
Hardness Characterisations and Size-Width
Lower Bounds for QBF Resolution

Olaf Beyersdorff
Institut für Informatik

Friedrich-Schiller-Universität
Jena, Germany

olaf.beyersdorff@uni-jena.de

Joshua Blinkhorn
Institut für Informatik

Friedrich-Schiller-Universität
Jena, Germany

joshua.blinkhorn@uni-jena.de

Meena Mahajan
The Institute of Mathematical

Sciences, HBNI
Chennai, India

meena@imsc.res.in

Abstract
We provide a tight characterisation of proof size in resolution
for quantified Boolean formulas (QBF) by circuit complexity.
Such a characterisation was previously obtained for a hier-
archy of QBF Frege systems (Beyersdorff & Pich, LICS 2016),
but leaving open the most important case of QBF resolution.
Different from the Frege case, our characterisation uses a
new version of decision lists as its circuit model, which is
stronger than the CNFs the system works with. Our decision
list model is well suited to compute countermodels for QBFs.

Our characterisation works for both Q-Resolution and QU-
Resolution, which we show to be polynomially equivalent
for QBFs of bounded quantifier alternation.

Using our characterisation we obtain a size-width relation
for QBF resolution in the spirit of the celebrated result for
propositional resolution (Ben-Sasson & Wigderson, J. ACM
2001). However, our result is not just a replication of the
propositional relation – intriguingly ruled out for QBF in
previous research (Beyersdorff et al., ACM ToCL 2018) –
but shows a different dependence between size, width, and
quantifier complexity.

We demonstrate that our new technique elegantly reproves
knownQBF hardness results and unifies previous lower-bound
techniques in the QBF domain.

CCS Concepts • Theory of computation → Computa-
tional complexity and cryptography; Proof complex-
ity; Circuit complexity;

Keywords quantified Boolean formulas, resolution, lower
bounds, circuit size, size-width in resolution
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1 Introduction
Proof complexity is a field at the intersection of logic and com-
plexity that studies the difficulty of proving formal theorems,
where difficulty of proving is mainly associated with the size
of proofs in different proof calculi. Obtaining lower bounds
to the size of proofs is the central and most challenging goal
in proof complexity, and the endeavour bears tight relations
to central questions in computational complexity [25, 36]
and first-order logic [5, 24]. In addition to this foundational
quest, proof complexity has become the main theoretical tool
for the analysis of powerful SAT solvers that routinely solve
huge industrial instances of the NP-complete SAT problem
[20, 43, 51].

Many conceptually different proof systems have been stud-
ied, but the resolution system [17, 47] – operating on clauses
and using just one rule – has received by far the greatest
attention. This is because resolution is a foundational sys-
tem from the theoretical point of view [48], but also because
resolution (and its subsystems) underpin modern SAT solv-
ing [20, 43], whereby lower bounds on resolution proof size
provide lower bounds on solving time.
In the past two decades, researchers have tried to lift the

successes of SAT solving and propositional proof complex-
ity to computationally even more challenging settings, with
quantified Boolean formulas (QBF) receiving key attention.
As a PSPACE-complete problem, QBF widely generalises
SAT and encompasses the polynomial hierarchy, a source of
many practical problems [27, 35, 42] that are efficiently tack-
led by modern QBF solvers. As in the propositional case, QBF
resolution systems play a key role in understanding the effi-
ciency and limits of current solving. Arguably, the simplest
QBF resolution system isQU-Res, augmenting propositional
resolution by just one universal reduction rule [28, 34].

https://doi.org/10.1145/3373718.3394793
https://doi.org/10.1145/3373718.3394793
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There is a long-standing belief in the proof complexity
community (cf. [3]) that there exist strong connections be-
tween the logical problem of determining the size of the
shortest proof for a given formula (proof size bounds) and
the complexity problem of finding small circuits for explicit
functions corresponding to the formula (circuit bounds).

While such a formal connection has so far appeared elusive
for central propositional proof systems such as resolution
or Frege systems, some connections are known, for example
between algebraic proof systems and algebraic circuit com-
plexity [1, 29]. Arguably, the clearest such connection has
been shown in the QBF domain, between the hierarchy of
QBF Frege systems and the corresponding circuit classes. For
QBF Frege (where lines are propositional formulas, i.e. NC1

circuits) the connection manifests as follows: there are QBFs
that require superpolynomial-size proofs in QBF Frege if, and
only if, there are functions requiring superpolynomial-size
NC1 circuits or there are propositional formulas requiring
superpolynomial-size propositional Frege proofs [16]. Thus,
this characterisation unites central problems from circuit
complexity (NC1 lower bounds) with central problems from
proof complexity (Frege lower bounds). However, such a
connection has remained open for resolution systems (ei-
ther QBF or propositional), which are of prime importance,
theoretically and practically.

1.1 Our contributions
A. Characterising QU-Res hardness. We obtain a tight
characterisation of QU-Res hardness in terms of circuit lower
bounds.More precisely, we show that a sequence of QBFsQn
of bounded quantifier complexity requires superpolynomial
QU-Res proofs if and only if each countermodel for Qn re-
quires superpolynomial circuit size (in a natural circuit model
defined on decision lists as explained below) or ifQn exhibits
propositional resolution hardness (defined in a precise sense,
Theorem 4.17). We thus identify a dichotomy for QU-Res
hardness: it either rests on circuit lower bounds or on propo-
sitional resolution lower bounds. We note that the second
case is inevitable: each propositional resolution lower bound
(e.g. for the pigeonhole principle [30]) can be easily turned
into a QU-Res lower bound. The surprising insight is that
‘genuine QBF hardness’ (cf. [13, 21]) can be completely char-
acterised by circuit hardness.
Our result is best obtained in a model of QBF systems

that ‘filters out’ propositional hardness (the second case
above). For this we use themodel of oracle QBF proof systems
defined in [13], which employs an NP oracle to perform
arbitrary propositional entailments in one inference step.
For example, in the oracle system QUNP- Res, propositional
resolution derivations of arbitrary size can be performed in
just one step. The use of an NP oracle in QUNP- Res is akin to
the use of SAT solvers as oracles in QBF solving [41].

The hardness characterisation we obtain forQUNP- Res is in
terms of unified decision lists (UDL). This is a natural adapta-
tion of the classical model of decision lists [46], which com-
putes functions {0, 1}n → {0, 1}, to multi-output functions
{0, 1}n → {0, 1}m . Our first main result (Theorem 4.2) shows
that for bounded-alternation QBFs, proof size in QUNP- Res is
polynomially related to the size of UDLs computing coun-
termodels of the QBFs.

Technically, this result is shown via two simulations. The
first efficiently extracts UDLs from QUNP- Res proofs (Theo-
rem 4.5). Single-output decision lists have been used before
to extract winning strategies for QBFs [2, 7, 9]. Here we show
that winning strategies can also be extracted viamulti-output
decision lists, and these can be combined via a direct prod-
uct construction (Definition 4.3) into one single UDL that
computes the countermodel. We argue that representing the
countermodel by just one function (computed by the UDL)
is quite natural. However, it differs from the conventional
approach, which represents the countermodel as a collection
of Herbrand functions, one for each universal variable.

The second simulation turns a UDL into a QUNP- Res refuta-
tion (Theorem 4.10). This is conceptually novel, as – to the
best of our knowledge – the efficient construction of proofs
from countermodels has not been considered before. In the
course of the simulation, we obtain a normal form for proofs
via the entailment sequence associated with a UDL (Defini-
tion 4.8). Inference steps in this entailment sequence also
allow us to pinpoint sources for propositional hardness that
arise when replacing NP oracle calls with actual resolution
derivations. This way we obtain the dichotomy for QU-Res
explained above (Theorem 4.17).

B. QU-Resolution and Q-Resolution. While QU-Res is
arguably the simplest QBF resolution system from a logi-
cal perspective (it just adds the universal reduction rule to
propositional resolution), there are other QBF resolution
systems that better correspond to ideas in QBF solving. A
core system among these is Q-Resolution (Q-Res), which is
also historically the first QBF resolution system [34]. Q-Res
is a restriction of QU-Res in which resolution pivots must
be existential. This corresponds to techniques in QCDCL
solving [40] (even though Q-Res does not capture QCDCL
precisely [32]).

The system QU-Res is exponentially stronger than Q-Res
[28], the separation provided by the prominent KBKFn for-
mulas [34]. These formulas use unbounded quantifier alter-
nations, and indeed, we show that every separation must
be of this form. We obtain the surprising result that Q-Res
andQU-Res are polynomially equivalent on QBFs of bounded
quantifier alternation (Theorem 5.3). This simulation is shown
by a direct construction.

As a consequence, our hardness characterisation in terms
of UDLs transfers directly to Q-Res (Corollary 5.5).
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C. Size and width for QBF Resolution. Our new connec-
tion between QBF resolution and UDLs does not only provide
a tight characterisation of QBF resolution hardness, it also
paves the way towards a powerful lower-bound method.We
show that lower bounds on resolution width – defined as the
size of the largest clause in the proof – directly imply lower
bounds for proof size. The celebrated result of Ben-Sasson &
Wigderson [4] provides such a size-width result for propo-
sitional resolution. Indeed, the vast majority of resolution
hardness results are nowadays shown via this method.
Here we provide the first size-width result for QBF (Theo-

rem 6.2). In a nutshell it says that each short QU-Res proof
can be transformed into a narrow proof, where a proof is
narrow if it does not contain a clause with many existential
literals. What is perhaps most surprising is that the authors
of [11, 23] have previously ruled out such a size-width re-
sult for Q-Res and QU-Res. Not only did they show that the
proof method of [4] does not lift to QBF, they also provided
concrete QBF counterexamples to their size-width relation.
Here we use our UDL characterisation, together with a

size-width transfer for decision lists of Bshouty [19], to ob-
tain a size-width result for QU-Res (indeed even for the
model ofQUNP- Res, yielding stronger size lower bounds). Our
result, however, is not a mere QBF replication of Ben-Sasson
& Wigderson’s result [4]. There are two crucial differences.
First, in contrast to [4] our size-width result does not de-
pend on the initial width of the formula.1 This makes the
technique easier to apply and avoids the need for Tseitin
transformations, which are often required in the proposi-
tional domain [4]. Second, our size bound depends on the
number of quantifier alternations of the QBF. Crucially, the
counterexamples of [11, 23] use unbounded alternations,
thus ruling out the relation of [4], but not contradicting our
Theorem 6.2.

D.Unification of previous lower-bound techniques.Our
hardness characterisation in terms of UDLs together with the
size-width method encompasses and extends previous lower
bound methods for QBF resolution. In addition to lifted propo-
sitional techniques [10, 12], there exist two genuine QBF tech-
niques: strategy extraction [7, 8] and the size-cost-capacity
technique [6]. These techniques are orthogonal in the sense
that each yields hardness results that cannot be shown by
the other. Here we demonstrate that UDL hardness captures
both.
In the strategy extraction method [7, 8], lower bounds

are shown by extracting strategies in terms of a collection
of single-output decision lists, which can be turned into
bounded-depth circuits. The authors of [7, 8] then construct
QBFs with a single universal variable whose unique Her-
brand function is hard to compute by bounded-depth circuits

1We note that there are propositional size-width results [38], using the
notion of asymmetric width (cf. also [15]), that do not depend on the initial
width of the formula.

(such as the parity function [31]). Such functions are also
hard for UDLs (Section 4.5). Moreover, we show that width
bounds for QBFs based on the parity and majority functions
are easy to obtain (Section 6.2). We thus elegantly reprove pre-
vious hardness results for parity and majority formulas [7, 8]
with our technique, without the need to import substantial
circuit complexity results [31, 45, 49].
The size-cost-capacity technique [6] establishes hardness

for QBFs where countermodels might be easy to compute by
single-output decision lists, but must have large range. The
large range immediately implies large UDLs (Section 4.5),
hence again we can show the hardness results with our
new technique. We illustrate this with the equality formulas
(Theorem 6.6).

Organisation. The remainder of this article is organised as
follows. In Section 2 we review notions from logic. Section 3
introduces our UDL model and explains how UDLs compute
countermodels. In Section 4 we show our characterisation
of QU-Res proof size by UDL size, which is extended to
Q-Res in Section 5. Section 6 contains the size-width relation
together with a number of applications. We conclude in
Section 7 with a discussion and open problems.

2 Preliminaries

Propositional logic. V is a countable set of Boolean vari-
ables. A literal is a variable z in V or its negation z, with
var(z) = var(z) = z. The literals z and z are complementary.
For any literal a, the complementary literal is denoted a.

A clause is a disjunction c := a1 ∨ · · · ∨ak of pairwise non-
complementary literals, with vars(c) := {var(ai ) : i ∈ [k]}.
We often remove the disjunction symbols from a written
clause, for example we write z1z2z3 for z1 ∨ z2 ∨ z3. Given a
set Z of Boolean variables, c↾Z is the disjunction of literals
a appearing in c with var(a) ∈ Z .

A conjunctive normal form formula (CNF) is a conjunction
F := c1 ∧ · · · ∧ ck of clauses, with vars(F ) :=

⋃k
i=1 vars(ci ).

A term is a finite conjunction t := a1 ∧ · · · ∧ ak of non-
complementary literals, with vars(t) := {var(ai ) : i ∈ [k]}.
t↾Z is defined similarly as for clauses. The negation of t is
the clause t := a1 ∨ · · · ∨ ak . The negation of a clause c is
the unique term c whose negation is c .

An assignment τ to a set Z of Boolean variables is a func-
tion from Z into the set of Boolean constants {0, 1}. The set
of all assignments to Z is denoted ⟨Z ⟩. A partial assignment
to Z is an assignment to a subset of Z . We often represent
assignments as terms, as there is a natural one-one corre-
spondence between the two. The term t with vars(t) = Z
represents the assignment τ : Z → {0, 1} which maps z ∈ Z
to 0 if, and only if, z is a conjunct in t .
The restriction of a literal, clause, CNF or term ϕ by τ ,

denoted ϕ [τ ], is the result of substituting each variable z in
Z by τ (z), followed by applying the standard simplifications
for Boolean constants, i.e. 0 7→ 1, 1 7→ 0, c∨0 7→ c , c∨1 7→ 1,
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t ∧ 1 7→ t , and t ∧ 0 7→ 0. We say that τ satisfies ϕ when
ϕ [τ ] = 1, and falsifies ϕ when ϕ [τ ] = 0.

Otherwise, a formula, and substitution of formulas for vari-
ables, is defined in the standard way for propositional logic
(cf. [50]). A formula F entails another formula G (written
F |= G) when every assignment to vars(F ) ∪ vars(G) sat-
isfying F also satisfies G. Formulas F and G are logically
equivalent (written F ≡ G) when they entail one another.
Quantified Boolean formulas. A quantified Boolean for-
mula (QBF)Q of alternation depth d is a formula of the form
P · F , where P := ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1 is called the
quantifier prefix and F is a CNF called the matrix. The Xi ,
Ui are pairwise-disjoint sets of Boolean variables called the
blocks of Q .

The sets vars∃(Q) :=
⋃d+1

i=1 Xi and vars∀(Q) :=
⋃d

i=1Ui are
referred to as the existential variables and universal variables
of Q , respectively, and their union vars(Q) as the variables
of Q . Given two variables z, z ′ in vars(Q), we say that z
is left of z ′ (written z <P z ′) when z belongs to a block
quantified before that of z ′. We deal only with closed QBFs,
i.e. those for which vars(F ) ⊆ vars(Q). The restriction of Q
by an assignment τ is Q [τ ] := P [τ ] · F [τ ], where P [τ ] is
obtained from P by deleting each variable in vars(τ ) and any
redundant quantifiers.

A set of QBFs has bounded alternation if each has alterna-
tion depth at most d , for some constant d .
QBF resolution proof systems.Wework with refutational
QBF proof systems, i.e. systems proving the falsity of a given
QBF. We call a refutational QBF proof system P sound when
there is no P-refutation of a true QBF, and complete when ev-
ery false QBF has a P-refutation. Given two refutational QBF
proof systems P and Q , we say that P p-simulates Q (written
Q ≤p P) when there exists a polynomial-time computable
translation mapping Q-refutations into P-refutations, while
preserving the refuted QBF [25]. We say that P and Q are
p-equivalent (written P ≡p Q) when they p-simulate one
another.
QU-Resolution (QU-Res) is the QBF analogue of proposi-

tional resolution [17, 47], defined as follows.

Definition 2.1 (QU-Res [28, 34]). AQU-Res derivation from
a QBF P · F is a sequence π := c1, . . . , cs of clauses in which
each ci is derived by one of the following rules:

• Axiom: ci is a clause in the matrix F ;
• Resolution: ci = a ∨ b, where cr = a ∨ z and cs = b ∨ z
for some r , s < i and some variable z.

• Weakening: ci = cr ∨ b for some r < i and clause b.
• Universal reduction: ci = cr [µ] for some r < i and some
universal assignment µ with vars∃(cr ) <P vars(µ).2

The size of π is |π | = s , and π is a refutation when cs = ⊥.
The axiom, resolution and weakening rules together are
2Some definitions of QU-Res disallow deriving tautological clauses [34].
The definition of universal reduction chosen here eliminates this restriction.

propositionally implicationally complete; that is, if F |= c , then
there exists a derivation of c from F . The refutational QBF
proof system QUNP- Res allows any such correct propositional
implication to be derived in a single step, eliminating all
hardness due to propositional resolution.3

Definition 2.2 (QUNP- Res [13]). QUNP- Res is defined as for
QU-Res, except that the resolution and weakening rules are
replaced by the following rule:

• Σ1-rule:
∧i−1

j=1 c j |= ci .

3 Countermodels as decision lists
A countermodel witnesses the falsity of a QBF. In the lit-
erature, countermodels are usually defined in one of two
equivalent ways (under various names): either as a collec-
tion of functions, one for each universal variable (called here
distributed countermodel), or as a single function (unified
countermodel). In this section, we recall the definitions of
distributed and unified countermodels. We show that dis-
tributed countermodels represented by term decision lists are
unsuitable for characterising hardness in QUNP- Res (Subsec-
tion 3.1) and propose a model for multi-output term decision
lists which serves as a natural representation for unified
countermodels (Subsection 3.2).

3.1 Distributed countermodels
A distributed countermodel defines a set of formulas which,
when substituted for the universal variables, leaves the ma-
trix unsatisfiable. In order to respect the variable dependen-
cies imposed by the order of quantification, each function
must depend only on the preceding existential variables.4

Definition 3.1 (distributed countermodel). Let Q be a QBF
with universal variables u1, . . . ,um , and let Di denote the
union of the existential blocks preceding ui in the prefix. A
distributed countermodel for Q is a collection of functions
{ fi }i ∈[m] of the form fi : ⟨Di ⟩ → {0, 1}, such that the sub-
stitution of formula representations of f1, . . . , fm for the
universal variables u1, . . . ,um in F yields an unsatisfiable
formula.

We illustrate this concept with the equality formulas,
which we will use as a running example.

Definition 3.2 (equality [6]). The nth equality formula is

QEQ
n := ∃x1 · · · xn∀u1 · · ·un∃z1 · · · zn · (z1 ∨ · · · ∨ zn) ∧

n∧
i=1

(
(xi ∨ ui ∨ zi ) ∧ (xi ∨ ui ∨ zi )

)
.

3Note that proofs in QUNP- Res cannot necessarily be checked in polynomial
time, henceQUNP- Res is not a proof system in the sense of [25], but conforms
to our definition of proof system above (cf. also [14] for a formal definition
of oracle proof systems).
4Preceding universals can also be included as dependencies (cf. [7]), pro-
ducing a potentially stronger model.
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Example 3.3. The nth equality formula has the unique dis-
tributed countermodel { fi }i ∈[n], where fi is the function
⟨{x1, . . . ,xn}⟩ → {0, 1}mappingτ to 0 if, and only if,τ (xi ) =
0. Here, each fi is represented by the atomic formula xi . It is
easy to see that substituting each ui for xi in the matrix of
QEQ
n yields an unsatisfiable formula. ■

Particularly in the context of strategy extraction, whereby
one translates QBF refutations into countermodels, it is quite
natural to represent a distributed countermodel as a set of
term decision lists, one for each individual function [7]. Let
us recall the traditional definition of a term decision list.

Definition 3.4 (decision list [46]). Given a setX of variables,
a decision list is a sequence of pairs L := (ε1,b1), . . . , (εs ,bs )
where

• the εi are terms with vars(εi ) ⊆ X and
∨s

i=1 εi ≡ ⊤,
• the bi are Boolean constants, i.e. 0 or 1.

L computes the function ⟨X ⟩ → {0, 1} that maps τ to bi ,
where i is the least natural number for which τ satisfies εi .

As far as characterisingQU-Res hardness is concerned, the
problem with this computation model – distributed counter-
models represented as decision lists – is that it is too strong,
even for bounded alternation depth. For example, the dis-
tributed countermodel { fi }i ∈[n] from Example 3.3 can be
computed by n constant-size decision lists (xi ,ui ), (xi ,ui ),
but the equality formulas require exponential-size QUNP- Res
refutations [6].

3.2 Unified countermodels
A unified countermodel is a single function which simulta-
neously represents the individual functions of a distributed
countermodel. Formally, there are two differences. First, the
output of the function is not a {0, 1} value, but a total as-
signment to the universal variables, giving a {0, 1} value for
each universal variable. Secondly, the prefix dependencies,
which are implicit in the function signatures of a distributed
countermodel, must be explicitly enforced.

Definition 3.5 (unified countermodel). Let Q := P · F be
a QBF of alternation depth d . A unified countermodel for Q
is a function f : ⟨vars∃(Q)⟩ → ⟨vars∀(Q)⟩ satisfying two
conditions:

(a) for each τ ∈ dom(f ), τ ∧ f (τ ) falsifies F ;
(b) for each τ ,σ ∈ dom(f ) and each i ∈ [d], if τ ,σ agree

on the first i existential blocks, then f (τ ), f (σ ) agree
on the first i universal blocks.

Example 3.6. The nth equality formula has the unique uni-
fied countermodel fEQ := ⟨(x1, . . . ,xn)⟩ → ⟨{u1, . . . ,un}⟩
where fEQ (τ ) : {u1, . . . ,un} → {0, 1} is the assignment
mapping each ui to τ (xi ). It is easy to see that fEQ is a single-
function representation of the distributed countermodel from
Example 3.3, and readily verified that conditions (a) and (b)
of Definition 3.5 are satisfied. ■

In order to represent a unified countermodel as a decision
list, we specify a new format to allow simultaneous output
for multiple Boolean variables. This is achieved in the most
natural way, specifying a term over the universal variables
which represents the desired output assignment.

Definition 3.7 (multi-output decision list). Given sets X
andU of Boolean variables, a multi-output term decision list
is a sequence of pairs L := (ε1, µ1), . . . , (εs , µs ) where

• the εi are terms with vars(εi ) ⊆ X and
∨s

i=1 εi ≡ ⊤,
• the µi are terms with vars(µi ) = U .

L computes the function ⟨X ⟩ → ⟨U ⟩ that maps τ to µi , where
i is the least natural number for which τ satisfies εi .

We refer to a multi-output term decision list computing
a unified countermodel for a QBF Q as a unified decision
list (UDL) for Q . Without ambiguity, we will use the same
symbol (e.g. L) to represent both the UDL and its computed
function.
Note that the insistence on a single function suitably re-

duces the strength of the computational model, in terms of
representation size. For example, UDLs for the equality for-
mulas must have exponential size, matching the exponential-
size QUNP- Res refutations. This is due to the fact that the
range of the unique unified countermodel, which is the com-
plete set of universal assignments, has cardinality 2n . The
minimal range cardinality of a unified countermodel is an
obvious lower bound to the size of a UDL.

4 Characterising hardness in QU-Res
In this section, we demonstrate that UDLs have exactly the
right strength to characterise QUNP- Res refutation size on
bounded alternation QBFs. For this, we cast UDLs as a refu-
tational QBF proof system.

Definition 4.1 (UDL). A UDL-refutation of a QBF Q is a
UDL L := (ε1, µ1), . . . , (εs , µs ) for Q . The size of L is |L| := s .

Our central result is the following.

Theorem 4.2. On bounded-alternation QBFs,

QUNP- Res ≡p UDL .

The two individual p-simulations are shown in Subsec-
tion 4.1 (Corollary 4.6) and Subsection 4.2 (Corollary 4.11). In
Subsection 4.3 we demonstrate that the equivalence cannot
be extended to unbounded alternation depth.
(It is worth noting, however, that the equivalence does

extend to polylog alternation depth and quasi-polynomial
size proofs. That is, for a QBF family {Qn}n∈N where Qn
has nO (1) variables and alternation depth (logn)O (1), there
are QUNP- Res refutations of size exp((logn)O (1)) if and only if
there are UDLs of size exp((logn)O (1)). More succinctly, on
polylog-alternation QBFs,

QUNP- Res ≡qp UDL .
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Here, ≡qp is the natural generalisation of simulation from
polynomial to quasi-polynomial i.e. exp((logn)O (1)) factors.)
In Subsection 4.4 we characterise bounded-alternation

hardness in QU-Res, insofar as superpolynomial QU-Res
lower bounds come either from large UDLs or from an em-
bedded propositional resolution lower bound. Finally, in Sub-
section 4.5, we discuss how UDL lower bounds encompass
both the strategy extraction [7, 8] and size-cost techniques
for QU-Res [6].

4.1 From QUNP-Res to unified decision lists
In this subsection, we show an efficient transformation from
QUNP- Res refutations into unified decision lists. The transfor-
mation is a two-step process.
In the first step, we transform the refutation into a col-

lection of multi-output term decision lists, each of which
computes the countermodel for just a single universal block,
based on assignments to all previous blocks. This consti-
tutes a modification of the strategy extraction procedure
from [2, 8], which works per universal variable, rather than
per universal block.

In the second step,we transform the collection into a single
unified decision list. This involves taking a kind of ‘direct
product’ of multi-output term decision lists.

Definition 4.3 (direct product). Let X1, U1, X2 and U2 be
pairwise-disjoint Boolean variable sets. Given two multi-
output term decision lists L := (ε1, µ1), . . . , (εs , µs ) andM :=
(δ1,ν1), . . . , (δt ,νt ), where
vars(εi ) ⊆ X1 and vars(µi ) = U1 , for i ∈ [s] ,
vars(δ j ) ⊆ X1 ∪U1 ∪ X2 and vars(νj ) = U2 , for j ∈ [t] ,

the direct product L ×M is the decision list

(ε1 ∧ δ1 [µ1] , µ1 ∧ ν1), . . . , (εs ∧ δ1 [µs ] , µs ∧ ν1) ,
...

(ε1 ∧ δt [µ1] , µ1 ∧ νt ), . . . , (εs ∧ δt [µs ] , µs ∧ νt ) .

The direct product L×M computes a function based onM ,
which first queries L for the assignment toU1. Informally, the
U1 variables inM are substituted for the function computed
by L, while U1 is moved from the domain to the codomain.
This is stated formally as follows.

Proposition 4.4. Let X1,U1, X2 andU2 be pairwise-disjoint
Boolean variable sets, and let L andM be multi-output decision
lists computing f : ⟨X1⟩ → ⟨U1⟩ and д : ⟨X1 ∪U1 ∪ X2⟩ →

⟨U2⟩. Then L ×M computes the function

f × д : ⟨X1 ∪ X2⟩ → ⟨U1 ∪U2⟩

τ 7→ f (τ↾X1 ) ∧ д(τ ∧ f (τ↾X1 )) .

We note that the size of a direct product is the product of
the sizes of the original decision lists.

Theorem 4.5. AQUNP- Res refutation π of a QBFQ of alterna-
tion depth d can be transformed into a UDL t(π ) for Q , where

|t(π )| ≤ |π |d . The transformation t is computable in time
O(|π |d ).

Proof sketch. Let π := c1, . . . , cs be a QUNP- Res refutation of
a QBF Q := ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1 · F . We can assume
without loss of generality that each universal reduction step
in π is due to a total assignment to a universal blockUi .
For each i ∈ [d] and j ∈ [s + 1], we define a collection of

multi-output term decision lists as follows: Ls+1i := (⊤,αi ),
where αi is some fixed assignment to Ui ; for each j ∈ [s],
Lji := (c j , µ),L

j+1
i if c j was derived by universal reduction

due to µ ∈ ⟨Ui ⟩, and Lji := Lj+1i otherwise. By backwards
induction on j ∈ [s + 1], applying Proposition 4.4, it is shown
that

Lj := Lj1 × (Lj2 × · · · × (Ljd−1 × Ljd ) · · · )

is a UDL for P · F ∧
∧j−1

k=1 ck . The theorem follows, as L1 is a
UDL for Q with |L1 | ≤ |π |d , constructible in time O(|π |d ). □

Corollary 4.6. QUNP- Res ≤p UDL on bounded alternation.

4.2 From unified decision lists to QUNP-Res
In this subsection, we show an efficient translation from
UDLs back into QUNP- Res refutations. The transformation
uses a notion of restriction for UDLs.

Definition 4.7 (restriction of a UDL). The restriction of a
multi-output term decision listL := (ε1, µ1), . . . , (εs , µs ) by an
assignment α is L [α] := (ε1 [α] , µ1 [α]), . . . , (εs [α] , µs [α]).

The entailment sequence. We summarise our method as
follows: we transform a UDL L into a sequence of clauses
E(L). Each clause in the sequence is entailed by the QBF and
the universal reduction of the previous clauses in the sequence.
The final clause is fully universal, yielding a refutation. We
refer to the sequence E(L) as the entailment sequence for L.

First, some notation. Given a UDL L := (ε1, µ1), . . . , (εs , µs )
for a QBF Q and block Z of Q , the Z -component of (εi , µi )
is (εi ∧ µi )↾Z . Given a clause b and a sequence of clauses
π := c1, . . . , cs , we define b ⊗ π := b ∨ c1, . . . ,b ∨ cs .

Also, we note the following: without loss of generality we
can assume that rightmost existential variables (on which
no universal variable can depend) do not appear in a UDL.
That is, given a QBF with prefix ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1,
the Xd+1-components in any UDL forQ can be deleted while
preserving the computed countermodel. This is an easy con-
sequence of condition (b) in the definition of unified coun-
termodel (Definition 3.5).

Definition 4.8 (entailment sequence). Given a UDL L :=
(ε1, µ1), . . . , (εs , µs ) for a QBFQ , the entailment sequence E(L)
is defined recursively on the alternation depth d of Q .

• if d = 1, E(L) := ε1 ∨ µ1, . . . , εs ∨ µs ,
• if d ≥ 2, for each i ∈ [s] define Li as the list obtained
from L by replacing the first i − 1 existential terms by
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their X1 components, and setting all U1 components
to µi↾U1 . We define E(L) as the sequence π1, . . . ,πs ,
where πi := (εi↾X1 ∨ µi↾U1 ) ⊗ E(Li

[
εi↾X1 ∧ µi↾U1

]
).

The size of E(L), denoted |E(L)|, is the number of clauses in
the sequence.

The intuition behind the construction of the entailment
sequence, in particular when the alternation depth exceeds
1, is not obvious. We will elaborate upon this later. For now,
the important property is the fulfilment of the next lemma.

Since a UDL always outputs a total universal assignment
(each universal term µi satisfies vars(µi ) = vars∀(Q)), each
clause ci in E(L) contains exactly one literal in each universal
variable. So there is an obvious maximal universal reduction
for ci . This is the assignment

νi : {u ∈ vars∀(Q) : vars∃(ci ) <P u} → {0, 1} .

that maps u to 1 if, and only if, u is in ci . We use the notation
red(ci ) := ci [νi ].

Lemma 4.9. Let L be a unified decision list for a QBF Q :=
P · F , and let E(L) = c1, . . . , cr . Then cr is fully universal, and,
for each i ∈ [r ], F ∧

∧i−1
j=1 red(c j ) |= ci .

We defer the proof of this lemma to the end of the subsection.
The entailment of each clause by the universal reduction of
its predecessors (in conjunction with the matrix F ) gives rise
to a straightforward QUNP- Res refutation.

Theorem 4.10. A UDL L for a QBF Q of alternation depth d
can be transformed into aQUNP- Res refutation t(L) forQ , where
|t(L)| ≤ O(|L|d ). The transformation t is computable in time
O(|L|d ).

Proof. Let E(L) = c1, . . . , cr . By Lemma 4.9, the sequence π ,
consisting of the clauses of the matrix of Q followed by

c1, red(c1), . . . , cr , red(cr ) ,

is a QUNP- Res refutation of Q . By a simple induction on alter-
nation depth d , one verifies that r ≤ |L|d , and that π can be
constructed in time O(r ). □

Corollary 4.11. UDL ≤p QUNP- Res on bounded alternation.

We exemplify the construction of the entailment sequence
on a simple QBF.

Example 4.12. We will construct an entailment sequence
for the QBF with prefix ∃x1∀u1∃z1∃x2∀u2∃z2 and matrix

x1u1z1 ∧ x1u1z1 ∧ x2u2z2 ∧ x2u2z2 ∧ z1z2 .

This QBF isQ INT
2 , the second instance of the interleaved equal-

ity family, which we will meet in the following subsection.
We write the blocks ofQ INT

2 as follows:X1 := {x1},U1 := {u1},
X2 := {z1,x2}, U2 := {u2}, and X3 := {z2}. Note that the al-
ternation depth of Q INT

2 is 2.
Similar to the original equality formulas, a unified coun-

termodel for this QBF sets eachui equal to the corresponding

xi , with the values of the zi essentially ignored. This coun-
termodel is computed by the following UDL L:

(x1 ∧ x2,u1 ∧u2), (x1 ∧ x2,u1 ∧u2), (x2,u1 ∧u2), (⊤,u1 ∧u2).

We now construct the entailment sequence E(L). First we
obtain the lists L1,L2,L3,L4 and their appropriate restric-
tions. These restrictions are easily transformed (they have
alternation depth 1), and pieced together to obtain the com-
plete entailment sequence.
L1 is obtained from L by replacing each U1-component

by the U1-component of the first line, namely the term u1.
So the restriction of L1 by the X1- and U1-components of
the first line (i.e. x1 ∧ u1) is (x2,u2), (x2,u2), (x2,u2), (⊤,u2).
Since the final two lines are redundant, this simplifies to
L1 [x1 ∧ u1] = (x2,u2), (⊤,u2). Hence we have

E(L1 [x1 ∧ u1]) = x2u2,u2 ,
π1 = x1u1 ⊗ E(L1 [x1 ∧ u1])
= x1u1x2u2,x1u1u2 .

L2 is obtained from L by replacing the first existential term
by its X1-component x1, then replacing eachU1-component
by theU1-component of the second line, namely the term u1:

(x1,u1 ∧ u2), (x1 ∧ x2,u1 ∧ u2), (x2,u1 ∧ u2), (⊤,u1 ∧ u2) .

Restriction of L2 by the X1- and U1-components of the sec-
ond line (i.e. x1 ∧ u1) yields (⊤,u2), (x2,u2), (x2,u2), (⊤,u2).
Every line except the first is redundant, so this simplifies to
L2 [x1 ∧ u1] = (⊤,u2). In this case we get

E(L2 [x1 ∧ u1]) = u2 ,
π2 = x1u1 ⊗ E(L2 [x1 ∧ u1])
= x1u1u2 .

Continuing in this way for L3 and L4, one verifies that

L3 [u1] = L4 [u1] = (x1,u2), (x2,u2), (⊤,u2) ,
π3 = π4 = x1u1u2,u1x2u2,u1u2 .

Piecing together the πi , the entailment sequence for L is

E(L) = π1,π2,π3,π4
= x1u1x2u2,x1u1u2,x1u1u2,x1u1u2,u1x2u2,u1u2,

x1u1u2,u1x2u2,u1u2 . ■

Intuition. In the simplest case, with alternation depthd = 1,
the entailment sequence is composedmerely of the negations
of the combined existential and universal terms in the UDL
(i.e. εi ∧ µi ). The universal reduction of each clause is εi ,
the negation of the corresponding existential term. In this
case, the fact that each clause is entailed by the universal
reductions of its predecessors in conjunction with the matrix
(Lemma 4.9) follows straightforwardly from the fact that the
UDL correctly computes a countermodel.
This forms the base case for a general argument by in-

duction, when the alternation depth exceeds 1. In the en-
tailment sequence definition, the lists Li are defined so that
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Li
[
εi↾X1 ∧ µi↾U1

]
is a UDL for the QBF(

P · F ∧

i−1∧
k

ck↾X1

) [
εi↾X1 ∧ µi↾U1

]
. (1)

Note that each of the negated X1-components ck↾X1 is the
universal reduction of a clause already appearing in E(L)
before πi . This is not obvious; it relies on the fact that the
final clause of each E(Lk

[
εk↾X1 ∧ µk↾U1

]
) is fully universal.

The addition of these negated X1-components to the ma-
trix is the reason why the first i−1 existential terms in Li are
replaced by their X1 components. Assignments satisfying
the i th term are guaranteed to falsify one of these clauses.
One might suspect that the first i − 1 lines could be removed
altogether, somewhat simplifying the definition of E(L). Un-
fortunately, it is not clear that such a construction would
produce a UDL for the QBF in (1). The assignments satisfying
the removed lines are distributed arbitrarily across the re-
maining ones, so that the computed function may not satisfy
the proper dependencies (condition (b) of Definition 3.5).
Note that the U1-components in Li are set uniformly to

µi↾U1 merely so that restriction by that assignment deletes
them all.

The formal proof. We conclude this subsection with the
formal proof of Lemma 4.9.

Proof of Lemma 4.9. Let L := (ε1, µ1), . . . , (εs , µs ), and let the
prefix of Q be ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1. Without loss of
generality, we can assume that the Xd+1-components of L
are all empty, and that the final existential term is ⊤. We
proceed by induction on the alternation depth d of Q . Let
i ∈ [r ].

Base case d = 1. In this case r = s , ci = εi ∨ µi , and
red(ci ) = εi . Let τ be a total assignment falsifying εi ∨ µi . If
the existential part τ∃ satisfies

∨i−1
k=1 εk , then it falsifies

i−1∧
k=1

εk =
i−1∧
k=1

red(ck ) .

Otherwise, since τ∃ satisfies εi , and the universal part τ∀ is
equal to µi , τ falsifies F by definition of countermodel. Since
εs = ⊤, cs = ⊥ ∧ µs is fully universal.

Inductive step d ≥ 2. For each j ∈ [s], we use the alias
α j := εj↾X1 ∧ µ j↾U1 , and claim that Lj

[
α j

]
is a UDL for

Q j := P
[
α j

]
·

(
F ∧

j−1∧
k=1

εk↾X1

) [
α j

]
,

which is a QBF of alternation depth d − 1. Briefly deferring
the proof of the claim, we continue with the proof.
Let E(Lp

[
αp

]
) = b1, . . . ,bsp , and let p ∈ [s] and q ∈ [r ]

be natural numbers for which ci = εp↾X1 ∨ µp↾U1 ∨ bq .
By the inductive hypothesis,(

F ∧

p−1∧
k=1

εk↾X1

) [
αp

]
∧

q−1∧
k=1

red(bk ) |= bq ,

from which it follows that

F ∧

p−1∧
k=1

εk↾X1 ∧

q−1∧
k=1

red(εp↾X1 ∨ µp↾U1 ∨ bk ) (2)

entails εp↾X1 ∨ µp↾U1 ∨ bq = ci .
We show that each conjunct in (2) besides F is red(c) for

some c appearing in E(L) before ci . For each k ∈ [q − 1],
the clause εp↾X1 ∨ µp↾U1 ∨ bk appears in E(L) before ci by
definition. For each k ∈ [p − 1],

εk↾X1 = red(εk↾X1 ∨ µk↾U1 ∨ fk )

where fk is the final clause of E(Lk [αk ]), which is fully
universal by the inductive hypothesis, and εk↾X1∨µk↾U1∨ fk
appears in L before ci .
Since εs = ⊤, cr = ⊥ ∨ µs↾U1 ∨ fs is fully universal. This

completes the inductive step.
It remains to prove the claim. Fixing j ∈ [s], we show that

Lj
[
α j

]
computes a unified countermodel forQ j by checking

both conditions in Definition 3.5.
Condition (a). Let τ ∈ ⟨vars∃(Q j )⟩, and let

σ := εj ∧ τ↾vars(τ )\vars(εj ) .

If τ falsifies
∧j−1

k=1 εj↾X1

[
α j

]
, then τ ∧ Lj

[
α j

]
(τ ) already

falsifies the matrix of Q j , so we assume otherwise. Then
L(σ ) = µ j , and since εj↾X1∧τ agreeswithσ onX1,L(εj↾X1∧τ )
agrees with µ j onU1. It follows that

L(εj↾X1 ∧ τ ) = µ j↾U1 ∧ Lj
[
α j

]
(τ ) ,

whereby α j ∧τ ∧Lj
[
α j

]
(τ ) falsifies F , by definition of coun-

termodel. Hence τ ∧Lj
[
α j

]
(τ ) falsifies F

[
α j

]
, and therefore

falsifies the matrix of Q j .
Condition (b). Let τ ,σ ∈ ⟨vars∃(Q j )⟩, and suppose that τ

and σ agree on the first r existential blocks of Q j for some
r ∈ [d − 1]. Since τ and σ agree on X1 in particular, if either
of them satisfies

∧j−1
k=1 εk↾X1

[
α j

]
, then we have

Lj
[
α j

]
(τ ) = Lj

[
α j

]
(σ )

satisfying the condition trivially, so we assume otherwise.
Notice that Lj

[
α j

]
(τ ) is L(εj↾X1 ∧τ )with theU1-component

removed, and likewise for σ . Since εj↾X1 ∧ τ and εj↾X1 ∧ σ
agree on the first r + 1 existential blocks of Q , L(εj↾X1 ∧ τ )
and L(εj↾X1 ∧σ ) agree on the first r +1 universal blocks ofQ ,
thus Lj

[
α j

]
(τ ) and Lj

[
α j

]
(σ ) agree on the first r universal

blocks of Q j . □

4.3 Unbounded alternation
Theorem 4.2 does not extend to QBFs in general; UDLs prove
to be too weak for QBFs of unbounded alternation depth. To
show this, we consider a version of the equality formulas
with an unbounded, ‘interleaved’ prefix.

Definition 4.13 (interleaved equality). The nth interleaved
equality formula Q INT

n is obtained from QEQ
n by replacing the

prefix with ∃x1∀u1∃z1 · · · ∃xn∀un∃zn .
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{z1, . . . , zn}{xn ,un , zn} {xn ,un , zn}

{z1, . . . , zn−1,xn ,un} {z1, . . . , zn−1,xn ,un}

{z1, . . . , zn−1,xn} {z1, . . . , zn−1,xn}

{z1, . . . , zn−1}{xn−1,un−1, zn−1} {xn−1,un−1, zn−1}

Figure 1. First portion of a QU-Res refutation of Q INT
n .

Recall that the countermodel range for the original equal-
ity formulas is the complete set of universal assignments. In
fact, this remains true under the interleaved prefix as well.

Proposition 4.14. If f is a unified countermodel for Q INT
n ,

then rng(f ) = ⟨{u1, . . . ,un}⟩.

As a consequence, the interleaved equality family requires
UDLs of exponential size. However, they also admit short
QU-Res refutations. As shown in Figure 1, Q INT

n can be re-
duced toQ INT

n−1 in a constant-size derivation, thus proving the
following result.

Proposition 4.15. The interleaved equality formulas admit
linear-size QU-Res refutations.

Thus distributed decision lists are unsuitable for charac-
terising QUNP- Res refutation size when the alternation depth
is unbounded.

Corollary 4.16. QUNP- Res ≰p UDL on unbounded alterna-
tion.

4.4 Characterisation of hardness for QU-Res
If we consider only families of bounded alternation QBFs,
given the equivalence between UDLs and the oracle system
QUNP- Res (Theorem 4.2), there can be only two reasons for
hardness in the classical system QU-Res: either

(a) the family requires large UDLs, or
(b) the family harbours propositional resolution hardness.

The main question here is regarding case (b), and what it
really means for a QBF family to ‘harbour’ propositional
hardness. In fact, we can give a precise answer: for every
family of small UDLs, some steps in the entailment sequences
are hard for resolution. This gives rise to a hard sequence of
unsatisfiable CNFs for each small family of UDLs.
The result, stated in the following theorem, is a com-

plete characterisation of QU-Res hardness (on bounded al-
ternation), analogous to the hardness characterisations for
Frege+∀red and EF+∀red from [16].

Theorem 4.17. Given a bounded-alternation QBF family
{Pn · Fn}n∈N requiring superpolynomial-size QU-Res refu-
tations, either

(a) {P · F }n∈N requires superpolynomial-size UDLs, or

(b) for each family of polynomial-size UDLs {Ln}n∈N for
Pn · Fn with entailment sequences E(Ln) = cn1 , . . . , c

n
rn ,

there exist natural numbers in ∈ [rn] such that the CNF
family {(

Fn ∧

in−1∧
k=1

red(cnk )

) [
cnin

]}
n∈N

(3)

requires superpolynomial-size resolution refutations.

Proof sketch. Weprove the contrapositive statement. Suppose
that neither condition (a) nor condition (b) holds. Then there
exists some polynomial-size family of UDLs {Ln}n∈N with
E(Ln) = c

n
1 , . . . , c

n
rn , such that for all in ∈ [rn] the CNFs in (3)

have polynomial-size resolution refutations. These resolu-
tion refutations are easily transformed into polynomial-size
resolution derivations of cnin from Fn ∧

∧in−1
k=1 red(cnk ).

Since the alternation depth is bounded above by a constant,
|E(Ln)| is bounded above by a polynomial. By Lemma 4.9,
polynomial-size QU-Res refutations are obtained by succes-
sively deriving and reducing the clauses of E(Ln). □

4.5 Unification of lower-bound techniques
The two main existing lower-bound techniques for resolution-
based QBF proof systems are strategy extraction [7, 8] and
size-cost-capacity [6]. As far as proof-size lower bounds for
bounded-alternation QBFs are concerned, our hardness char-
acterisation (Theorem 4.17) encompasses both.
Indeed, the exact lower bounds for all known bounded-

alternation hardness results (all of which have alternation
depth 1) can be shown as the result of a UDL lower bound.
For QBFswith a single universal block, we have the following
immediate corollary to Theorems 4.5 and 4.10.

Corollary 4.18. Let {Qn}n∈N be a QBF family of alternation
depth 1. Then the following are equivalent statements:

• {Qn}n∈N admits UDLs of size O(s(n));
• {Qn}n∈N admits QUNP- Res refutations of size O(s(n)).

Lower bounds by strategy extraction. In [7, 8], a general
method was exhibited for forming a QBF Qf whose unique
countermodel is a given Boolean function f . Proof-size lower
bounds were shown via strategy extraction, instantiating the
function f by PARITY [8, Thm. 14], MAJORITY [7, Cor. 5.7]
and SIPSERd [7, Cor. 5.12], and importing known hardness
results for these functions from circuit complexity [31, 45,
49]. In all three cases, the resulting QBF family has a single
universal variable, and the imported circuit lower bound
holds also for UDLs. As such, all three lower bounds for
QUNP- Res follow from Corollary 4.18.

Lower bounds by size-cost-capacity. A largely orthogo-
nal technique was proposed in [6]. Here it was shown that
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the so-called cost of a QBF is an absolute lower bound on its
QUNP- Res refutation size.5

In fact, for alternation depth 1, the cost of a QBF is equal
to the minimal cardinality of countermodel range, which in
turn is a trivial lower bound on UDL size. As such, the lower
bounds for equality [6, Thm. 3.5] and random QBFs [6, Thm.
7.9], both of which have alternation depth 1, follow from
Corollary 4.18 once the exponential countermodel-range
lower bound is established.

5 Equivalence of QU-Res and Q-Res on
bounded alternation

The natural follow-up question, prompted by our work in
Section 4, is whether our results also hold for Q-Resolution
(QU-Res without universal pivots). In particular, does the
UDL characterisation (Theorem 4.2) continue to hold? In
this section, we show that the answer is yes. An immediate
corollary is that QNP- Res and QUNP- Res are p-equivalent on
bounded-alternation QBFs.

Perhaps the most obvious approach would be to show that
our transformations between QUNP- Res and UDL go through
without resolution on universal pivots. However, we choose
another approach. We show directly that QNP- Res is equiva-
lent toQUNP- Res, and therefore toUDL. This approach throws
up a further interesting result, namely that the classical sys-
tems Q-Res and QU-Res are also p-equivalent on bounded
alternation.
Definitions of Q-Res and QNP-Res. Q-Res is identical to
QU-Res, except that resolution pivots must be existential
variables [34].

For the oracle version of Q-Res, we want to specify a rule
which allows a propositional derivation to be collapsed into
a single inference. This is complicated by the fact thatQ-Res
is not propositionally implicationally complete; that is, from
F |= c it does not follow that c can be derived from F using
the axiom, ∃-resolution and weakening rules. As such we do
not reuse the Σ1-rule from QUNP- Res, but rather define a new
version capturing the insistence on existential pivots.

Definition 5.1 (QNP- Res). QNP- Res is defined as Q-Res, ex-
cept that the resolution and weakening rules are replaced by
the following rule:

• Σ∃
1 -rule: For some G ⊆ {c1, . . . , ci−1},

(a)
∧

b ∈G b∃ |= c∃i , and
(b) for each b ∈ G, b∀ is a subclause of c∀i ,

where c∃ and c∀ denote the existential and universal sub-
clauses of any clause c .

Equivalences on bounded alternation depth. Both of
the p-equivalences that we want to show can be proved
constructively, and the essential observation is the following:
5 This is actually shown in the proof of Theorem 4.5. The cost of Q is equal
to the maximum, over the individual lists Li , of the minimal list size (cf. [6]).

all of the universal resolutions from a single block can be
removed from a QU-Res refutation in quadratic time.

It is also important that the number of universal reduction
steps grows only quadratically during the transformation.
We denote the number of universal reduction steps in a
refutation π by |π |∀.

Lemma 5.2. Let π be a QU-Res refutation of a QBF Q of
alternation depth d . For each i ∈ [d], π can be transformed
into a refutation t(π ) ofQ with |t(π )| = O(|π |2) and |t(π )|∀ =
O(|π |2∀) in which there are no resolutions on the i th universal
block. The transformation is computable in time O(|π |2).

Proof. Let π = c1, . . . , cs be a QU-Res refutation of the QBF
∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1 · F and let i ∈ [d]. We describe
the transformation t recursively on the number r of Ui re-
ductions in π .

If r = 0, we obtain t(π ) from π by removing allUi resolu-
tions in the following way: we delete all clauses containing
a positiveUi literal, and add the empty clause at the end of
the refutation. The negativeUi literals, which are no longer
resolved away, accumulate through the refutation, and are re-
moved at the conclusion by the addition of a single universal
reduction step (hence the addition of the empty clause).
If r ≥ 1, we find the first Ui reduction step c j appearing

in π , and consider its subderivation πj . Suppose that the
antecedent of c j is c j ∨ R. Now we remove all Ui resolutions
from πj , obtaining a new sequence π ′

j , as follows: for each
Ui literal in R, we remove all clauses containing the comple-
mentary literal; for each variable in Ui not appearing in R,
we remove all clauses containing the positive literal. Once
again, allUi literals that are no longer resolved away accu-
mulate through the derivation, and are universally reduced
at the conclusion. Then we define t(π ) := π ′

j , t(π
′), where

π ′ is identical to π , except that c j is introduced as an axiom,
rather than derived by universal reduction.
It is clear that |t(π )| = O(|π |2) and |t(π )|∀ = O(|π |2∀),

and that t can be computed in time O(|π |2). It remains to
prove that t(π ) is a valid QU-Res refutation of Q with no Ui
resolutions. We do this by induction on r .
The base case r = 0 is clear. For the inductive step r ≥ 1,

it is clear that π ′
j is a valid QU-Res derivation of c j with no

Ui resolutions. Since π ′ is a QU-Res refutation of P · F ∧ c j
with r −1Ui reductions, t(π ′) is a validQU-Res refutation of
P · F ∧ c j with noUi resolutions, by the inductive hypothesis.
The inductive step follows, as c j is the conclusion of π ′

j . □

Now we show the p-equivalence of the classical systems,
which is an easy consequence of Lemma 5.2.

Theorem 5.3. Q-Res ≡p QU-Res on bounded alternation.

Proof. Since QU-Res trivially p-simulates Q-Res, we need
only show the reverse simulation. By repeated application
of Lemma 5.2, QU-Res refutations π of QBFs of alternation
depth d can be transformed into Q-Res refutations of size



Hardness Characterisations and Size-Width for QBF LICS ’20, July 8–11, 2020, Saarbrücken, Germany

O(|π |2
d
) in timeO(|π |2d ). HenceQ-Res p-simulatesQU-Res

when d is bounded above by a constant. □

Next, we show the p-equivalence of the oracle systems.

Theorem 5.4. QNP- Res ≡p QUNP- Res on bounded alternation.

Proof. QUNP- Res trivially p-simulates QNP- Res, so we need
only show the reverse simulation. Let π be a QUNP- Res refu-
tation of a QBF Q of alternation depth d . We transform π

into a QNP- Res refutation t(π ) of size O(|π |2d ).
Since resolution is implicationally complete, whenever

the Σ1-rule is applied, the consequent can be derived by
resolution from the antecedents. Hence we can obtain a
QU-Res refutation π0 from π by replacing each entailment
step with a resolution derivation. Moreover, |π0 |∀ = |π |∀.
Next we remove the universal resolution steps from π0

by applying Lemma 5.2 for each i ∈ [d]. We obtain a Q-Res
refutation π1 with |π1 |∀ = O(|π |2

d

∀ ).
Finally, we transform π1 into a QNP- Res refutation t(π ) as

follows. Call a clause in π1 surplus if it is neither an axiom,
nor the conclusion, nor the antecedent of a reduction step.
We obtain t(π ) from π1 by deleting all surplus clauses.

To see that t(π ) is indeed a QNP- Res refutation, observe
that the removal of surplus clauses from the antecedents pre-
serves ∃-entailment steps (realised by the Σ∃

1 -rule), since sur-
plus clauses are already ∃-entailed by the preceding clauses.
As t(π ) uses only axioms, reduction steps, and antecedents
of reduction steps, its size is at most |Q |+2(|π1 |∀). Assuming
that |Q | ≤ |π |, we have |t(π )| = O(|π |2d ). □

As a corollary of Theorems 4.2 and 5.4, UDLs characterise
QNP- Res refutation size on bounded QBFs.

Corollary 5.5. QNP- Res ≡p UDL on bounded alternation.

Unbounded alternation depth. The equivalences in The-
orems 5.3 and 5.4 cannot be extended to QBFs in general.
The former case is ruled out by the fact that Q-Res does not
simulate QU-Res [28], the separation being shown by the
QBFs {KBKFn}n∈N introduced by Kleine Büning, Karpinski
and Flögel [34], which have unbounded alternation depth.
Indeed, Theorem 5.3 shows that any such separation must
be due to a QBF family with unbounded alternation.
The latter case is ruled out by the same QBFs. It is clear

that the exponentialQ-Res lower bound for KBKFn [9, 34] is
due to exponentially many universal reduction steps (see the
proof by size-cost in [6]), giving rise to an exponential lower
bound for QNP- Res. The existence of short (i.e. polynomial-
size)QUNP- Res refutations follows from the existence of short
QU-Res refutations. So QNP- Res does not simulate QUNP- Res
on unbounded alternation.

6 Size-width for QBF resolution
The seminal paper of Ben-Sasson and Wigderson [4] intro-
duced the celebrated size-width relations, equations which

show that short resolution refutations must also be narrow.
This powerful technique allows resolution size lower bounds
to be obtained via width lower bounds, the point being that
width lower bounds are often much easier to show.

Let us first recall the size-width relation for (general) res-
olution.6 The width of a clause is the number of literals it
contains, and the width of a resolution refutation is the max-
imal width of a clause in the sequence. The initial width of a
CNF is the maximal width amongst its clauses.

Theorem 6.1 ([4]). Let F be a CNF with n variables, letw(F )
denote the initial width of F , and let s(F ⊢ ⊥) and w(F ⊢ ⊥)

denote the minimal size and minimal width of a resolution
refutation of F . Then

s(F ⊢ ⊥) = exp
(
Ω

(
(w(F ⊢ ⊥) −w(F ))2

n

))
.

Size-width is arguably the main lower-bound technique
for resolution, and its applicability to QBFs has already been
investigated [11, 23]. Unfortunately, only negative results
were obtained, ruling out the exact relations of Ben-Sasson
and Wigderson for various width measures.
In this section, we use the connection to UDLs to show

the first positive results, and we apply our new size-width
relation to reprove some superpolynomial lower bounds.

6.1 A size-width relation for QUNP-Res
Previous work [11] considered two natural width measures
for QBF refutations:

(a) the standard notion of width, i.e. the maximal number
of literals appearing in a single clause;

(b) existential width, i.e. the maximal number of existential
literals appearing in a single clause.

We argue that the correct measure of width for aQUNP- Res refu-
tation is existential width with the axiom clauses not considered.
Thus, we define the existential width of aQUNP- Res refutation
as the maximal number of existential literals appearing in a
non-axiom clause.7 With this definition of existential width,
the following size-width relation holds.

Theorem 6.2. Let Q be a QBF of alternation depth d with n
existential variables, and let s(F ⊢ ⊥) and w∃(F ⊢ ⊥) denote
the minimal size and minimal existential width of a QUNP- Res
refutation of Q . Then

s(F ⊢ ⊥) = exp
(
Ω

(
(w∃(Q ⊢ ⊥))2

d3n logn

))
.

Before we proceed to prove Theorem 6.2, a couple of re-
marks are in order, by way of comparison with the original
relation of Ben-Sasson and Wigderson [4].

6There is a separate relation for tree-like resolution [4].
7With this definition, the width of an axiom clause c implicitly enters the
calculation of the width of a proof in case there is a universal reduction
step performed on c .



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan

The first notable difference is the absence of an initial
width term. This is essentially a by-product of ignoring the
width of axiom clauses. Moreover, it actually turns out to be
quite convenient, as we avoid the need for Tseitin transfor-
mations (cf. [4, 11]).
The second obvious difference is in the denominator of

the exponent. Here we inherit an extra logn factor (from the
transformation of Bshouty [19] which we come to shortly)
and a factor of d3, related to alternation depth. Hence our
relation works best when the alternation depth is bounded.

Proof of the QBF size-width relation. We prove Theo-
rem 6.2 via a transformation fromQUNP- Res to UDL and back.
A central step in the transformation is based on the follow-
ing Lemma of Bshouty [19]. It states a size-width relation
for (single-output) term decision list. Here, the width of a
decision list is the maximal width of a term in the list.

Lemma 6.3 ([19]). Let f : ⟨Z ⟩ → {0, 1} be a function, where
Z is a set of n Boolean variables. If f is computed by a decision
list of size s , then it is also computed by a decision list of width
O(

√
n logn log s).

However, UDLs are multi-output term decision lists, so
we need to generalise this result for multiple outputs. This is
actually quite straightforward. The proof in [19] is based on
manipulating the terms in the list, using a hybrid of decision
trees and decision lists, and a result of Blum [18]. However,
the argument does not depend anywhere on the codomain
of the computed function, and therefore goes through even
for multi-output term decision lists.
Thus, we obtain a corresponding result for UDLs. We

define the existential width of a UDL as the maximal width
of an existential term in the list.

Lemma 6.4. Let f be a unified countermodel for a QBF Q
with n existential variables. If f is computed by a UDL of
size s , then it is also computed by a UDL of existential width
O(

√
n logn log s).

We may now prove Theorem 6.2.

Proof. LetQ be aQBF of alternation depthd withn existential
variables, and let π be a shortest QUNP- Res refutation of Q ,
i.e. s(Q ⊢ ⊥) = |π |. By Theorem 4.5, π can be transformed
into a UDL L of size at most |π |d . By Lemma 6.4, L can be
transformed into a UDLM of existential width

w∃(M) = O

(√
n logn log(|π |d )

)
= O

(√
dn logn log |π |

)
.

Now, for any UDL, it is clear by construction that the
existential width of each clause in the entailment sequence
is at most the existential width of the UDL, multiplied by the
alternation depth. It follows that the QUNP- Res refutation ρ
of Q based on E(M) (i.e. t(M) as described in the proof of
Theorem 4.10) has existential width at most d ·w∃(M).

Therefore

w∃(Q ⊢ ⊥) = O
(
d ·

√
dn logn log |π |

)
,

and solving for |π | yields the theorem statement. □

6.2 QUNP-Res lower bounds by size-width
We illustrate the application of the QBF size-width relation
by reproving three superpolynomial QU-Res lower bounds
from the literature.8
A useful feature of our translation via UDLs is that UDL

width lower bounds imply QUNP- Res width lower bounds.
Indeed, it is readily verified that the translation in Theo-
rem 4.10 (from UDL to QUNP- Res) preserves existential width
when the alternation depth is 1.

Proposition 6.5. A UDL for a QBF Q of alternation depth 1
can be transformed into a QUNP- Res refutation of Q with no
increase in existential width.

In the forthcoming examples, linear lower bounds on the
existential width of UDLs can be shown with relative ease,
whereby application of Proposition 6.5 and Theorem 6.2
yields a size lower bound of exp(Ω(n/logn)). This is in con-
trast to the application of size-width relations for proposi-
tional resolution, where showing width lower bounds still
entails quite some work (cf. [4]).

The equality family. We first show that UDLs for the
equality formulas require linear existential width.

Theorem 6.6. Any UDL for QEQ
n has existential width n.

Proof. Let L := (ε1, µ1), . . . , (εn , µn) be a UDL for QEQ
n , and

note that L computes the unique countermodel fEQ (Exam-
ple 3.6), where fEQ (τ )(ui ) = τ (xi ) for each i ∈ [n]. Note that
this amounts to setting each ui = xi .
Aiming for contradiction, suppose that L has existential

widthw < n. In particular, ε1 is a term of width less thann, so
there exists some variable xi that does not appear in ε1. It fol-
lows that there exist two assignments τ ,σ ∈ ⟨{x1, . . . ,xn}⟩,
both of which satisfy ε1, with τ (xi ) , σ (xi ). We deduce that
fEQ (τ ) = fEQ (σ ), but also that τ (xi ) , σ (xi ), in contradiction
with the definition of fEQ . □

The parity and majority families. Arguing along the
same lines, we obtain a linear lower bound on the existential
width of UDLs for the parity formulas.

Definition 6.7 (parity [8]). The nth parity formula is

QPAR
n := ∃x1 · · · xn∀u∃z1 · · · zn · (x1 ∨ z1) ∧ (x1 ∨ z1) ∧

(u ∨ zn) ∧ (u ∨ zn) ∧
n−1∧
i=1

⊕(xi+1, zi , zi+1) ,

8Note that we do not obtain the optimal lower bounds.
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where ⊕(xi+1, zi , zi+1) consists of the four clauses

(xi+1 ∨ zi ∨ zi+1) ∧ (xi+1 ∨ zi ∨ zi+1) ∧

(xi+1 ∨ zi ∨ zi+1) ∧ (xi+1 ∨ zi ∨ zi+1) .

Theorem 6.8. Any UDL for QPAR
n has existential width n.

Proof. Let L := (ε1, µ1), . . . , (εn , µn) be a UDL for QPAR
n , and

note that L computes the unique countermodel

fPAR : ⟨(x1, . . . ,xn)⟩ → ⟨{u}⟩

τ 7→
(
u 7→

(
Σni=1τ (xi )

)
(mod 2)

)
,

which amounts to u = ⊕(x1, . . . ,xn).
Similarly as for equality, if the width of ε1 is strictly less

thann, then there exist two assignmentsτ ,σ ∈ ⟨{x1, . . . ,xn}⟩,
both of which satisfy ε1, and which disagree only at some
variable xi . It follows that fPAR(τ ) = fPAR(σ ), and also that(

Σni=1τ (xi )
)
(mod 2) ,

(
Σni=1σ (xi )

)
(mod 2) ,

contradicting the definition of the function fPAR. □

In a similar way, a linear width lower bound is shown for
the majority family {QMAJ

n }n∈N.

Theorem 6.9. A UDL for QMAJ
n has existential width Ω(n).

Application. Applying Proposition 6.5 and Theorem 6.2
to our UDL width lower bounds (Theorems 6.6, 6.8 and 6.9)
gives the following refutation size lower bounds.

Corollary 6.10. {QEQ
n }n∈N, {QPAR

n }n∈N, and {QMAJ
n }n∈N all re-

quire QUNP- Res refutations of size exp(Ω(n/logn)).

We note that, in contrast to the original hardness proofs
for the parity and majority families [7, 9], we obtained Corol-
lary 6.10 without importing any lower bounds from circuit
complexity.

6.3 Relation to previous work
As it was shown in [11, 23] that the propositional size-width
relations (Theorem 6.1) do not lift to Q-Res or QU-Res, it is
worthwhile taking a moment to see how those results are
consistent with our size-width relation (Theorem 6.2).

The authors of [11, 23] showed that the ‘existential-width
analogue’ of the propositional size-width relation, namely

s(Q ⊢ ⊥) = exp
(
Ω

(
(w∃(Q ⊢ ⊥) −w∃(Q))2

n

))
, (4)

does not hold in Q-Res or QU-Res. In particular, there exist
QBFs {ϕn}n∈N (based on formulas from [33]) that

• have a linear number of variables: |vars(ϕn)| = O(n);
• have constant initial existential width:w∃(ϕn) = O(1);
• require QU-Res refutations of linear existential width:
w∃(ϕn ⊢ ⊥) = Ω(n);

• admit poly-sizeQU-Res refutations: s(ϕn ⊢ ⊥) = nO (1).

The QBFs {ϕn}n∈N clearly violate (4). However, no con-
tradiction follows from Theorem 6.2. Since {ϕn}n∈N are un-
bounded alternation QBFs, the nth instance having alter-
nation depth n, Theorem 6.2 yields only a constant lower
bound.

7 Conclusions
It is interesting to compare our characterisation of QBF res-
olution hardness with the characterisation of QBF Frege sys-
tems [16]. There the authors show a direct correspondence
between C-Frege (where lines in the system are C-circuits)
and the circuit class C, e.g. hardness in QBF NC1-Frege is
characterised by NC1 hardness. This is not the case in our
results here. Resolution works with CNFs, i.e. formulas of
depth 2. By a result of Krause [37], the complexity of decision
lists (and hence of UDLs) is strictly intermediate between
depth-2 and depth-3 circuits. Hence in QBF resolution, our
circuit model is strictly stronger than the model we use to repre-
sent the formulas. This partly explains why ideas from [7, 16]
do not suffice to characterise QBF resolution [13]. In addition
to finding the right circuit model of UDLs, new technical
ideas (such as the entailment sequence) are needed.
It is also clear from our results that UDLs do not char-

acterise QU-Res hardness for QBFs of unbounded quanti-
fier complexity. While QBFs of bounded quantification suc-
cinctly represent all problems from the polynomial hierarchy,
which covers most applications of modern QBF solving and
is prominently represented in QBF evaluation benchmarks
[39, 44], we leave open the question of finding the right
computational model to characterise QBF resolution for un-
bounded quantifier complexity.
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