 1). Clearly S < |π|.

Since the level i expansion of a Q-Res refutation is itself a Q-Res refutation,
we can apply the process iteratively for different values of i. We will expand the
proof for each universal level, starting from the innermost.

Definition 8 (Complete expansion of π). Let π be a Q-Res proof of PCNF
Φ. The complete expansion of π, denoted E(π) is E(π) = e1(e3 . . . (ek−1(π))).
Intermediate stages are labelled πi (where Qi = ∀), so that πi = ei(πi+2) =
ei(ei+2 . . . (ek−1(π))).

Repeated applications of Lemma 1 and Lemma 2 respectively give the following
Lemmas.

Lemma 7. Let π be a Q-Res proof of PCNF Φ. Then E(π) is a Q-Res refutation
of Φ.

Lemma 8. Let π be a Q-Res proof of PCNF Φ and Qi = Qi+2 = ∀ in Φ. Then
the number of ∀-Red steps at level i in πi+2 equals the number of ∀-Red steps at
level i in π.

Short Proofs in QBF Expansion 13

Lemma 9. Given Q-Res proof π of PCNF Φ = Q1X1 . . .QkXk. φ, |E(π)| ≤ |π|k.

Proof. The argument proceeds by a simple induction on the number of universal
levels that have been expanded, showing that for every level i with Qi = ∀,
πi ≤ |π|k−i+1.

Let S be the maximum number of ∀-Red steps on any single level in π.
Then, following Lemma 6, |πk−1| ≤ |π| · (S + 1) ≤ |π|2 ≤ |π|k−(k−1)+1. Assume
the hypothesis for i = k − 1, . . . , i+ 2. Since πi+2 has the same number of
level i ∀-Red steps as π (Lemma 8), then applying Lemma 6 to πi+2, |πi| ≤
|πi+2| · (S + 1) ≤ |π|k−(i+2)+1 · |π| ≤ |π|k−i+1.

E(π) = π1 and |E(π)| ≤ |π|k.

E(π) can now be made into a ∀Exp+Res refutation of Φ. We introduce a
system of labelling clauses in the proofs πi with partial assignments to the
universal variables in the formula being refuted. Each clause in E(π) will be
associated with a complete assignment to universal variables which is then used
to define annotations for the existential literals in that clause.

4.2 Annotating the expanded proof

Definition 9. Let π be a Q-Res of PCNF Φ = Q1X1 . . .QkXk. φ, Qi = ∀. For
a clause D ∈ Aiπi

let αDi be the assignment to Xi that sets variables appearing in
D so that D is not satisfied, and all other variables in Xi to 0.

Lemma 10. Let D ∈ Aiπi
. Then αDi does not satisfy any C ∈ πi(D, i).

Proof. C ∈ πi(D, i), so by construction there is a path between C and D that
does not include any ∀-Red step at level i. Therefore any level i literal u ∈ C also
appears in D, and any assignment to variables at level i that does not satisfy D
also will not satisfy C.

Immediately after generating πi from πi+2 add the following labels: for each
D ∈ Aiπi

, label all clauses in πi(D, i) with αDi . Any clause in πi that is not in
a level i derivation of some D ∈ Aiπi

is not satisfied by any assignment to level
i variables (Lemma 4). Label such clauses with the assignment setting all level
i variables to 0. In subsequent expansions, clauses are copied with their labels.
This means that all clauses in πi will be labelled with complete assignments
to all levels ≥ i, and that E(π) will have all clauses labelled with a complete
assignment to all universal variables in Φ. No clause is labelled twice (Lemma 3).

Lemma 11. In πi the parent and child of any proof step are labelled with the
same assignment to universals from all levels j ≥ i for which both clauses contain
some existential literal at a level greater than j. Similarly, if the proof step is
resolution then the two parents are labelled with the same assignment to universals
from all levels j ≥ i for which they both contain an existential literal at a level
greater than j.

14 O. Beyersdorff et al.

Proof. For universal level j > i assume that the result holds for refutation πi+2

and recall that every derivation in πi is an exact copy of a derivation in πi+2.
Labels are copied with clauses, so the result also holds for πi. In the base case
where i = k − 1 there are no universal levels j > i.

For level i we consider whether the parent and child of a proof step belong to
some πi(P, i) for P ∈ Aiπi

. If neither parent nor child belong to any such πi(P, i)
then both have been labelled with the level i assignment setting all variables to 0.
If the parent is in πi(P, i) for some P ∈ Aiπi

but the child is not, then the child
must be the result of ∀-Red at level i and so contains no existential literals at a
level > i. If the child is in πi(P, i) for some P ∈ Aiπi

but the parent is not, then
the parent is the result of ∀-Red at some level ≤ i and so contains no existential
literals at a level > i. If both parent and child are in πi(P, i) for some P ∈ Aiπi

then they are both labelled with αPi . It is not possible for the parent and child of
a proof step to belong to level i derivation of different clauses in Aiπi

(Lemma 5).
The second statement follows by exactly the same argument. If neither parent

belongs to any such πi(P, i), they are labelled identically at level i. If both parents
belong to the same πi(P, i) then they are in the same section and are labelled
identically at level i. If only one parent belongs to some πi(P, i), then the other
is the result of ∀-Red at some level ≤ i and so contains no existential literals at
a level > i. They cannot belong to level i derivation of different clauses in Aiπi

(Lemma 5).

4.3 Putting everything together for the simulation

To create a ∀Exp+Res proof from E(π), we simply use the clause labels to generate
annotations for the existential literals in each clause and our main result now
follows easily:

Theorem 4. For any constant k, ∀Exp+Res p-simulates Q-Res on Σb
k formulas.

Proof. For any Σb
k formula Φ and its Q-Res proof π we can generate a Q-Res

refutation E(π) of Φ and label the clauses of E(π) as described. Remove all
universal literals from clauses of E(π). Any existential literal x in a clause C with
label α is replaced by the annotated literal x[α]. ∀-Red steps are now meaningless
and can be removed. Resolution steps remain, acting on annotated literals with
matching annotations (Lemma 11). The leaves of E(π) were all copies of leaves
in π, i.e. they are clauses from Φ, so the leaves of the constructed ∀Exp+Res
refutation are annotated versions of those same clauses from Φ. Therefore we
have a valid ∀Exp+Res proof of Φ constructed from the Q-Res proof, and by
Lemma 9 the size of the new refutation is bounded above by |π|k.

As for the tree-like model, we obtain that ∀Exp+Res is strictly stronger than
Q-Res also for dag-like proofs, when restricted to QBFs of bounded quantifier
complexity.

Corollary 5. For each k ≥ 3, ∀Exp+Res p-simulates Q-Res on Σb
k formulas, but

the reverse simulation does not hold, and there are Σb
3 formulas providing an

exponential separation.

Short Proofs in QBF Expansion 15

Proof. The simulation is stated as Theorem 4 and the exponential separation is
given by QParity [4], which is a family of Σb

3 formulas.

This is tight since we know that relaxing the requirement for bounded quan-
tifier complexity allows formulas with polynomial sized dag-like Q-Res proofs but
only exponential sized ∀Exp+Res proofs [15], and also that for QBFs with only
one or two quantifier levels, Q-Res and ∀Exp+Res are p-equivalent.

5 Conclusion

Our results demonstrate proof-theoretic advantages of ∀Exp+Res over Q-Res,
both for tree-like proofs and for QBFs with bounded quantifier complexity.

These advantages are not meant to suggest that QCDCL systems are inferior
on all accounts. The simulation on bounded quantifier levels becomes less efficient
as the number of alternations increase, and the existence of short proofs does
not guarantee that proof search will find them. The models of ∀Exp+Res and
Q-Res simplify the QBF solving algorithms: QCDCL solvers can introduce proof
steps that are better represented in the LD-Q-Res proof system from [1,26]; also
QBF solvers regularly use dependency schemes [20] which we do not take into
account here. Both long-distance steps and dependency schemes are known to
shorten proofs in comparison to Q-Res [9, 13].

Nor should it be inferred that ∀-Red is an inherently weaker way of dealing
with universally quantified variables than expansion. For example the systems
Frege+∀-Red and eFrege+∀-Red [3] are very strong, and finding lower bounds
for them is equivalent to solving major open problems in circuit complexity or
propositional proof complexity [8].

Acknowledgements

Some of this work was done at Dagstuhl Seminar 18051, Proof Complexity.
Research supported by the John Templeton Foundation and the Carl Zeiss
Foundation (1st author) and EPSRC (2nd author).

References

1. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal
Methods in System Design 41(1), 45–65 (2012)

2. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and
perspectives. Journal on Satisfiability, Boolean Modeling and Computation (JSAT)
5(1-4), 133–191 (2008)

3. Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: From circuits to QBF proof
systems. In: Proc. ACM Conference on Innovations in Theoretical Computer Science
(ITCS’16). pp. 249–260. ACM (2016)

4. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: Proc. Symposium on Theoretical Aspects of Computer Science. pp.
76–89. LIPIcs series (2015)

16 O. Beyersdorff et al.

5. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow?
QBF resolution is not so simple. ACM Transactions on Computational Logic 19(1),
1:1–1:26 (2018), (preliminary version in STACS 2016)

6. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Understanding cutting planes
for QBFs. Information and Computation 262, 141–161 (2018)

7. Beyersdorff, O., Galesi, N., Lauria, M.: A characterization of tree-like resolution
size. Information Processing Letters 113(18), 666–671 (2013)

8. Beyersdorff, O., Pich, J.: Understanding Gentzen and Frege systems for QBF. In:
Proc. ACM/IEEE Symposium on Logic in Computer Science (LICS’16) (2016)

9. Blinkhorn, J., Beyersdorff, O.: Shortening QBF proofs with dependency schemes.
In: International Conference on Theory and Applications of Satisfiability Testing
(SAT). pp. 263–280 (2017)

10. Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic
163(7), 906–917 (2012)

11. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

12. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case
study of incremental QBF solving. Ann. Math. Artif. Intell. 80(1), 21–45 (2017)

13. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and
strategy extraction in search-based QBF solving. In: McMillan, K.L., Middeldorp,
A., Voronkov, A. (eds.) LPAR. pp. 291–308. Springer (2013)

14. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) Proc. 15th
International Conference on Theory and Applications of Satisfiability Testing.
vol. 7317, pp. 114–128. Springer (2012)

15. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

16. Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press (2009)

17. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

18. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF
solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) Proc. 13th
International Conference on Theory and Applications of Satisfiability Testing.
vol. 6175, pp. 128–142. Springer (2010)

19. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F.,
Zakharyaschev, M.: Minimal module extraction from DL-lite ontologies using QBF
solvers. In: Proc. International Joint Conference on Artificial Intelligence (IJCAI).
pp. 836–841. AAAI Press (2009)

20. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Johannes Kepler University (2012)

21. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2-3),
71–76 (2010)

22. Lonsing, F., Egly, U.: Evaluating QBF solvers: Quantifier alternations matter. In:
Principles and Practice of Constraint Programming - 24th International Conference
(CP’18). pp. 276–294 (2018)

23. Nordström, J.: On the interplay between proof complexity and SAT solving. SIGLOG
News 2(3), 19–44 (2015)

Short Proofs in QBF Expansion 17

24. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Proceedings of
the 15th Conference on Formal Methods in Computer-Aided Design. pp. 136–143.
FMCAD Inc (2015)

25. Vardi, M.Y.: Boolean satisfiability: theory and engineering. Commun. ACM 57(3),
5 (2014)

26. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: ICCAD. pp. 442–449 (2002)

	Short Proofs in QBF Expansion

