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Abstract
Strategy extraction is of great importance for quantified Boolean formulas (QBF), both in
solving and proof complexity. So far in the QBF literature, strategy extraction has been
algorithmically performed from proofs. Here we devise the first QBF system where (partial)
strategies are built into the proof and are piecewise constructed by simple operations along
with the derivation. This has several advantages: (1) lines of our calculus have a clear semantic
meaning as they are accompanied by semantic objects; (2) partial strategies are represented
succinctly (in contrast to some previous approaches); (3) our calculus has strategy extraction
by design; and (4) the partial strategies allow new sound inference steps which are disallowed
in previous central QBF calculi such as Q-Resolution and long-distance Q-Resolution. The
last item (4) allows us to show an exponential separation between our new system and the pre-
viously studied reductionless long-distance resolution calculus. Our approach also naturally
lifts to dependency QBFs (DQBF), where it yields the first sound and complete CDCL-style
calculus for DQBF, thus opening future avenues into CDCL-based DQBF solving.

Keywords QBF · DQBF · Resolution · Proof complexity

1 Introduction

Proof complexity investigates the resources for proving logical theorems, focussing foremost
on the minimal size of proofs needed in a particular calculus. Since its inception the field
has enjoyed strong connections to computational complexity (cf. [17,20]) and to first-order
logic [19,38]).

During the past decade, proof complexity has emerged as a key tool to model and analyse
advances in the algorithmic handling of hard problems such as SAT and beyond. While tra-
ditionally perceived as a computationally hard problem, SAT solvers have been enormously
successful in tackling huge industrial instances [42,56] and hard combinatorial problems
[32]. As each run of a solver on an unsatisfiable formula can be understood as a proof of
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unsatisfiability, each solver implicitly defines a proof system. This connection turns proof
complexity into the main theoretical approach towards understanding the power and lim-
itations of solving, with bounds on proof size directly corresponding to bounds on solver
running time [17,43].

The algorithmic success story of solving has not stopped at SAT, but is currently extending
to evenmore computationally complex problems such as quantified Boolean formulas (QBF),
which is PSPACE complete, and dependency QBFs (DQBF), which is even NEXP complete
[1].While quantification does not increase expressivity, (D)QBFs can encodemany problems
far more succinctly, including application domains such as automated planning [18,22],
verification [6,41], synthesis [24,40] and ontologies [37].

The past 15 years have seen huge advances in QBF solving. While some of the main
innovations in SAT solving, including the development of conflict-driven clause learning
(CDCL), revolutionised SAT in the late 1990s [53], this development in QBF is happening
now. Consequently, QBF proof complexity has received considerable attention in recent
years.

Compared with QBF, solving in DQBF [26] is at its very beginnings, both in implemen-
tations (2018 was the first year that saw a DQBF track in the QBF competition [48]) as well
as in its accompanying theory [52].

Strategy extraction is one of the distinctive features of QBF and DQBF, manifest in both
solving [5,49] and proof complexity. For solving it guarantees that together with the true/false
answer the solver can produce amodel (or countermodel) of the (D)QBF. This is an important
step in the solving workflow, since a model (or countermodel) may encode a solution (or a
counterexample) to the given problem. For example, a model for a QBF encoding a synthesis
problem defines an implementation meeting the desired specification [31]. Determining truth
merely implies the existence of such a system.

On the proof complexity side, this implies that proof calculimodellingQBF solving should
allow strategy extraction in the sense that from a refutation of a false QBF, a countermodel
of the QBF can be efficiently constructed. This feature—without analogue in the proposi-
tional domain—enables strong lower-bound techniques in QBF proof complexity [9,11,12],
exploiting the fact that formulas requiring hard strategies cannot have short proofs in calculi
with efficient strategy extraction.

As in SAT versus propositional proof complexity, one of the prime challenges in QBF and
DQBF is to create compelling proof-theoretic models that capture central features of (D)QBF
solving and at the same time remain amenable to a proof-theoretic analysis. While there exist
several orthogonal approaches inQBFsolvingwith quite different associatedproof calculi,we
will focus here on the paradigm of quantified conflict-driven constraint learning (QCDCL)
[59]. An interesting feature of QCDCL is that it combines conflict learning with solution
learning. Whereas a CDCL SAT solver can terminate upon finding a single solution (i.e. a
satisfying assignment), a QCDCLQBF solver will repeatedly learn andmanipulate solutions,
aiming to determine the truth of the input QBF.1 Meanwhile, the solver also employs conflict
learning, aiming to determine falsity. Here we focus on the conflict learning side. Proof-
theoretically its most basic model is Q-Resolution [35], which as in propositional resolution
operates on clauses (of prenex QBFs).

Q-Resolution (Q-Res) uses the resolution rule of propositional resolution and augments
this with a universal reduction rule that allows to eliminate universal variables from clauses.
Combining these two rules requires some technical care: without any side-conditions the two
rules result in an unsound system. Typically this is circumvented by prohibiting the derivation

1 There exists associated proof systems for true QBFs [30].
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of universal tautologies. It was noted early on that in solving this is needlessly prohibitive [59]
and universal tautologies can be permitted under certain side-conditions. Later formalised
as the proof system long-distance Q-Resolution (LD-Q-Res) [3], it was even shown that
LD-Q-Res exponentially shortens proofs in comparison toQ-Res [23], thus demonstrating the
appeal of the approach for solving. In fact, when enabling long-distance steps inQBF solving,
universal reduction is not strictly needed and this reductionless approach was adopted in the
QBF solver GhostQ [36]. To model this solving paradigm, Bjørner, Janota, and Klieber [15]
introduced the calculus of reductionless LD-Q-Res.

The interplay between long-distance resolution and universal reduction steps becomes
even more intriguing in DQBF. In [2] it was shown that lifting Q-Res (using the rules of
resolution and universal reduction) to DQBF results in an incomplete proof system, whereas
lifting LD-Q-Res (using long-distance resolution steps together with universal reduction)
becomes unsound [13].

Naturally, the intriguing question of why and how deriving ‘universal tautologies’ in long-
distance stepsmight help solving has attracted attention among theoreticians and practitioners
alike. Instead of a universal tautology u ∨ ū, most formalisations of long-distance resolution
actually use the concept of a ‘merged’ literal u∗.While it is clear (and implicit in the literature)
that merged literals u∗ correspond to partial strategies for u rather than universal tautologies,
a formal semantic account of long-distance steps (and stronger calculi using merging [12])
was only recently given by Suda and Gleiss [54], where partial strategies are constructed for
each individual proof inference. However, as already noted in [54], the models considered
in [54] fail to have efficient strategy extraction in the sense that the constructed (partial)
strategies may need exponential-size representations.

Our contributions

A.The new calculus ofMergeResolution. Starting from the reductionless LD-Q-Res system
of [15] and its role of modelling QCDCL solving, we develop a new calculus that we call
Merge Resolution (M-Res). Like reductionless LD-Q-Res, the system M-Res only uses a
resolution rule and does not permit universal reduction steps. Reductionless LD-Q-Res and
M-Res are therefore both refutational calculi that finish as soon as they derive a purely
universal clause.

As the prime novel feature of M-Res we build partial strategies into proofs. We achieve
this by computing explicit representations of strategies in a variant of binary decision dia-
grams (called merge maps here), which are updated and refined at each proof step by simple
operations. These merge maps are part of the proof. As a consequence, M-Res has efficient
strategy extraction by design.

This is in contrast to all previous existing QBF calculi in the literature, where strategies
are algorithmically constructed from proofs. In particular, this also applies to the approaches
taken in [23,54] for LD-Q-Res and in [15] for reductionless LD-Q-Res. But also the choice
of our representation as merge maps matters: as [15,54] both represent (partial) strategies
as trees, the constructed strategies may grow exponentially in the proof size, thus losing the
property of efficient strategy extraction desired for practice. In contrast, in our model merge
maps are always linear in the size of the clause derivations.

B. Exponential separation of M-Res from reductionless LD-Q-Res. Including merge maps
explicitly into proofs also has another far-reaching advantage: it allows resolution steps not
only forbidden in Q-Res, but even disallowed in LD-Q-Res. In a nutshell, LD-Q-Res allows
resolution steps only when universal variables quantified left of the pivot have constant
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and equal strategies in both parent clauses. In M-Res we have explicit representations of
strategies and thus can allow resolution steps as long as the strategies in both parent clauses
are isomorphic to each other, a property that we can check efficiently for merge maps.

This last mentioned advantage of allowing resolution steps inM-Res forbidden in (reduc-
tionless) LD-Q-Resmanifests in shorter proofs. We show this by explicitly giving an example
of a family of QBFs that admit linear-size proofs in M-Res (Theorem 29), but require expo-
nential size in reductionless LD-Q-Res (Theorem 28). The separating formulas are a variant
of the equality formulas introduced in [9]. While the original formulas from [9] are hard for
Q-Res, but easy in LD-Q-Res, we here consider a ‘squared’ version, for which we naturally
use resolution steps for clauses with associated non-constant winning strategies, allowed in
M-Res, but forbidden in LD-Q-Res.

This demonstrates thatM-Res is exponentially stronger than reductionless LD-Q-Res, thus
also pointing towards potential improvements in QCDCL solving. While the simulation of
reductionless LD-Q-Res byM-Res is almost immediate and also the upper bound inM-Res is
comparatively straightforward, the lower bound is a technically involved argument specifi-
cally tailored towards the squared equality formulas.

C. A sound and complete CDCL-style calculus for DQBF. As our final contribution we
show that the new QBF system ofM-Res naturally lifts to a sound and complete calculus for
DQBF.As shown in [2], the lifting ofQ-Res to DQBF is incomplete, whereas the combination
of universal reduction and long-distance steps presents soundness issues, both in DQBF [13]
as well as in the related framework of dependency schemes [7,8].

Here we show that our framework of M-Res overcomes both these soundness and com-
pleteness issues and therefore has exactly the right strength for a natural DQBF resolution
calculus. In fact, it is the first DQBF CDCL-style system in the literature2 and as such paves
the way towards CDCL-style solving in DQBF. Again, by design our DQBF system has
efficient strategy extraction.

2 Preliminaries

Propositional logic Let Z be a countable set of Boolean variables. A literal is a Boolean
variable z ∈ Z or its negation z̄, a clause is a set of literals, and a CNF is a set of clauses.
For a literal l, we define var(l) := z if l = z or l = z̄; for a clause C , we define vars(C) :=
{ var(l) : l ∈ C}; for a CNF φ we define vars(φ) := ∪C∈φ vars(C).

An assignment to a set Z ⊆ Z of Boolean variables is a function ρ : Z → {0, 1},
conventionally represented as a set of literals in which z (resp. z̄) represents the assignment
z �→ 1 (resp. z �→ 0). The set of all assignments to Z is denoted 〈Z〉. Given a subset Z ′ ⊆ Z ,
ρ�Z ′ is the restriction of ρ to Z ′. The CNF φ[ρ] is obtained from φ by removing any clause
containing a literal in ρ, and removing the negated literals {l̄ : l ∈ ρ} from the remaining
clauses. We say that ρ falsifies φ if φ[ρ] contains the empty clause, and that φ is unsatisfiable
if it is falsified by each ρ ∈ 〈Z〉.

Given two clauses R1 and R2 and a literal l such that l ∈ R1 and l̄ ∈ R2, we define the resol-
vent res(R1, R2, l) := (R1\{l}) ∪ (R2\{l̄}). (Note that res(R1, R2, l) = res(R2, R1, l̄).) A
resolution refutation of a CNF φ is a sequence C1, . . . ,Ck of clauses in which Ck is the
empty clause and, for each i ∈ [k], either (a) Ci ∈ φ or (b) Ci = res(Ca,Cb, z) for some
a, b < i and z ∈ vars(φ).

2 Previous DQBF resolution systems either use expansion [13] or extension variables [50].
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Quantified Boolean formulas A quantified Boolean formula (QBF) in prenex conjunctive
normal form (PCNF) is denotedΦ := Q ·φ, where (a)Q := Q1Z1 · · ·Qn Zn is the quantifier
prefix, in which the Zi ⊂ Z are pairwise disjoint finite sets of Boolean variables,Qi ∈ {∃,∀}
for each i ∈ [n], and Qi �= Qi+1 for each i ∈ [n − 1], and (b) the matrix φ is a CNF over
vars(Φ) := ⋃n

i=1 Zi .
The existential (resp. universal) variables of Φ, typically denoted X (resp. U ), is the set

obtained as the union of the Zi for which Qi = ∃ (resp. Qi = ∀). The prefix Q defines a
binary relation <Q on vars(Φ), such that z <Q z′ holds iff z ∈ Zi , z′ ∈ Z j , and i < j ,
in which case we say that z′ is right of z and z is left of z′. For each u ∈ U , we define
LQ(u) := {x ∈ X : x <Q u}, i.e. the existential variables left of u.
QBF semantics Semantics for QBFs is neatly described by the two-player evaluation game.
Over the course of a game, the variables of a QBF Q · φ are assigned 0/1 values in the order
of the prefix, with the ∃-player (∀-player) choosing the values for the existential (universal)
variables. When the game concludes, the players have constructed a total assignment ρ to
the variables. The ∀-player wins iff ρ falsifies φ.

A strategy dictates how the ∀-player should respond to every possible move of the ∃-
player. A strategy h for a QBF Φ is a set {hu : u ∈ U } of functions hu : 〈LQ(u)〉 → {u, ū}.
Additionally h is winning if, for each α ∈ 〈X〉, the restriction of φ by α ∪ {hu(α�LQ(u)) :
u ∈ U } contains the empty clause. We use the terms ‘winning strategy’ and ‘countermodel’
interchangeably. A QBF is called false if it has a countermodel, and true if it does not.

A partial strategy for a universal variable u is a function from some subset of 〈LQ(u)〉
into {u, ū}.
QBFproof systems Wedeal with line-based refutational QBF systems that typically employ
axioms and inference rules to prove the falsity of QBFs. We say that P is complete if there
exists a P refutation of every false QBF, sound if there exists no P refutation of any true QBF.
We call P a proof system if it is sound, complete, and polynomial-time checkable. Given two
QBF proof systems P1 and P2, P1 p-simulates P2 if there exists a polynomial-time procedure
that takes a P2-refutation and outputs a P1-refutation of the same QBF [20].

3 Reductionless long-distance Q-Resolution

In this sectionwe recall the definition of reductionless LD-Q-Res, prove that it is refutationally
complete, and demonstrate that it does not have polynomial-time strategy extraction in either
of the computational models of [15,54]. The system appeared first in [15, Fig. 1], where it
was referred to as Qw-resolution.

Definition 1 (reductionless LD-Q-Res [15]) In reductionless LD-Q-Res, a derivation from a
QBF Φ := Q · φ is a sequence π := C1, . . . ,Ck of clauses in which at least one of (a) or (b)
holds for each i ∈ [k]:
(a) Axiom. Ci is a clause from the matrix φ;
(b) Long-distance resolution. There exist integers a, b < i and an existential pivot x ∈ X

such that Ci = res(Ca,Cb, x) and, for each u ∈ vars∀(Ca) ∩ vars∀(Cb), if u <Q x ,
then {u, ū} � Ci .

The final clause Ck is the conclusion of π , and π is a refutation of Φ iff Ck contains no
existential variables.
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A pair of complementary universal literals {u, ū} appearing in a clause is referred to
singly as a merged literal. It is clear from a wealth of literature3 that merged literals are
‘placeholders’ for partial strategies, the exact representation left implicit in the structure of
the derivation.

We illustrate the rules of the calculus by showing that the equality formulas [9] have
linear-size refutations.

Definition 2 (equality formulas [9]) The equality family is the QBF family whose nth

instance has the prefix ∃{x1, . . . , xn}∀{u1, . . . , un}∃{t1, . . . , tn} and the matrix consisting
of the clauses {xi , ui , ti }, {x̄i , ūi , ti } for i ∈ [n], and {t̄1, . . . , t̄n}.
Example 3 We construct linear-size reductionless LD-Q-Res refutations in two stages. First,
resolve each pair {xi , ui , ti }, {x̄i , ūi , ti } of clauses over pivot xi to obtain Ci := {ui , ūi , ti }.
Note that it is allowed to introduce the merged literal {ui , ūi } since variable ui is right of the
pivot xi . Second, resolve the Ci successively against the long clause {t̄1, . . . , t̄n} over pivot
ti , to obtain a full set of merged literals C := {ui , ūi : i ∈ [n]}. Here, even though ui is
left of the pivot ti , the appearance of the merged literal {ui , ūi } in the resolvent is allowed,
since variable ui is absent from one of the antecedents. The derivation is a refutation since
the conclusion C contains no existential literals.

We now show that this calculus is indeed complete. Given a false QBF Φ with a coun-
termodel h, we construct a canonical reductionless LD-Q-Res refutation based on the ‘full
binary tree’ representation of a countermodel [51]. For each α ∈ 〈X〉, there exists some Cα

in the matrix falsified by α ∪ h(α). The set of all such Cα may be successively resolved over
existential pivots in reverse prefix order, finally producing a clause containing no existentials.
Merged literals never block resolution steps in this construction, as they only ever appear to
the right of the pivot variable.

Example 4 Consider the QBF with the prefix ∃{x}∀{u}∃{y}∀{v} and the matrix consisting of
the clauses

{x, u, y, v}, {x, u, ȳ, v̄}, {x̄, ū, y, v}, {x̄, ū, ȳ, v̄} .

It is easy to see that the unique countermodel for this QBF essentially sets u and v equal to
x and y, respectively. Formally, the countermodel consists of the functions hu and hv , where
hu(α)(u) = α(x) and hv(β)(v) = β(y), for each α ∈ 〈{x}〉 and β ∈ 〈{x, y}〉.

Figure 1 shows the full binary tree depiction of this countermodel and its associated
reductionless LD-Q-Res refutation. Notice that each path from root to leaf in the countermodel
tree specifies a total assignment that falsifies the corresponding axiom clause. Notice also
that the existential resolution pivots on each path from an axiom to the conclusion occur in
reverse prefix order, matching the pattern of the full binary tree countermodel. The prefix
order inherent to the countermodel tree also ensures that each long-distance resolution step
is valid.

Lemma 5 Every false QBF has a reductionless LD-Q-Res refutation.

Proof Let Φ := Q · φ be a false QBF with countermodel h. Let {x1, . . . , xn} denote the
existential variables ofΦ in prefix order; that is, for each i, j ∈ [n] with i < j , xi is not right
of x j . Let α1, . . . , α2n define the natural lexicographic ordering of the total assignments to
X , as in

3 The notion is evident to a greater or lesser degree in all of the papers [4,7,23,44,46,54].

123



Building Strategies into QBF Proofs

{x, u, y, v} {x, u, ȳ, v̄} {x̄, ū, y, v} {x̄, ū, ȳ, v̄}

{x, u, v, v̄} {x̄, ū, v, v̄}

{u, ū, v, v̄}

v̄ v v̄ v

ȳ y ȳ y

ū u

x̄ x

r

Fig. 1 The full binary tree depiction of a countermodel and its associated reductionless LD-Q-Res refutation

α1 = x̄1 · · · x̄n−2 x̄n−1 x̄n ≈ 0 · · · 000 ,
α2 = x̄1 · · · x̄n−2 x̄n−1 xn ≈ 0 · · · 001 ,
α3 = x̄1 · · · x̄n−2 xn−1 x̄n ≈ 0 · · · 010 ,
α4 = x̄1 · · · x̄n−2 xn−1 xn ≈ 0 · · · 011 ,
...

...
...

...
...

α2n = x1 · · · xn−2 xn−1 xn ≈ 1 · · · 111 .
We define a sequence π := πn ◦· · ·◦π0 in which each πi := Ci

1, . . . ,C
i
2i
, and the clausesCi

j
are defined recursively as follows: For j ∈ [2n], Cn

j is any clause in φ falsified by α j ∪h(α j )

(at least one such clause exists by definition of countermodel); for i ∈ [n] and j ∈ [2i−1],
Ci−1

j := res(Ci
2 j−1,C

i
2 j , xi ) if this resolvent exists, otherwise

Ci−1
j :=

{
Ci
2 j−1 , if xi /∈ Ci

2 j−1 ,

Ci
2 j , if x̄i /∈ Ci

2 j .

It is readily verified by downwards induction on i ∈ [n] that eachCi
j contains no complemen-

tary universal literals in variables left of xi . Moreover, it is easy to see that the conclusion C0
1

contains no existential literals. Removing duplicate clauses from π produces a reductionless
LD-Q-Res refutation of Φ. ��
Soundness and polynomial-time checkability of reductionless LD-Q-Res are immediate, as
the system uses a subset of the rules of the classical long-distance Q-resolution proof system
[3].
The computational model of Bjørner et al. [15]. In tandem with reductionless LD-Q-Res, the
authors of [15] introduced a computationalmodel based on tree-like branching programs. The
model is used to explicitly construct the partial strategies represented implicitly by merged
literals.

We demonstrate that tree-like branching programs constructed in thisway cannot represent
strategies efficiently; that is, the system does not have polynomial-time strategy extraction in
the associated model (even for partial strategies). The following example shows a linear-size
derivation whose explicit strategy grows exponentially large.

Example 6 Consider the following proof fragment, in reductionless LD-Q-Res, with a prefix
∃v∃x∃w∀u∃y∃z. Alongside each proof line is the strategy for the universal variable u, as
built by the Build function in [15]. In a nutshell, Build traverses the subderivation of the
current step, and represents the pattern of merges on u as a tree-like branching program that
queries the (existential) resolution pivots.
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Line Obtained as Clause Strategy as built in [15]

C1 axiom {w, x, u} 0
C2 axiom {w̄, x, ū} 1
C3 res(C1,C2, w) {x, u, ū} w ? 1 : 0
C4 axiom {x̄, u, y} 0
C5 res(C3,C4, x) {u, ū, y} x ? 0 : [w ? 1 : 0]
C6 axiom {v, ȳ} ∗
C7 res(C5,C6, y) {v, u, ū} x ? 0 : [w ? 1 : 0]
C8 axiom {x̄, z} ∗
C9 res(C3,C8, x) {u, ū, z} w ? 1 : 0
C10 axiom {v̄, z̄} ∗
C11 res(C9,C10, z) {v̄, u, ū} w ? 1 : 0
C12 res(C7,C11, v) {u, ū} v ? (w ? 1 : 0) : (x ? 0 : [w ? 1 : 0])

Observe that the final strategy at line 12 represents the strategy corresponding to line
3 twice. By nesting such a proof fragment from lines C3 to C12 with fresh copies of the
existential variables (v, x, y, z) k times, we can construct a reductionless LD-Q-Res proof
fragment with O(k) lines, where the strategy built by the Build function from [15] has size
exponential in k.
The computational model of Suda and Gleiss [54]. The authors of [54] proposed a model
of partial strategies based on so-called policies (a policy is a set of assignments specifying
an ordered decision tree.) They noted that the equality formulas have linear-size refutations
in the strong QBF system IRM-calc [12], whereas policies witnessing their falsity must be
exponentially large, therefore IRM-calc does not admit polynomial-time strategy in policies.
The same is true for reductionless LD-Q-Res, sinceExample 3 shows that the equality formulas
also have linear-size refutations there.

The computationalmodel of policies is not even suitable for strategy extraction in theweak
system level-ordered Q-Res [34].4 Versions of the equality formulas in which the prefix
is rearranged (∃x1∀u1∃t1 · · · ∃xn∀un∃tn) have linear-size level-ordered Q-Res refutations,
whereas winning strategies represented as policies must be large. The argument is the same
as for the equality formulas [54], and derives from the implicit use of tree-like structures.

That neither model is suitable for efficient strategy extraction shows that using either
inside the derivation would result in an artificial, exponential size blow-up. The root of the
issue is tree-like models versus DAG-like proofs. The DAG-like computational model that
we introduce in the following section is tightly knitted to the refutation, yielding linear-time
strategy extraction for free.

4 Merge resolution

In this section we introduce Merge Resolution (M-Res, Sect. 4.2), and prove that it is sound
and complete forQBF (Sect. 4.3). The salient feature ofM-Res is the built-in partial strategies,
represented asmergemaps. Given the problemswith the computationalmodels of [15,54], the
principal technical challenge is to find a suitable way to define and combine partial strategies
devoid of an artificial proof-size inflation.

4 Reductionless LD-Q-Res p-simulates level-ordered Q-Res by means of a simple construction, and is expo-
nentially separated by the equality formulas [9]. It is also known that reductionless LD-Q-Res and Q-Res are
incomparable [47].
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M : 1 �→ u
2 �→ ū
3 �→ (w, 1, 2)
4 ∗→�
5 �→ (w, 4, 2)
6 �→ (v, 5, 3)

6

5 3

4 2 1

∗ ū u

v̄ v

w̄ w w w̄

Fig. 2 Function and branching program representations of a merge map M

4.1 Mergemaps

Our computational model A merge map is a branching program that queries a set of
existential variables and outputs an assignment to some universal variable, i.e. a literal in
{u, ū, ∗}, where ∗ stands for ‘no assignment’. As we intend to tie the DAG structure of
the merge maps to the DAG structure of the proof, we will label query nodes with natural
numbers based on the proof line indexing (we elaborate on this later). Hence, from a technical
standpoint it makes sense to define a merge map as a function from the index set of its nodes.

Definition 7 (merge map) A merge map M for a Boolean variable u over a finite set X of
Boolean variables is a function from a finite set N of natural numbers satisfying, for each
i ∈ N , either M(i) ∈ {u, ū, ∗} or M(i) ∈ X × N<i × N<i , where N<i := {i ′ ∈ N : i ′ < i}.

A triple of the form (x, a, b) ∈ X × N<i × N<i represents the instruction ‘if x = 0
then goto a else goto b’, whereas the literals {u, ū, ∗} represent output values. The exact
computation is formalised below.

Definition 8 (computed function) Let M be a merge map for u over X with domain N . The
function computed by M is the function

h : 〈X〉 → {u, ū, ∗}
mapping α ∈ 〈X〉 to the output of the following algorithm:

1. i := max(N )

2. while M(i) /∈ {u, ū, ∗}
3. (x, a, b) := M(i)
4. if x̄ ∈ α then i := a else i := b
5. return M(i)

We depict merge maps pictorially as DAGs. The nodes are the domain elements, and
the leaf nodes as well as the directed edges are labelled by literals. In a merge map M , if
M(i) is a literal l, then node i is labeled l. If M(i) = (x, a, b), then the DAG has the edge
i → a labeled x̄ and the edge i → b labeled x . The DAG naturally describes a deterministic
branching program computing a Boolean function.

Figure 2 shows a merge map represented as a function, and its corresponding depiction
as a branching program.

Relations Merge Resolution uses two relations to determine preconditions for the binary
operations. Firstly, we give M-Res the power to identify merge maps with equivalent repre-
sentations, up to indexing. We term equivalent representations ‘isomorphic’.
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Fig. 3 Relations on merge maps
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Definition 9 (isomorphism) Two merge maps M1 and M2 for u over X with domains N1 and
N2 are isomorphic (written M1 � M2) iff there exists a bijection f : N1 → N2 such that the
following hold for each i ∈ N1:

(a) if M1(i) is a literal in {u, ū, ∗} then M2( f (i)) = M1(i);
(b) if M1(i) is the triple (x, a, b) then M2( f (i)) = (x, f (a), f (b)).

Proposition 10 Any two isomorphic merge maps compute the same function.

Proof Let M1 and M2 be merge maps, let f be a bijection satisfying the properties of
Definition 9, and let i ∈ dom(M1). The computation of M2(i) as in Definition 8 is identical
to that of M1, except that each natural number a ∈ dom(M1) is replaced with f (a). The
proposition follows. ��
Our second relation, consistency, simply identifies whether or not two merge maps agree on
the intersection of their domains.

Definition 11 (consistency) Two merge maps M1 and M2 for u over X with domains N1 and
N2 are consistent (written M1 �� M2) iff M1(i) = M2(i) for each i ∈ N1 ∩ N2.

Example 12 For the merge maps depicted in Fig. 3, isomorphism and consistency (or lack
thereof) are as given in the table below.

Relation Isomorphic Not isomorphic

Consistent A �� C ; A � C B �� D; B �� D
Not consistent A ��� B; A � B C ��� D; C �� D

It is easy to see that both relations can be computed in time polynomial in max(N1∪N2). (To
check isomorphism, step through the two merge maps starting from their maximal domain
elements N1, N2.Usingmemoization, iteratively build the bijection-witnessing isomorphism.
Any suitable data structure that allows efficient insertion and search can be used for this. To
check consistency, construct the two domains—again, using an appropriate data structure,
and check that the instructions at common line numbers match.)
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Operations M-Res uses two binary operations to build merge maps for the resolvent based
on those of the antecedents. We define the operations and give some intuition on their role
in M-Res. Concrete examples follow the definition of the system in the next subsection.

The select operation identifies equivalent merge maps by means of the isomorphism
relation. It also allows a trivialmerge map to be discarded; we call a merge map trivial iff it is
isomorphic to 1 �→ ∗. (The operation is undefined if the merge maps are neither isomorphic
nor do they contain a trivial map.)

Definition 13 (select) Let M1 and M2 be merge maps for which M1 � M2 or one of M1, M2

is trivial. Then select(M1, M2) := M2 ifM1 is trivial, and select(M1, M2) := M1 otherwise.

The merge operation allows two consistent merge maps to be combined as the children
of a fresh query node. Antecedent maps are only ever merged for universal variables right of
the pivot x . The inclusion of a natural number n allows the new query node to be identified
with the resolvent, via its index in the proof sequence. In this way, query nodes are shared
between later merge maps, rather than being duplicated; the result is a DAG-like structure
which faithfully follows that of the derivation.

Definition 14 (merge) Let M1 and M2 be consistent merge maps for u over X with
domains N1 and N2, let n > max(N1 ∪ N2) be a natural number, and let x ∈ X . Then
merge(M1, M2, n, x) is the function from N1 ∪ N2 ∪ {n} defined by

merge(M1, M2, n, x)(i) :=

⎧
⎪⎨

⎪⎩

(x,max(N1),max(N2)) if i = n,

M1(i) if i ∈ N1,

M2(i) if i ∈ N2\N1.

Example 15 In Fig. 3, we have select(A, B) = select(A,C) = A. Also, merge(D, B, 6, v)

gives the merge map from Fig. 2.

4.2 Definition ofM-Res

We are now ready to put down the rules ofMerge Resolution. Given a non-tautological clause
C and a Boolean variable u, the falsifying u-literal for C is l̄ if there is a literal l ∈ C with
var(l) = u, and ∗ otherwise.

Definition 16 (merge resolution) Let Φ := Q · φ be a QBF with existential variables X and
universal variables U . A merge resolution (M-Res) derivation of Lk from Φ is a sequence
π := L1, . . . , Lk of lines Li := (Ci , {Mu

i : u ∈ U }) in which at least one of the following
holds for each i ∈ [k]:
(a) Axiom. There exists a clause in C ∈ φ such that Ci is the existential subclause of C ,

and, for each u ∈ U , Mu
i is the merge map for u over LQ(u) with domain {i} mapping i

to the falsifying u-literal for C ;
(b) Resolution. There exist integers a, b < i and an existential pivot x ∈ X such that

Ci = res(Ca,Cb, x) and, for each u ∈ U , either

(i) Mu
i = select(Mu

a , Mu
b ), or

(ii) x <Q u and Mu
i = merge(Mu

a , Mu
b , i, x).

The final line Lk is the conclusion of π , and π is a refutation of Φ iff Ck = ∅. The size
of π is |π | = k.
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M12 : 1 �→ ū
2 �→ u
3 �→ (w, 1, 2)
4 �→ ū
5 �→ (x, 3, 4)

12 �→ (v, 5, 3)
5

4 3

1 2

12

ū

ū u

v̄

v

x x̄

ww̄

Fig. 4 Function and branching program representations of M12 from Example 17

Note that the order of the indexes a and b in merge(Ma, Mb, i, x) matches that of
res(Ca,Cb, x). This is why we interpret the triple (x, a, b) as ‘if x = 0 then goto a else goto
b’. Using the conventional ‘if x = 1’ entails swapping the order of the arguments Ma and
Mb.

We illustrate the rules of M-Res with two examples. The first demonstrates that labelling
branching nodes with proof-line indexes sidesteps the exponential blow-up in the computa-
tional model of [15].

Example 17 The reductionless LD-Q-Res proof fragment in Example 6 can be viewed as a
proof in M-Res if we attach appropriate merge maps at each line.

Line Rule Ci Mi Query

L1 axiom {w, x} 1 �→ ū
L2 axiom {w̄, x} 2 �→ u
L3 res(L1, L2, w) {x} merge(M1, M2, 3, w) 3 �→ (w, 1, 2)
L4 axiom {x̄, y} 4 �→ ū
L5 res(L3, L4, x) {y} merge(M3, M4, 5, x) 5 �→ (x, 3, 4)
L6 axiom {v, ȳ} 6 �→ ∗
L7 res(L5, L6, y) {v} select(M5, M6) = M5
L8 axiom {x̄, z} 8 �→ ∗
L9 res(L3, L8, x) {z} select(M3, M8) = M3
L10 axiom {v̄, z̄} 10 �→ ∗
L11 res(L9, L10, z) {v̄} select(M9, M10) =

select(M3, M10) = M3
L12 res(L7, L11, v) {} merge(M7, M11, 12, v) 12 �→ (v, 5, 3)

= merge(M5, M3, 12, v)

In lines L7, L9 and L11, the use of select is allowed, since in each case one of the antecedent
merge maps is trivial (i.e. isomorphic to 1 �→ ∗). Notice that at line L7, we could also have
chosen M7 to be merge(M5, M6, 7, y); this would result in a larger merge map.

Now, consider the final merge map M12. The corresponding branching program has iso-
lated nodes numbered 6, 8, and 10; these can be removed, giving the pruned merge map
shown in Fig. 4. Notice how the size blow-up from Example 6 is avoided here; since M3 and
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M3

1 �→ ū
2 �→ u
3 �→ (x, 1, 2)

M6

4 �→ ū
5 �→ u
6 �→ (x, 4, 5)

1 2

3

4 5

6

ū u ū u

x̄ x x̄ x

Fig. 5 Functions and branching programs for merge maps M3 and M6 from Example 18

M5 are consistent, node 12 simply points to both of them, and the shared part (that is, the
branching program M3 containing nodes 1, 2, and 3) is represented just once.

Our second example illustrates how the explicit representation of strategies, in tandem
with the isomorphism relation, gives M-Res access to resolution steps that are disallowed in
reductionless LD-Q-Res.

Example 18 Consider the following M-Res refutation of the QBF with prefix ∃x∀u∃t and
clauses {x, u, t}, {x̄, ū, t}, {x, u, t̄} and {x̄, ū, t̄}.

Line Rule Ci Mi Query

L1 axiom {x, t} 1 �→ ū
L2 axiom {x̄, t} 2 �→ u
L3 res(L1, L2, x) {t} merge(M1, M2, 3, x) 3 �→ (x, 1, 2)
L4 axiom {x, t̄} 4 �→ ū
L5 axiom {x̄, t̄} 5 �→ u
L6 res(L4, L5, x) {t̄} merge(M4, M5, 6, x) 6 �→ (x, 4, 5)
L7 res(L3, L6, t) {} select(M3, M6) = M3

As shown in Fig. 5, M3 and M6 are isomorphic, so select(M3, M6) is defined and equal to
M3. For this reason, the resolution of antecedents L3 and L6 into L7 is allowed, and the final
merge map M7 is simply a copy of M3. The analogous resolution would be disallowed in
reductionless LD-Q-Res because the pivot t is right of u, and the non-constant merge maps
M3 and M6 would appear as merged literals {u, ū} in the antecedent clauses.

We conclude this subsection by showing that the number of lines really is the correct size
measure for Merge Resolution. The justification lies in the fact that the domain of the merge
map at line i is a subset of [i].
Proposition 19 Let (C1, {Mu

1 : u ∈ U }), . . . , (Ck, {Mu
k : u ∈ U }) be an M-Res refutation of

Q · φ. For each u ∈ U, Mu
1 , . . . , Mu

n are pairwise consistent merge maps for u over LQ(u)

with max( dom(Mu
i )) ≤ i for each i ∈ [n].

Proof The claim follows straightforwardly from three observations: (1) each Mu
i introduces

at most one node, which is labelled i ; (2) if Li is an axiom, then each Mu
i is a merge map

over LQ(u); (3) the merge operation is only applied when x ∈ LQ(u). ��

4.3 Soundness and completeness ofM-Res

The soundness of M-Res comes down to the fact that the merge maps at a given line form a
partial strategy for the input QBF, in the technical sense of [54]. This means that any total
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existential assignment that falsifies the clauseCi will falsify the matrix when extended by the
output of the merge maps Mu

i . Our proof of soundness is an induction on the proof structure
with exactly this invariant. At the conclusion, all existential assignments falsify the empty
clauseCk , and hence the Mu

k compute a countermodel. A trivial corollary, then, is thatM-Res
has linear strategy extraction in merge maps. Our formal proof of soundness is preceded by
a preliminary proposition.

Proposition 20 Let M1 and M2 be consistent merge maps for u over X with domains N1 and
N2, let n > max(N1∪N2) be a natural number, let x ∈ X and let α ∈ 〈X〉. Further, let h1, h2
and h be the functions computed by M1, M2 and merge(M1, M2, x, n). Then h(α) = h1(α)

if x̄ ∈ α, and h(α) = h2(α) if x ∈ α.

Proof Let M := merge(M1, M2, n, x), and suppose that x̄ ∈ α. By Definition 14, M(n) =
(x,max(N1),max(N2)) and M(i) = M1(i) for each i ∈ N1. Hence, the computation of
h(α) from the second iteration of the while loop is identical to the computation of h1(α)

from the first iteration, and it follows that h(α) = h1(α). Suppose instead that x ∈ α. By
Definition 14, M(i) = M2(i) for each i ∈ N2\N1; by Definition 11, M1(i) = M2(i) for
each i ∈ N1 ∩ N2. Then M(i) = M2(i) for each i ∈ N2, and the proposition follows as in
first case. ��

Lemma 21 Let (∅, {Mu : u ∈ U }) be the conclusion of an M-Res refutation of a QBF Φ.
Then the functions computed by {Mu : u ∈ U } form a countermodel for Φ.

Proof Let π := L1, . . . , Lk be an M-Res refutation of a QBF Φ := Q · φ, where each
Li = (Ci , {Mu

i : u ∈ U }). Further, for each i ∈ [k],
• let αi := {l̄ : l ∈ Ci } be the smallest assignment falsifying Ci ,
• let Ai := {α ∈ 〈X〉 : Ci ∩ α = ∅} be all assignments to X consistent with αi ,
• for each u ∈ U , let hui be the function computed by Mu

i ,• for each α ∈ Ai , let lui (α) := hui ( proj(α, LQ(u))) and hi (α) := {lui (α) : u ∈ U }\{∗}.
(Note that Proposition 19 guarantees that each hui is defined.) By induction on i ∈ [k],

we show, for each α ∈ Ai , that the restriction of φ by α ∪ hi (α) contains the empty clause.
Since αk is the empty assignment, we have Ak = 〈X〉. We therefore prove the lemma at the
final step i = k, as we show that {huk : u ∈ U } is a countermodel for Φ.

For the base case i = 1, let α ∈ A1. As L1 is introduced as an axiom, there exists a clause
C ∈ φ such that C1 is the existential subclause of C , and each Mu

1 is the merge map from
{i} mapping i to the falsifying u-literal for C . Hence, for each u ∈ U , lu1 (α) is the falsifying
u-literal for C , so C[α ∪ h1(α)] = ∅.

For the inductive step, let i ≥ 2 and let α ∈ Ai . The case where Li is introduced as an
axiom is identical to the base case, so we assume that Li was derived by resolution. Then
there exist integers a, b < i and an existential pivot x ∈ X such that Ci = res(Ca,Cb, x),
and each u ∈ U satisfies either (i) Mu

i = select(Mu
a , Mu

b ), or (ii) x ∈ LQ(u), and Mu
i =

merge(Mu
a , Mu

b , i, x). Now, suppose on the one hand that x̄ ∈ α, and let u ∈ U . If u satisfies
(i) and Mu

a is non-trivial, then lui (α) = lua (α), and if u satisfies (ii) then lui (α) = lua (α)

by Proposition 20. It follows that lui �= lua only if lua = ∗, and hence ha(α) ⊆ hi (α). Since
Ca∪{x} ⊆ Ci , we have α ∈ Aa , so the restriction of φ by α∪hi (α) contains the empty clause
by the inductive hypothesis. Supposing, on the other hand, that x ∈ α, a similar argument
shows that hb(α) ⊆ hi (α). Note that, in this case, if u satisfies (i) and Mu

b is non-trivial, then
Mu

a � Mu
b and lui = lua = lub by Proposition 10. ��
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We show the completeness of M-Res via the p-simulation of reductionless LD-Q-Res.
The simulation copies precisely the structure of the reductionless LD-Q-Res refutation, while
replacing merged literals by merge maps in the natural way.

Theorem 22 M-Res p-simulates reductionless LD-Q-Res.

Proof Let Φ := Q · φ be a QBF with existential variables X and universal variables Y , and
let π := C1, . . . ,Ck be a reductionless LD-Q-Res refutation of Φ. We define a sequence
π ′ := L1, . . . , Ln , in which each Li := (C ′

i , {Mu
i : u ∈ U }), and prove that it is an M-Res

refutation of Φ.
For each i ∈ [k], we define C ′

i to be the existential subclause of Ci . For each u ∈ U , the
merge maps are defined recursively as follows: If Ci is an axiom, Mu

i is defined as the merge
map over LQ(u) with domain {i} mapping i to the falsifying u-literal for Ci (note that this
covers the definition of Mu

1 ). If Ci is derived by resolution, say Ci = res(Ca,Cb, x) with
a, b < i , then

Mu
i :=

{
select(Mu

a , Mu
b ) , if select(Mu

a , Mu
b ) is defined ,

merge(Mu
a , Mu

b , i, x) , otherwise .

Now, by induction on i ∈ [k], we prove that, for each u ∈ U ,

(a) if {u, ū} � Ci , then Mu
i is isomorphic to 1 �→ l, where l is the falsifying u-literal for Ci ,

(b) Li can be derived from previous lines in π ′ using an M-Res rule.

Both are established trivially when Ci is an axiom; hence it remains to show the inductive
step in the case where Ci was derived by resolution. In this case Ci = res(Ca,Cb, x) for
some a, b < i and some x ∈ X .

(a) Suppose that {u, ū} � Ci , and let li , la, lb be the falsifying u-literals for Ci ,Ca,Cb. By
definition of resolution, either (1) li = la = lb, or (2) exactly one of la, lb is trivial (lb,
say), the other is equal to li . In the former case, Mu

a and Mu
b are both isomorphic to

1 �→ li , by the inductive hypothesis; in the latter case, Mu
a is isomorphic to 1 �→ li and

Mu
b is trivial. Either way we get Mu

i = select(Mu
a , Mu

b ) = Mu
a , and the inductive step

follows.
(b) By Proposition 19, for each u ∈ U , Mu

a and Mu
b are consistent merge maps for u over

LQ(u), so merge(Mu
a , Mu

b , i, x) is defined for any case. Hence, if we can show that
select(Mu

a , Mu
b ) is defined whenever u <Q x , then it is clear that Li can be derived

by resolution from La and Lb. To that end, let u be left of x . If {u, ū} � Ci , then
select(Mu

a , Mu
b ) is defined by (a). Otherwise, we must have u /∈ vars(Ca) ∩ vars(Cb),

so the falsifying u-literal for one of Ca and Cb is ∗ By the inductive hypothesis, one of
Mu

a and Mu
b is trivial, and select(Mu

a , Mu
b ) is defined.

This completes the induction. Since Cn contains only universal variables, C ′
k is the empty

clause, and π ′ is a refutation. ��

With soundness and completeness established by Lemma 21 and Theorem 22, it remains
to show thatM-Res refutations can be checked in polynomial time. This is easy to see, since
the isomorphism and consistency relations are computable efficiently.

Theorem 23 M-Res is a QBF proof system.
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5 Proof complexity: merge resolution versus reductionless LD-Q-Res

In this section we exponentially separateM-Res from reductionless LD-Q-Res. The separating
formulas are a kind of ‘squaring’ of the equality formulas from Definition 2.

Definition 24 (squared equality formulas) The squared equality family is the QBF family
whose nth instance EQ2(n) := Q(n) · eq2(n) has the prefix

Q(n) := ∃{x1, y1, . . . , xn, yn}∀{u1, v1, . . . , un, vn}∃{ti, j : i, j ∈ [n]},
and the matrix eq2(n) consisting of the clauses

{xi , y j , ui , v j , ti, j }, {xi , ȳ j , ui , v̄ j , ti, j }, for i, j ∈ [n],
{x̄i , y j , ūi , v j , ti, j }, {x̄i , ȳ j , ūi , v̄ j , ti, j }, for i, j ∈ [n],
{t̄i, j : i, j ∈ [n]}.

The only winning strategy for the universal player is to set ui = xi and v j = y j for each
i, j ∈ [n]. At the final block, the existential player is faced with the full set of {ti, j } unit
clauses, and to satisfy all of them is to falsify the square clause {t̄i, j : i, j ∈ [n]}. No other
strategy can be winning, as it would fail to produce all n2 unit clauses.

5.1 EQ2(n) lower bound for reductionless LD-Q-Res

We first give a formal definition of a refutation path; that is, a sequence of consecutive
resolvents beginning with an axiom and ending at the conclusion.

Definition 25 (path) Let π be a reductionless LD-Q-Res refutation. A path from a clause C
in π is a subsequence C1, . . . ,Ck of π in which:

• C = C1 is an axiom of π ;
• Ck is the conclusion of π ;
• for each i ∈ [k − 1], there exists a literal pi and a clause Ri occurring before Ci+1 in π

such that Ci+1 = res(Ci , Ri , pi ).

The lower-bound proof is based upon two facts: (1) every total existential assignment
corresponds to a path, all of whose clauses are consistent with the assignment (Lemma 26);
(2) every path from the square clause contains a ‘wide’ clause containing either all the xi or
all the y j variables (Lemma 27). It is then possible to deduce the existence of exponentially
manywide clauses, i.e. by considering the set of assignments for which each xi = yi and each
ti, j = 0, all of whose corresponding paths begin at the square clause (proof of Theorem 28).

Lemma 26 Let π be a reductionless LD-Q-Res refutation of a QBF Φ, and let A be a clause
with vars(A) = vars∃(Φ). Then there exists a path in π in which no existential literal
outside of A occurs.

Proof We describe a procedure that constructs a sequence P := Ck, . . . ,C1 of clauses in
reverse order as follows: To begin with, let the ‘current clause’ C1 be the conclusion of π . As
soon as the current clause Ci is in an axiom, the procedure terminates. Whenever necessary,
obtain Ci+1 as follows: find clauses R1 and R2 occurring before Ci in π and a literal p ∈ A
such that Ci is res(R1, R2, p), and set Ci+1 := R1 as the current clause. P is clearly a path
in π by construction. By induction one shows that the existential subclause of Ci is a subset
of A, for each i ∈ [k]: The base case i = 1 holds trivially since there are no existential literals
in the conclusion C1 of π . For the inductive step, observe that Ci+1 = C ′ ∪ {p}, for some
subset C ′ ⊆ Ci and literal p ∈ A. ��
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The second lemma ismore technical, and its proofmore involved. The proofworks directly
on the definition of path, the rules of reductionless LD-Q-Res, and the syntax of the squared
equality formulas, to show the existence of the wide clause.

Lemma 27 Let n ≥ 2, and let π be a reductionless LD-Q-Res refutation of EQ2(n). On each
path from {t̄i, j : i, j ∈ [n]} in π , there occurs a clause C for which either {x1, . . . , xn} ⊆
vars(C) or {y1, . . . , yn} ⊆ vars(C).

Proof Put X := {x1, . . . , xn} and Y := {y1, . . . , yn}. Call a clause R in π a p-resolvent if
there exist earlier clauses R1 and R2 such that R = res(R1, R2, p).

Let P := C1, . . . ,Ck be a path from {t̄i, j : i, j ∈ [n]} in π . With each Cl we associate
an n × n matrix Ml in which Ml [i, j] := 1 if t̄i, j ∈ Ci and Ml [i, j] := 0 otherwise. Let l
be the least integer such that Ml has either a 0 in each row or a 0 in each column. Note that
l ≥ 2 since M1 has no zeros.

We prove the lemma by showing that either X ⊆ vars(Cl) or Y ⊆ vars(Cl) must hold.
Suppose that Ml has a 0 in each row. We make use of the following claims, which hold

for all i, j ∈ [n]:
(1) for each clause C on P , if t̄i, j ∈ C then {ui , ūi } � C ;
(2) each xi -resolvent in π contains {ui , ūi } as a subset;
(3) for each ti, j -resolvent R in π , if xi /∈ vars(R) then {ui , ūi } ⊆ R.

We proceed to show that every row in Ml also has at least one 1. To see this, suppose on
the contrary that Ml contains a full 0 row r (this implies that l ≥ 2, and hence that Ml−1

exists). Note that by definition of resolution there can be at most one element that changes
from 1 in Ml−1 to 0 in Ml . Since Ml−1 does not have a 0 in every column, it does not contain
a full zero row. Hence it must be the case that the unique element that went from 1 in Ml−1

to 0 in Ml is in row r . Since n ≥ 2, we deduce that Ml−1 has a 0 in each row, contradicting
the minimality of l.

Let i ∈ [n]. Since the i th row in Ml contains a 1, there is some j ∈ [n] for which t̄i, j ∈ Cl .
From claim (1) it follows that {ui , ūi } � Cl . Moreover, as universal literals accumulate along
the path, this means that {ui , ūi } � Cm for each m ≤ l. Since the i th row in Ml contains a 0,
there exists j ′ ∈ [n] such that t̄i, j ′ /∈ Cl . As t̄i, j ′ ∈ C1, there must be a ti, j ′ -resolvent Cl ′ on
P with l ′ ≤ l. Then we have xi ∈ vars(Cl ′) by claim (3). Also, for each m ≤ l, Cm is not an
xi -resolvent by claim (2). It follows that xi ∈ vars(Cl). Since i ∈ [n] was chosen arbitrarily,
we have X ⊆ vars(Cl).

Suppose on the other hand that Ml does not contain a 0 in each row. Then Ml contains
a 0 in each column. A symmetrical argument, with analogous claims involving the v j , y j
variables, then shows that Y ⊆ vars(Cl).

It remains to prove the three claims.

(1) Observe that each clause in π containing the positive literal ti, j also contains the variable
ui (this holds for every axiom and universal literals are never removed). Let C be a
clause on the path P for which t̄i, j ∈ C , and, for the sake of contradiction, suppose that
{ui , ūi } ⊆ C . Since ui <Q(n) ti, j , there cannot be ti, j -resolvent on P following C , as
such a resolution step is explicitly forbidden in the rules of reductionless LD-Q-Res. This
means that t̄i, j occurs in Ck , the final clause of P . This is a contradiction, since Ck is the
conclusion of π , which contains no existential literals. Therefore {ui , ūi } � C .

(2) Observe that each clause in π containing xi (resp. x̄i ) also contains ui (resp. ūi ) (again,
this holds for every axiom and universal literals are never removed). Let R be an xi -
resolvent of R1 and R2 in π . Since xi ∈ R1 and x̄i ∈ R2, we must have ui ∈ R1 and
ūi ∈ R2. It follows immediately that {ui , ūi } ⊆ R.
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(3) Observe that each axiom in π containing the positive literal ti, j contains variable xi .
Hence, any clause in π that contains literal ti, j but not variable xi must appear after
an xi -resolvent on some path, and therefore contains {ui , ūi } by Claim (2). Now, let R
be a ti, j -resolvent of R1 and R2 in π . Suppose that xi /∈ vars(R), which implies that
xi /∈ vars(R1). Since ti, j ∈ R1, we have {ui , ūi } ⊆ R1, and it follows that {ui , ūi } ⊆ R.

��
It remains to prove the lower bound formally from the preceding lemmata.

Theorem 28 The squared equality family requires exponential-size reductionless LD-Q-Res
refutations.

Proof Let n ∈ N, and let π be a reductionless LD-Q-Res refutation of EQ2(n). We show
that |π | ≥ 2n−1. The size bound is trivially true for n = 1, so we assume n ≥ 2. Put
X := {x1, . . . , xn} and Y := {y1, . . . , yn}, and let L := {t̄i, j : i, j ∈ [n]} be the long clause
from eq2(n). We call a non-tautological clause S symmetrical iff vars(S) = X ∪ Y and
xi ∈ S ⇔ yi ∈ S for each i ∈ [n]. (A symmetrical clause represents a total assignment to
X ∪ Y ). Note that there are 2n distinct symmetrical clauses.

By Lemma 26, for each symmetrical clause S, there exists a path PS in π in which all
existential literals are contained in S ∪ L . Moreover, each PS begins at clause L , since every
other clause in eq2(n) contains some positive ti, j literal that does not occur in S ∪ L . By
Lemma 27, on each path P from L in π there exists a clauseC for which either X ⊆ vars(C)

orY ⊆ vars(C). It follows thatwe can define a function f thatmaps each symmetrical assign-
ment S to a clause f (S) in π for which either proj(S, X) ⊆ f (S) or proj(S, Y ) ⊆ f (S).
Moreover, since distinct symmetrical clauses S1 and S2 satisfy proj(S1, X) �= proj(S2, X)

and proj(S1, Y ) �= proj(S2, Y ), each f (S) is the image of at most two distinct symmetrical
clauses. Hence, π contains at least 2n−1 clauses. ��

Close inspection of the lower-bound proof reveals that particular resolution steps are
blocked due to the appearance of merged literals in the antecedents (see the proof of claim
(1) of Lemma 27). Aswe noted in Example 18, such steps remain blocked even if bothmerged
literals implicitly represent the same (non-constant) function, in which case the resolution
step is actually perfectly sound. As we will see, the M-Res upper-bound construction makes
crucial use of the isomorphism of non-constant merge maps.

5.2 ShortM-Res refutations of EQ2(n)

Here we construct short M-Res refutations of the squared equality formulas. The approach
is as follows. First, for each i, j ∈ [n], obtain a line ({ti, j }, Mi, j ) by resolving the axioms
for the four clauses in eq(n)2 that contain {ti, j }. By the natural application of the merge
and select operations, one obtains merge maps Mi, j in which the merge map for ui outputs
xi with a single query, the merge map for v j outputs y j with a single query, and all other
maps are trivial. Notice that all the non-trivial merge maps for a given universal variable are
isomorphic, so these n2 unit clauses can all be resolved against the square clause, utilising the
select operation. It is precisely this final step which is unavailable in reductionless LD-Q-Res.

Theorem 29 The squared equality family has O(n2)-size M-Res refutations.

Proof Let n ∈ N. We construct a refutation in two stages. In the first stage we explicitly
construct anM-Res derivation π := L1, . . . , Lk from EQ2(n), where k = 2n2. In the second
stage, we show that π can be extended to a refutation with a further n2 + 1 lines.
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Stage one. For each h, i, j ∈ N we let δ(h, i, j) := (h − 1)n2 + (i − 1)n + j and use
L(h, i, j) as an alias for Lδ(h,i, j). Similarly, we let C(h, i, j) be the clause,U (h, i, j) be the
merge map for ui , and V (h, i, j) be the merge map for v j appearing on line L(h, i, j). These
U (h, i, j) and V (h, i, j) are the only merge maps in π we define explicitly; we consider all
others to be defined implicitly as the appropriate trivial merge map.

Letting i, j ∈ [n], we define the first 4n2 lines with
C(0, i, j) := {xi , y j , ti, j } ,
C(1, i, j) := {x̄i , y j , ti, j } ,
C(2, i, j) := {xi , ȳ j , ti, j } ,
C(3, i, j) := {x̄i , ȳ j , ti, j } ,
U (0, i, j) := δ(0, i, j) �→ ūi V (0, i, j) := δ(0, i, j) �→ v̄ j ,
U (1, i, j) := δ(1, i, j) �→ ui V (1, i, j) := δ(1, i, j) �→ v̄ j ,
U (2, i, j) := δ(2, i, j) �→ ūi V (2, i, j) := δ(2, i, j) �→ v j ,
U (3, i, j) := δ(3, i, j) �→ ui V (3, i, j) := δ(3, i, j) �→ v j ,

and observe that each of these lines can be introduced as an axiom.
The next 2n2 lines are the result of the natural resolutions over y j . For each i, j ∈ [n] we

define
C(4, i, j) := {xi , ti, j } U (4, i, j) := U (0, i, j) ,
C(5, i, j) := {x̄i , ti, j } U (5, i, j) := U (1, i, j) ,

V (4, i, j) := δ(4, i, j) �→ (y j , δ(0, i, j), δ(2, i, j))
δ(2, i, j) �→ v j

δ(0, i, j) �→ v̄ j ,

V (5, i, j) := δ(5, i, j) �→ (y j , δ(1, i, j), δ(3, i, j))
δ(3, i, j) �→ v j

δ(1, i, j) �→ v̄ j .

Each line L(4, i, j) can be derived by resolution from L(0, i, j) and L(2, i, j); to
see this, note that U (0, i, j) is clearly isomorphic to U (2, i, j) and V (0, i, j) is triv-
ially consistent with V (2, i, j) (their domains are disjoint), therefore U (4, i, j) =
select(U (0, i, j),U (2, i, j)) and

V (4, i, j) = merge(V (0, i, j), V (2, i, j), δ(4, i, j), y j ) .

A similar argument shows each that L(5, i, j) can be derived by resolution from L(1, i, j)
and L(3, i, j).

The final n2 lines are the result of the natural resolutions over xi . For each i, j ∈ [n] we
define

C(6, i, j) := {ti, j } V (6, i, j) := V (4, i, j) ,

U (6, i, j) := δ(6, i, j) �→ (xi , δ(0, i, j), δ(1, i, j))
δ(1, i, j) �→ ui
δ(0, i, j) �→ ūi .

It is easy to see that each L(6, i, j) can be derived by resolution from L(4, i, j) and L(5, i, j),
since V (4, i, j) is clearly isomorphic to V (5, i, j) (an isomorphism is l �→ l + n2) and
U (0, i, j) is trivially consistent with U (1, i, j) (disjoint domains).

Stage two. We now show how π can be extended to a refutation. Let L6 := {L(6, i, j) :
i, j ∈ [n]} denote the final n2 lines of π , in each of which appears some unit clause {ti, j }. We
observe that, for each a, b, i ∈ [n],U (6, i, a) is isomorphic toU (6, i, b) (an isomorphism is
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l �→ l + b− a); that is, amongst the lines L6, the non-trivial merge maps for ui are pairwise
isomorphic. Similarly, for each j ∈ [n], the non-trivial merge maps for v j appearing in L6

are pairwise isomorphic.
Now, a line T , consisting of the clause {t̄i, j : i, j ∈ [n]} and a full set of trivial merge

maps, can be introduced as an M-Res axiom in a derivation from EQ2(n). From T and L6,
in a further n2 steps we obtain a refutation by successively resolving each line in L6 against
T , removing a literal t̄i, j each time. All such resolution steps are valid, since the merge map
for ui (v j ) in any line can be defined as select(Ma, Mb), where Ma and Mb are the merge
maps for ui appearing in the antecedent lines. The isomorphism of non-trivial merge maps
for ui (v j ) is preserved, and ensures that select(Ma, Mb) is defined. ��

The separation follows immediately from Theorems 28 and 29.

Theorem 30 LD-Q-Res does not p-simulate M-Res on QBF.

6 Overview of DQBF

In this section, we provide an overview of DQBF, which will help to explain how Merge
Resolution is best extended to a DQBF proof system (in Sect. 7).

6.1 S-form versus H-form

A DQBF can be written in one of two forms: Skolem-form (S-form) and Herbrand-form
(H-form) [2]. To date, most of the DQBF literature has focused on S-form (whether in
computational complexity [1,16], proof complexity [8,50], and solving [27,29,55,57,58]),
whereas relatively little has been written about H-form [2]. The DQBF solver presented in
[25] uses H-form DQBF to facilitate a reduction to QBF. Otherwise, as far as we are aware,
existing DQBF solvers use S-form exclusively [52].

We will recall S-form and H-form DQBFs, their semantics, and the transformation oper-
ation that relates them.

An S-form dependency quantified Boolean formula (DQBF) is a formula of the form

Φ := ∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · φ , (1)

in which φ is a CNF, and each Si is a subset of the universally quantified variables
{u1, . . . , um}. S-form DQBF generalises QBF, since the quantifier prefix has a more general
specification that allows variable dependencies for the existentials to be written explicitly in
the sets Si . QBF is the fragment of S-form DQBF for which the dependency sets are nested
subsets, i.e. S1 ⊆ S2 ⊆ · · · ⊆ Sn .

An S-formDQBF is true if and only if it has a Skolem-functionmodel. A Skolem-function
model g for Φ is a set {gi : i ∈ [n]} of functions

gi : 〈Si 〉 → {xi , x̄i }
such that, for each α ∈ 〈{u1, . . . , um}〉,

α ∪ {gi (α�Si ) : i ∈ [n]} satisfies φ .

An H-form DQBF is the obvious dual to S-form, namely a formula of the form

Ψ := ∃x1 · · · ∃xn∀u1(H1) · · · ∀um(Hm) · φ ,
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in which φ is a CNF, and each Hi is a subset of the existentially quantified variables
{x1, . . . , xn}. Here the Hi express the variable dependencies for the universals, as opposed
to the existentials in S-form.

An H-form DQBF is false if and only if it has an Herbrand-function countermodel, which
is dual to a Skolem-function model. An Herbrand-function countermodel h for Ψ is a set
{hi : i ∈ [m]} of functions

hi : 〈Hi 〉 → {ui , ūi }
such that, for each β ∈ 〈{x1, . . . , xn}〉,

β ∪ {hi (β�Hi
) : i ∈ [m]} falsifies φ .

The dual definitions of S-form and H-form DQBF seem perfectly natural, and both sets of
formulas generaliseQBF in an obviousway.Nonetheless, it was shown in [2] that the situation
in terms of semantics is already quite complex. To see this, consider the transformation
operation T defined below. (It is a combination of the negation and complement operators
defined in [2]. We find it more convenient here to have a single operation.) This operator is
a natural map from S-form onto H-form DQBF and from H-form onto S-form DQBF. The
T -transform of the S-form DQBF in (1) is the H-form DQBF

T (Φ) := ∃x1 · · · ∃xn∀u1(H ′
1) · · · ∀um(H ′

m) · φ ,

where H ′
i := {x j : ui /∈ S j }. Intuitively, in the transformed H-form, a universal variable

u depends on the existentials which did not depend on u in the original S-form. The T -
transform of the H-form DQBF is defined analogously. (In the notation of [2], for any DQBF
Φ, T (Φ) = ¬∼Φ = ∼¬Φ.)

It is easy to see that for any DQBF Φ, T (T (Φ)) = Φ.
To see why the T -transform is a natural operation, consider what happens to a QBF. Recall

that in an S-form QBF, the dependency sets are nested (S1 ⊆ S2 ⊆ · · · ⊆ Sn), therefore
the dependency sets in the T -transform are also nested (H ′

1 ⊆ H ′
2 ⊆ · · · ⊆ H ′

m). In fact,
it is not too hard to see that both collections of dependency sets represent the same (linear)
QBF prefix. Therefore, the transform of an S-form QBF is just an H-form representation
of the same QBF, and this is verified semantically: an S-form QBF has a Skolem-function
model (is true) if and only if its transformed H-form does not have an Herbrand-function
countermodel (is not false); and it does not have a Skolem-function model if and only if its
transform does have an Herbrand-function countermodel. Thus, every QBF Φ is logically
equivalent to T (Φ); the only change made by the transformation is from S-form to H-form
and vice versa.

But this is not the case in general for DQBF. The authors of [2] partitioned S-form DQBF
into four distinct classes:

(A) those which have a Skolem-function model, but whose transform has no Herbrand-
function countermodel.

(B) those which have no Skolem-function model, but whose transform does have an
Herbrand-function countermodel.

(C) those which have a Skolem-function model, and whose transform also has an Herbrand-
function countermodel.

(D) thosewhich have noSkolem-functionmodel, nor does their transformhave anHerbrand-
function countermodel.

All QBFs are either type A or B. Type C and D are classes of DQBFs whose semantic
properties are markedly different from QBF.
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Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LD-QU-Res

IR-calc

IRM-calc

strictly stronger in QBF (p-simulates,
but exponentially separated)

incomparable in QBF (mutual
exponential separations)

expansion-based solving

CDCL-based solving

unsound in S-form DQBF

sound and complete in S-form DQBF

incomplete in S-form DQBF

Fig. 6 The simulation order of QBF resolution systems and soundness/completeness of their versions lifted
to S-form DQBF

6.2 Expansion versus QCDCL

Given what we know about the semantics of DQBF, we pose the following question: What is
the impact of the existence of type C andDDQBFs on the transfer of solving techniques from
QBF? We argue that the impact is indeed visible in theoretical models of solving. Moreover,
it forms a decent explanation for the results that we have seen there.

Figure 6 (reproduced from [13]) depicts what happens when one attempts to lift various
QBF calculi to DQBF. All of these systems are refutational calculi for S-form DQBFs; that
is, they prove that an S-form DQBF does not have a Skolem-function model.

The main message of Fig. 6 (and the conclusion of [13]) is that expansion-based systems
lift to S-form DQBF whereas CDCL-based systems do not. Q-Resolution, for example, is
too weak (it is not complete for S-form DQBF), whereas long-distance Q-Resolution is too
strong (it is not sound).

A reasonable explanation for this goes as follows:

Expansion-based (D)QBF calculi prove the non-existence of Skolem functions,whereas
CDCL-based (D)QBF calculi prove the existence of Herbrand functions.

Such an explanation could scarcely be sought in the QBF realm, where the non-existence
of a Skolem-function model and the existence of an Herbrand-function countermodel are
equivalent. One really needs to consider the behaviour of typeC andD formulas to understand
that these two things are not equivalent for DQBF.

Whereas our statement is not the kind that can be proved as a theorem, there appears good
reason to promote it as a credible hypothesis, since it explains the situation depicted in Fig 6.

Expansion-based systems prove that the universal expansion of a (D)QBF (i.e. a propo-
sitional formula) is unsatisfiable. Satisfying assignments for the expansion are in one-one
correspondence with Skolem-function models, so a proof of unsatisfiability is a proof of
the non-existence of Skolem functions. Thus, the expansion systems ∀Exp+Res and IR-calc
should lift quite naturally to refutational systems for S-form DQBFs, whose falsity is wit-
nessed by the non-existence of Skolem functions. And indeed, they lift easily to DQBF, as
shown in Fig 6 [13].

Moreover, if CDCL-based systems prove the existence of Herbrand functions, we should
expect to see difficulties lifting them to S-form DQBF, because the rules of these systems
implicitly work on the T -transformed formulas, which is an H-form DQBF. We know that
there exist type C S-form DQBFs that are true, but whose transform also has Herbrand
functions, and type D S-form DQBFs that are false, but whose transform does not have
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Herbrand functions. In the former casewe could expect to refute a true formula (unsoundness),
in the latter case we find false formulas that we cannot refute (incompleteness). This is
precisely what we see in Fig. 6: LD-Q-Res is unsound for S-form DQBF [13], whereas Q-Res
is incomplete [2].

Note that IRM-calc, which is considered an expansion-based system, is also unsound for S-
formDQBFs. This is because the system is designed to simulate LD-Q-Res, and unfortunately
also simulates unsound LD-Q-Res refutations of true S-form DQBFs.

6.3 Switching from S-form to H-form

We suggest, then, that it is worthwhile to investigate further the use of H-form DQBF as an
input encoding for CDCL-based DQBF solving. At least for theoretical models, this is yet
to be investigated. Here we undertake the first such investigation, and we get some positive
results: Merge Resolution lifts naturally to a sound and complete CDCL-based refutational
proof system on H-form DQBF.

It should be noted that a resolution system for DQBF called Fork Resolution [50] was
shown to be sound and complete for S-form DQBF. The system is based on so-called ‘infor-
mation forks’, and allows the introduction of fresh variables that delegate the responsibility
for fork satisfaction between the original variables. Whereas Fork Resolution is clearly a
variant of Q-Resolution, it is not clear whether one should call it a CDCL-based system.
Certainly, the associated solver DCAQE [55] belongs to the paradigm of clausal abstraction,
rather than conflict-driven clause learning. However, we wish to make it clear that switching
to H-form is not the only solution to the issues associated with Fig. 6.

7 Extendingmerge resolution to H-formDQBF

In this section, we show that M-Res extends naturally to a proof system for H-form DQBF
with the addition of a single weakening rule.

For consistency with the QBF definition, we introduce an equivalent notation for H-form
DQBF. We write the quantifier prefix of the H-form DQBF

Φ := ∃x1 · · · ∃xn∀u1(H1) · · · ∀um(Hm) · φ

as a triple Q := (X ,U , LQ), where:

• X = {x1, . . . , xn} is the set of existential variables;
• U = {u1, . . . , um} is the set of universal variables;
• LQ : U → ℘(X) is the support set function, which maps each ui to its dependency set

Hi .

To liftM-Res to H-form DQBF, we takeΦ to be a DQBF in Definition 16 and add an extra
case:

(c) Weakening. There exists an integer a < i such that Ci is an existential superclause of
Ca and, for each u ∈ U , either (i) Mu

i = Mu
a , or (ii) M

u
a is trivial and Mu

i := i �→ l for
some literal l ∈ {u, ū}.

By ‘existential superclause’ it is meant that vars(Ci ) ⊆ X and Ca ⊆ Ci .
Weakening is, in a clear sense, the simplest rule with which one extends M-Res to H-

form DQBF. Its function is merely to represent exactly the paths of the countermodel on
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which the canonical completeness construction is based. In general, the countermodel needs
to be represented in full since merge maps must be isomorphic in order to apply the select
operation. Note that the DQBF analogue of Proposition 19 is proved easily with an additional
case for the weakening rule.

7.1 Soundness and completeness

Soundness ofM-Res for H-formDQBF is proved in the same way as for QBF, i.e. by showing
that the concluding merge maps compute a countermodel.

Lemma 31 Let (∅, {Mu : u ∈ U }) be the conclusion of an M-Res refutation of an H-form
DQBF Φ. Then the functions computed by {Mu : u ∈ U } form a countermodel for Φ.

Proof We add an additional case to the inductive step in the proof of Lemma 21. Suppose
that Li was derived by weakening. Then there exists an integer a < i such that Ca ⊆ Ci and,
for each u ∈ U , either (i) Mu

i = Mu
a , or (ii) M

u
a is trivial and Mu

i := i �→ l for some literal
l ∈ {u, ū}. Here Ai ⊆ Aa , so α ∈ Aa . For each u ∈ U , if u satisfies (i) then lui (α) = lua (α),
and if u satisfies (ii) then lua (α) = ∗ /∈ hi (α). Hence we have ha(α) ⊆ hi (α). It follows that
the restriction of φ by α ∪ hi (α) contains the empty clause by the inductive hypothesis. ��

Completeness, on the other hand, cannot be established with an analogue of Theorem 22;
DQBF is strictly larger than QBF, and hence simulation of reductionless LD-Q-Res does not
guarantee completeness. Our proof rather extends the method by which completeness of
reductionless LD-Q-Res was proved in Lemma 5; namely, the construction of a ‘full binary
tree’ of resolution steps based on the countermodel, following the prefix order of existential
variables.

We give an overview of the construction. Let Φ := (X ,U , LQ) · φ be a false DQBF with
a countermodel h. For each α ∈ 〈X〉, the assignment α ∪ h(α) falsifies some clause Cα ∈ φ

by definition of countermodel. Now, consider theM-Res line whose clause is the largest exis-
tential clause falsified by α and whose merge maps are constant functions computing h(α).
Each such line can be derived in two M-Res steps, by weakening the axiom corresponding
to Cα . Moreover, the clauses {Cα : α ∈ 〈X〉} form the leaves of a full binary tree resolution
refutation which can be completed using an arbitrary order of the existential pivots X . The
merge maps are constructed by merging over the pivot x iff x ∈ LQ(u); otherwise the select
operation takes the merge map from either antecedent, since the full binary tree structure
guarantees that they are isomorphic.

As merge maps essentially represent the structure of resolution steps in the subderivation,
it is no surprise that the merge maps in our construction also have a full binary tree structure.
This structure is captured by the following definition.

Definition 32 (binary tree merge map) A binary tree merge map for a variable u over a
sequence of variables x1, . . . , xn is a function M with domain [2n+1 − 1] and rule

M(i) :=
{

(x�log i�+1, 2i, 2i + 1) if 1 ≤ i < 2n ,

li if 2n ≤ i < 2n+1 ,

where each li ∈ {u, ū}.
At the technical level, we must define existential restrictions for DQBFs and DQBF coun-

termodels. Let Φ := (X ,U , LQ) · φ be a DQBF with a countermodel h and let l be a literal
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with var(l) = x ∈ X . The restriction of Φ by l is Φ[l] := (X\{x},U , L ′
Q) ·φ[l], where L ′

Q
maps each u ∈ U to LQ(u)\{x}. The restriction of h by l is h[l] := {hu[l] : u ∈ U }, where
the functions hu[l] : 〈L ′

Q(u)〉 → {u, ū} are defined by hu[l](α) := hu((α ∪ {l})�LQ(u)).
The construction itself is defined recursively in the completeness proof, combining full

binary tree refutations for Φ[x] and Φ[x̄] for some x ∈ X with a single resolution step. We
use the fact that restrictions preserve countermodels in the following sense.

Proposition 33 Let h be a countermodel for a DQBF Φ := (X ,U , LQ) · φ and let l be a
literal with var(l) ∈ X. Then h[l] is a countermodel for Φ[l].

As the final precursor to the completeness proof, we show that a derivation of the negated
literal l̄ and the restricted countermodel h[l] can be obtained easily from a refutation of the
restricted DQBF Φ[l]
Proposition 34 Let Φ := (X ,U , LQ) ·φ be a false DQBF, let l be a literal with var(l) ∈ X,
and let (∅, {Mu : u ∈ U }) be the conclusion of be an M-Res refutation of Φ[l]. Then there
exists an M-Res derivation of ({l̄}, {Mu : u ∈ U }) from Φ.

Proof Let π be the refutation with the given conclusion. The desired derivation may be
obtained from π simply by adding the literal {l̄} to each clause, applying weakening where
necessary, and adjusting the indexing of the merge maps to account for the extra weakening
steps. ��
Lemma 35 Every false H-form DQBF has an M-Res refutation.

Proof Let Φ := (X ,U , LQ) · φ be a false DQBF, and let X := {x1, . . . , xn} where the
xi are pairwise distinct. For any M-Res refutation π with conclusion (Ck, {Mu

k : u ∈ U }),
let {hu : u ∈ U } be the concluding countermodel for π , where the hu are the functions
computed by the concluding merge maps Mu

k . A merge map for u ∈ U over LQ(u) is said
to be complete if it is isomorphic to a binary tree merge map for u over the sequence

xσ(1), . . . xσ(|LQ(u)|) ,

which enumerates LQ(u) in increasing index order; that is, σ : [|LQ(u)|] → [n] is the unique
function satisfying {xσ(i) : i ∈ [|LQ(u)|]} = LQ(u) and i < j ⇔ σ(i) < σ( j) for each
i, j ∈ [|LQ(u)|]. By induction on the number n of existential variables, we show that, for
each countermodel h forΦ, there exists anM-Res refutation whose concluding countermodel
is h and whose concluding merge maps are complete. To that end, let h := {hu : u ∈ U } be
an arbitrary countermodel for Φ.

For the base case |X | = 0, observe that each hu is a constant function with some singleton
codomain {lu}. By definition of countermodel, there exists a clause C ∈ φ such that C =
{l̄u : u ∈ vars(C)}. Applying the axiom rule to C , one obtains a derivation of the line
(∅, {Mu : u ∈ U }) in which Mu computes the constant function hu if u ∈ vars(C), and is
trivial otherwise. With a single weakening step, each trivial Mu can be swapped for a merge
map isomorphic to 1 �→ lu . Then each Mu is trivially complete and computes the constant
function hu .

For the inductive step, let n ∈ N. Combining Propositions 33 and 34 with the inductive
hypothesis, we deduce that there exist M-Res derivations π and π ′ of the lines ({x̄1}, {Mu :
u ∈ U }) and ({x1}, {M ′

u : u ∈ U }) from Φ in which the Mu and M ′
u are complete merge

maps computing hu[x1] and hu[x̄1]. Assume that the lines of π are indexed from 1 to |π | and
that those of π ′ are indexed from |π | + 1 to |π | + |π ′|. For each u ∈ U , the domains of Mu
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and M ′
u are disjoint, so Mu �� M ′

u . If x1 /∈ LQ(u), then hu[x1] = hu[x̄1], and we must have
Mu � M ′

u since complete merge maps computing the same function must be isomorphic. It
follows that the line (∅, {M ′′

u : u ∈ U }) can be derived from Φ, where

M ′′
u :=

{
merge(Mu, M ′

u, |π | + |π ′| + 1, x1) if x1 ∈ LQ(u),

Mu if x1 /∈ LQ(u).

It is easy to see that the M ′′
u are complete merge maps computing the hu . ��

Theweakening rule is clearly polynomial-time checkable. Thus the following is immediate
from Lemmata 31 and 35.

Theorem 36 M-Res is a proof system for H-form DQBF.

It is natural to consider whether the weakening rule is necessary for completeness. This
is indeed the case; there exist false H-form DQBFs that cannot be refuted byM-Res without
weakening.

For example, consider the DQBF Φ := (X ,U , LQ) · φ in which X := {x1, x2}, U :=
{u1, u2}, the support set function is given by

LQ(u1) = {x1}, LQ(u2) = {x2} ,

and the matrix φ consists of the clauses

{x̄1, x̄2, ū1, ū2}, {x1, x2, u1, u2}, {x̄1, x2}, {x1, x̄2}.
It is easy to see that the only countermodel for Φ sets u1 = x1 and u2 = x2. Note that the

functions computing this unique countermodel have ranges {ū1, u1} and {ū2, u2}
Now, let π be a weakening-freeM-Res derivation from Φ. We will show that each line in

π is of one of three types:

A The merge maps compute functions with ranges RA
1 and RA

2 , where

{u1} ⊆ RA
1 ⊆ {∗, u1} and {u2} ⊆ RA

2 ⊆ {∗, u2} ;
B The merge maps compute functions with ranges RB

1 and RB
2 , where

{ū1} ⊆ RB
1 ⊆ {∗, ū1} and {ū2} ⊆ RB

2 ⊆ {∗, ū2} ;
C The merge maps compute functions with ranges RC

1 = RC
2 = {∗}.

From this it follows that π is not a refutation, because its concluding merge maps do not
compute a countermodel.

The axiom line for the clause {x̄1, x̄2, ū1, ū2} is type A, the axiom line for the clause
{x1, x2, u1, u2} is type B, and the remaining two clauses, which contain no universal literals,
are type C. It is easy to see that resolution of a type A line with a type A or C line always
yields type A. Similarly, resolution of a type B line with a type B or C line always yields
type B. Resolving two type C clauses yields a type C clause. Moreover, type A lines can
never be resolved with type B lines; in this case, the merge maps for u1 are non-trivial and
non-isomorphic, and similarly for u2, so neither x1 nor x2 is eligible as the pivot variable.
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8 Conclusions and future work

What is new inM-Res?

To the best of our knowledge, M-Res is the first ‘long-distance’ proof system for DQBF.
Recent work [13] showed that the DQBF version of LD-Q-Res is not sound, so it is natural
to ask how M-Res fares in comparison. We identify three major differences.

Firstly,M-Resworks with Herbrand-formDQBFs, whereas the system in [13] was defined
for Skolem-formDQBFs (which use support sets for existential variables).Mergemaps detail
precisely how the Herbrand functions are encoded in the resolution structure of long-distance
proofs. One could say that such refutations are ‘proving the existence of Herbrand functions’.
For QBF, this is of course equivalent to proving the non-existence of Skolem functions, but
that does not carry over to DQBF (in a precise technical sense [2]). From this standpoint,
it is natural to refute H-form DQBFs by finding the Herbrand functions that certify the
falsity of the formula, and this is exactly whatM-Res achieves. On the other hand, [13] takes
the approach of refuting S-form DQBFs—which amounts to proving the non-existence of
Skolem functions—by looking for Herbrand functions that may exist even if the formula is
true.

The second difference is the absence of universal reduction. The difficulty of dealing with
universal reduction in the context of DQBF resolution is to some extent addressed in [7],
where it is considered in the (closely related [8]) context of dependency schemes. There
it is shown that the interplay between universal reduction and merging is problematic, and
additional constraints must be placed on universal reduction to prevent unsound inferences.
Given that universal reduction is not necessary for completeness, it seems natural to dispense
with it entirely.

The third and final difference is the explicit representation of functions inM-Res, versus the
function placeholders known as ‘merged literals’ from classical long-distance Q-resolution.
Here we argue that the ‘full binary tree’ construction that features in the proofs of Lemmata 5
and 35 is the canonical completeness proof for CDCL-based systems. The explicit represen-
tation of functions is key to this construction, since it allows the comparison of non-trivial
mergemaps. Thuswe argue that building strategies into proofs is the natural way to overcome
incompleteness.

Relevance to solving

Merge maps may be relevant for QBF and DQBF solving.
In dependency learning for QBF [45], variable dependencies are ignored until clause

learning is blocked by an illegal merge. Our work demonstrates that many ‘illegal’ merges
are perfectly sound inferences; moreover,M-Res provides a mechanism for identifying such
cases based on isomorphism. Thus, it is plausible that incorporating merge maps could
increase the scope of dependency learning.

In DQBF, practitioners are still looking for a natural ‘CDCL-based’ (as apposed to
‘expansion-based’) solving paradigm. Our discussion in Sect. 6 suggests one possible rea-
son: namely, the use of Skolem form encodings is not conducive to CDCL-based search. An
interesting direction for future work, therefore, would be to experiment with Herbrand-form
DQBFs as the standard input format for CDCL-based DQBF solving.

It seems natural, then, to suggest Merge Resolution as the underlying resolution engine in
a CDCL-based solver for Herbrand-form DQBF. Conceiving such an implementation would
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require some work; for example, one would need to store partial strategies with learned
clauses, and carry out an efficient isomorphism test. Isomorphism is an easyway to determine
the equivalence of two Boolean functions, but in general it seems unlikely that two equivalent
functions will have identical representations. This points towards efficient (approximate)
equivalence testing as the key to a successful implementation of M-Res.

Complexity of H-form DQBF

Whereas the decision problem for S-form DQBF is known to be NEXP complete [1], the
complexity of the decision problem for H-form DQBFs, as far as we are aware, has not been
studied. Moreover, the methodology of [1] does not seem appropriate for H-form DQBFs.
Since every QBF can be written as an H-form DQBF, the decision problem is certainly
PSPACE-hard, and the NEXP upper bound applies for all DQBFs, but its exact complexity
remains an interesting open problem.

Acknowledgements Open Access funding provided by Projekt DEAL. Research was supported by grants
from the John Templeton Foundation (Grant No. 60842) and the Carl Zeiss Foundation.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative games of incomplete
information. J. Comput. Math. Appl. 41, 957–992 (2001)

2. Balabanov, V., Chiang, H.-J.K., Jiang, J.-H.R.: Henkin quantifiers and Boolean formulae: a certification
perspective of DQBF. Theoret. Comput. Sci. 523, 86–100 (2014)

3. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. Form. Methods Syst. Des.
41(1), 45–65 (2012)

4. Balabanov, V., Jiang, J.-H.R., Janota, M., Widl, M.: Efficient extraction of QBF (counter)models from
long-distance resolution proofs. In: Bonet, B., Koenig, S. (eds.) National Conference on Artificial Intel-
ligence (AAAI), pp. 3694–3701. AAAI Press (2015)

5. Benedetti, M.: sKizzo: a suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) International
Conference on Automated Deduction (CADE), Volume 3632 of Lecture Notes in Computer Science, pp.
369–376. Springer (2005)

6. Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. J. Satisf.
Boolean Model. Comput. 5(1–4), 133–191 (2008)

7. Beyersdorff, O., Blinkhorn, J. (2016) Dependency schemes in QBF calculi: semantics and soundness. In:
Rueher, M. (ed.) International Conference on Principles and Practice of Constraint Programming (CP),
Volume 9892 of Lecture Notes in Computer Science, pp. 96–112. Springer

8. Beyersdorff, O., Blinkhorn, J., Chew, L., Schmidt, R.A., Suda, M.: Reinterpreting dependency schemes:
soundness meets incompleteness in DQBF. J. Autom. Reason. 63(3), 597–623 (2019)

9. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic technique for hard random
QBFs. Log. Methods Comput. Sci. 15(1), 13:1–13:39 (2019)

10. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Building strategies into QBF proofs. In: Niedermeier, R.,
Paul, C. (ed.) International Symposium on Theoretical Aspects of Computer Science (STACS), Volume
126 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 14:1–14:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

123

http://creativecommons.org/licenses/by/4.0/


Building Strategies into QBF Proofs

11. Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: from circuits to QBF proof systems. In: Sudan,
M. (ed.) ACM Conference on Innovations in Theoretical Computer Science (ITCS), pp. 249–260. ACM
(2016)

12. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their proof complexity.
ACM Trans. Comput. Theory 11(4), 26:1–26:42 (2019)

13. Beyersdorff, O., Chew, L., Schmidt, R.A., Suda,M.: LiftingQBF resolution calculi toDQBF. In: Creignou
and Berre [21], pp. 490–499

14. Beyersdorff, O., Wintersteiger, C.M. (eds.): International Conference on Theory and Practice of Satisfi-
ability Testing (SAT), Volume 10929 of Lecture Notes in Computer Science. Springer, Berlin (2018)

15. Bjørner, N., Janota, M., Klieber, W.: On conflicts and strategies in QBF. In: Fehnker, A., McIver, A.,
Sutcliffe, G., Voronkov, A. (eds.) International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning—Short Presentations (LPAR), Volume 35 of EPiC Series in Computing, pp. 28–41.
EasyChair (2015)

16. Bubeck, U., Büning, H.K.: Dependency quantified Horn formulas: models and complexity. In: Biere,
A., Gomes, C.P. (eds.) International Conference on Theory and Practice of Satisfiability Testing (SAT),
Volume 4121 of Lecture Notes in Computer Science, pp. 198–211. Springer (2006)

17. Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Log. 163(7), 906–917 (2012)
18. Cashmore, M., Fox, M., Giunchiglia, E.: Partially grounded planning as quantified Boolean formula.

In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.) International Conference on Automated
Planning and Scheduling (ICAPS). AAAI (2013)

19. Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge University Press, Cam-
bridge (2010)

20. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1),
36–50 (1979)

21. Creignou,N., LeBerre,D. (eds.): International Conference onTheory and Practice of Satisfiability Testing
(SAT). Lecture Notes in Computer Science, vol. 9710. Springer, Berlin (2016)

22. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case study of incremental
QBF solving. Ann. Math. Artif. Intell. 80(1), 21–45 (2017)

23. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in
search-based QBF solving. In: McMillan, K.L., Middeldorp, K.L., Voronkov, A. (eds.) International
Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), Volume 8312 of
Lecture Notes in Computer Science, pp. 291–308. Springer (2013)

24. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded synthesis. In: Legay and
Margaria [39], pp. 354–370

25. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.) International Conference on
Theory and Practice of Satisfiability Testing (SAT), Volume 8561 of Lecture Notes in Computer Science,
pp. 243–251. Springer (2014)

26. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. https://arise.or.at/pubpdf/
Algorithm_for_Solving__DQBF_.pdf, presented at Workshop on Pragmatics of SAT (POS) (2012)

27. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: instantiation-based DQBF solving. In: Le Berre,
D. (ed.) Workshop on Pragmatics of SAT (POS), Volume 27 of EPiC Series in Computing, pp. 103–116.
EasyChair (2014)

28. Gaspers, S., Walsh, T. (eds.): International Conference on Theory and Practice of Satisfiability Testing
(SAT). Lecture Notes in Computer Science, vol. 10491. Springer, Berlin (2017)

29. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving DQBF through quantifier
elimination. In: Nebel, W., Atienza, D. (eds.) Design, Automation & Test in Europe Conference (DATE),
pp. 1617–1622. ACM (2015)

30. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of
quantified Boolean formulas. J. Artif. Intell. Res. 26, 371–416 (2006)

31. Heule, M., Seidl, M., Biere, A.: Efficient extraction of Skolem functions from QRAT proofs. In: Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD), pp. 107–114. IEEE (2014)

32. Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8), 70–79 (2017)
33. Janota, M., Lynce, I. (eds.): International Conference on Theory and Practice of Satisfiability Testing

(SAT). Lecture Notes in Computer Science, vol. 11628. Springer, Berlin (2019)
34. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci.

577, 25–42 (2015)
35. Büning,H.K., Karpinski,M., Flögel, A.: Resolution for quantifiedBoolean formulas. Inf. Comput. 117(1),

12–18 (1995)
36. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF solver with game-state

learning. In: Strichman, O., Szeider, S. (eds.) International Conference on Theory and Practice of Sat-

123

https://arise.or.at/pubpdf/Algorithm_for_Solving__DQBF_.pdf
https://arise.or.at/pubpdf/Algorithm_for_Solving__DQBF_.pdf


O. Beyersdorff et al.

isfiability Testing (SAT), Volume 6175 of Lecture Notes in Computer Science, pp. 128–142. Springer
(2010)

37. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Zakharyaschev, M.: Minimal
module extraction from DL-lite ontologies using QBF solvers. In: Boutilier, C. (ed.) International Joint
Conference on Artificial Intelligence (IJCAI), pp. 836–841. AAAI Press (2009)
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