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1 Introduction
Eric Allender turned sixty some months ago, and in this October computational com-
plexity column we will describe some highlights of his research work spanning over 
three decades. His research career began in 1985. The “Structure in Complexity Con-
ference” was born in 1986. Although FOCS and STOC remain the primary confer-
ences for theoretical computer science, “Structures” was a more niche conference de-
voted to complexity theory. In the first Structures Conference, in 1986, Eric had two 
papers. The computational complexity column in the EATCS bulletin was started in 
1987 (with Juris Hartmanis as editor). All roughly around the same time. The field 
has rapidly grown over the last three decades, and Eric has played a prominent role 
shaping modern computational complexity theory in a range of topics. His work has 
also given rise to several new directions of research.

In this article, we pick some of our favorite themes from Eric’s research: Kol-
mogorov complexity and circuit minimization, the isomorphism problem and the struc-
ture of complete problems in complexity classes, the landscape of space-bounded com-
plexity classes, and circuit complexity lower bounds. Eric himself has a number of 
excellent comprehensive survey articles on these topics [24, 22, 21, 23]. This column 
article is meant to serve as an appetizer inviting the reader to these surveys.

2 Kolmogorov Complexity and related topics
Eric’s interest in Kolmogorov complexity is right from the start of his research career. 
One of his early papers which appeared in STOC 1987 examines connections between 
the existence of pseudorandom generators and a suitable notion of Kolmogorov com-
plexity.

Some highlights of his work related to Kolmogorov complexity are (i) the study of 
the language of Kolmogorov random strings, and (ii) the intriguing Minimum Circuit 
Size (MCSP) problem. In this section we will briefly discuss both these problems and 
his contributions. More details can be found in Eric’s excellent survey articles on this 
topic [24, 22].



2.1 Kolmogorov Randomness
Definition 1. For a given universal Turing machine U, the Kolmogorov complexity of
a string x ∈ {0, 1}∗, denoted CU(x), is defined as follows

CU(x) = min{|p| | U(p) outputs x}.

In words, CU(x) is the length of the shortest “program” p such that when the universal
Turing machine U runs p on the blank tape it halts with x as output.

For another universal Turing machine U′, clearly CU′(x) is within an additive con-
stant of CU(x) for all x. We often drop the subscript and denote the measure by C(x).

As there are at most 2n−1 strings x ∈ {0, 1}n such that C(x) < |x|, it follows that the
set of strings {x ∈ {0, 1}n | C(x) ≥ |x|} is nonempty for all n. These are the Kolmogorov
random strings of length n. It is an interesting exercise to show that a constant fraction
of length n strings are Kolmogorov random.

It is easy to observe that the problem of checking whether C(x) ≥ |x| for a given
string x is undecidable. The proof is by contradiction: if p is a program for deciding
if C(x) ≥ |x|, then for any n we can use p as subroutine by cycling through strings
in {0, 1}n in lexicographic order to find the first string x such that C(x) ≥ |x| (which
we know exists). This new program has size O(log n) + |p| which is smaller than n
contradicting the randomness of x.

Furthermore, the set of Kolmogorov random strings is a co-r.e. set. I.e. its comple-
ment is recursively enumerable.1 This enumeration can be obtained by a dovetailing
enumeration procedure in which we consider all pairs (p, t) of programs and running
time bounds. The set of Kolmogorov random strings is, in fact, even co-r.e.-complete
under Turing reductions (but not under many-one reductions). This co-r.e. complete-
ness is already somewhat surprising at first sight. How could random strings be used
to encode instances of some “well-structured” co-r.e complete problem?

As shown in a series of papers by Allender and his co-authors [8, 7, 17] it turns
out that the set of Kolmogorov random strings exhibit very interesting hardness prop-
erties even w.r.t. resource-bounded reductions. We explain some of the results from
the first of these papers [8]. The language considered in [8] for various Kolmogorov
complexity measures µ is

Rµ = {x | Rµ(x) ≥ |x|/2}.

Thus, Rµ consists of strings of high Kolmogorov complexity w.r.t. the measure
µ.2 The different measures considered in [8] are µ ∈ {C,KT,Kt,KS }. The other
Kolmogorov complexity measures are defined as follows:

1Recall that r.e. stands for all recursively enumerable sets, and a standard r.e.-complete problem is 
the Halting problem.

2As should be expected, the complexity properties of the language Rµ does not depend upon the 
factor 1/2 in the definition.



• Kt(x) = min{|p| + log t | U(p) outputs x in ≤ t steps}.

• KT (x) = min
{
|p| + t |

∀ bits b and ∀i ≤ |x| + 1 :
U(p, i, b) accepts in t steps iff xi = b

}
.

• KS (x) = min
{
|p| + s |

∀ bits b and ∀i ≤ |x| + 1 :
U(p, i, b) accepts in space s iff xi = b

}
.

These measures have natural relativizations as well.3

We list some of the surprising hardness results obtained in [8].

Theorem 2. [8]

1. RKt is complete for EXP under P/poly-computable truth-table reductions.

2. The Halting problem is P/poly truth-table reducible to RC.

3. PSPACE is polynomial-time Turing reducible to RC.

These results are surprising because one would not expect resource-bounded re-
ductions to access and use Kolmogorov random strings in deciding hard computational
problems. The proofs turn out to be quite simple, building on the following beautiful
insight in [8] about the design of pseudorandom generators from hard computational
problems in the seminal work of Nisan-Wigderson [33].

The Nisan Wigderson prg construction

Let f : {0, 1}` → {0, 1} be a “hard-to-approximate” boolean function. The Nisan-
Wigderson method of constructing a pseudorandom generator (prg) from f works as
follows. The generator G f : {0, 1}m → {0, 1}n takes an m-bit seed and stretches it n bits.
The parameters are chosen suitably so that m is reasonably larger than `. For a seed
y ∈ {0, 1}m, the ith bit of the output G f (y) is obtained by applying f to y projected on a
suitable `-subset of indices S i ⊂ [m], where the S i’s have at most log n size pairwise
intersection. To see how secure the prg G f is, we consider “test sets” T ⊆ {0, 1}n that
can distinguish the output of G f from the uniform distribution. The set T is a “good”
distinguisher if we have

|Prob[w ∈ T ] − Prob[G f (y) ∈ T ]| ≥
1

poly(n)
,

where w ∈ {0, 1}n and y ∈ {0, 1}m are uniformly distributed.
Choosing m = nε for suitable constant ε > 0 and ` = nε/2, it turns out that we can

obtain polynomial-size oracle circuits, with oracle T , for computing f correctly on
1/2 + 1/poly(n) fraction of inputs in {0, 1}n

ε/2
. Additionally, suppose the hard function

f has the property that PSPACE f = P f . Then, using random self-reducibility, we

3There are technical aspects about the definitions [8] which we will not discuss here.



can obtain a polynomial-size oracle circuit that makes parallel queries to oracle T and
computes f on all inputs in {0, 1}n

ε/2.
Paraphrasing the above analysis, suppose A ⊆ {0, 1}∗ is a PSPACE-robust language.

I.e. PSPACEA = PA. Let f : {0, 1}∗ → {0, 1} denote the characteristic function of A,
chosen as the hard boolean function in the Nisan-Wigderson construction with m = nε

and ` = nε/2 for suitable ε > 0. If T is any test set that can distinguish truly random
strings from the output of the prg G f then A ≤P/poly

tt T . Now, suppose T is the set RKT .
Notice that for any x ∈ {0, 1}n in the range of G f then CA(x) ≤ nε . Thus such strings
are not in RKT . It follows that RKT ∩ {0, 1}n is a distinguishing test set for all n and
hence A ≤P/poly

tt RKT .
This yields the first two parts of Theorem 2, essentially because C(x) and KT A(x)

are within constant factors when A is the Halting problem and Kt(x) and KT A(x) are
within constant factors when A is a complete problem in E.

2.2 The Minimum Circuit Size Problem
A binary string x can be viewed as the truth-table (or prefix of truth-table) of an n-
variate boolean function, and it is a natural problem to look for an n-input boolean
circuit of minimum size computing this function. Let csize(x) denote the minimum
circuit size for x. The corresponding decision problem is:

MCSP = {(x, k) | csize(x) ≤ k}.

It is not hard to see that csize(x) and KT (x) are polynomially related to each other.
Clearly, MCSP is in NP. There is now sufficient evidence [30, 8, 14] to place MCSP
as an NP-intermediate problem that exhibits many hardness properties. A compelling
hardness evidence [30] is that if MCSP is polynomial time then cryptographically se-
cure one-way functions cannot exist. A few years back, Allender and Das [10] showed
that SZK (the class of promise problems with statistically zero knowledge proofs) is
in the class BPPMCSP which, in particular, implies that Graph Isomorphism is ran-
domized reducible to MCSP. On the other hand, there is more recent evidence that
suggests that proving NP-hardness of MCSP is unlikely to be easy, if true at all. For
instance, if MCSP is NP-complete w.r.t. polynomial time truth-table reductions then
EXP , ZPP [31]. Furthermore, if MCSP is NP-complete under logspace-computable
many-one reductions then PSPACE , ZPP.

Before we conclude this section, we sketch the nice observation from [10] that
Graph Isomorphism is in RPMCSP.4

The key observation that is used is again from [8], which in turn is based on the
construction of pseudorandom generators from any one-way function [29]. Suppose
fy : {0, 1}n → {0, 1}r(n) is a collection of functions for y ∈ {0, 1}r(n), computable in time
p(n) for some polynomials p(n) and r(n). Then there is a randomized polynomial-time

4In fact they show the stronger result that all of SZK is in BPPMCSP.



oracle algorithm MMCSP that takes as input (y, fy(x)) for a random x ∈ {0, 1}n and 
outputs a string in fy

−1( fy(x)) with probability at least n−c for some constant c > 0.
For any n-vertex graph X define the f unction f X that maps a permutation π ∈ S n  to 

the n-vertex graph π(X).
Now, suppose a pair of n-vertex graphs (G, H) is an instance of Graph Isomor-

phism. For a randomly picked permutation π ∈ S n, we run the above algorithm 
MMCSP on input (H, fG(π)). If the graphs G and H are isomorphic then, with n−c 

probability, the algorithm outputs a permutation τ such that τ(H) = π(G). Clearly, if 
the graphs are not isomorphic the algorithm will never output such a permutation. This 

yields the desired RPMCSP algorithm for Graph Isomorphism.

3 The Isomorphism Conjecture for Complexity Classes
The well-known Schröder-Bernstein theorem, in naive set theory, states that if A and 
B are sets such that there are injective maps f : A → B and g : B → A then, in fact, 
there is a bijection h : A → B.

Myhill [32] adapted the Schröder-Bernstein theorem to show that all r.e.-complete 
sets (under recursive reductions) are r.e.-isomorphic. The original back and forth argu-
ment used in the Schröder-Bernstein proof was cleverly modified to work for recursive 
reductions by Myhill. The crucial property that he discovered [32] and used in this 
proof is that r.e.-complete sets are recursively paddable. This property can be used 
to show that the back and forth construction of Schröder-Bernstein always terminates, 
yielding a recursively invertible bijection h as reduction between A and B (two r.e.-
complete sets).

Hartmanis and Berman conjectured [28], by analogy, that NP-complete sets should 
be isomorphic under polynomial-time computable and invertible bijections as reduc-
tions. They used a stronger notion of paddability (which many natural NP-complete 
problems have, but probably not all) that allows them to carry out the above construc-
tion in the polynomial time setting. It was an influential conjecture in the area, which 
led to many interesting results in complexity theory of the 1980’s and 1990’s. Eric has 
made some fine contributions to research in this sub-field of  complexity th eory. We 
will highlight one of these results.

Research soon turned to showing the Berman-Hartmanis conjecture for more re-
stricted types of reductions. Among these, the most interesting reduction was AC0 

reductions (computable by uniform constant-depth reductions). Many NP-complete 
problems are actually NP-complete under AC0 reductions (in fact, they are even com-
plete under projection reductions). Allender, Balcázar, and Immerman [6] first showed 
that sets complete for NP under projections are AC0-isomorphic (where the AC0 cir-
cuits computing the reductions are uniform).

As a next step Eric, along with Manindra Agrawal, investigated the isomorphism 
conjecture for reductions that are NC0 computable [1]. Building on their initial work, 
they could show along with Steve Rudich, that sets complete under AC0 reductions are



also complete under NC0 reductions. And this property holds for several complexity 
classes including NP, P, and NC1. Furthermore, they could also show for these com-
plexity classes, that sets complete under AC0 reductions are indeed AC0 isomorphic 
(but only w.r.t. nonuniform AC0 reductions) [1, 4]. Their main isomorphism theorem 
can be summarized as follows:

Theorem 3. [4] Let C be any complexity class closed under uniform NC1 computable 
many-one reductions. Then the languages that are complete for C under AC0 com-
putable reductions are also isomorphic under (non-uniform) AC0 computable isomor-
phisms.

The question that remained was to strengthen the above result to obtain dlogtime-
uniform AC0 computable isomorphisms. Following some improvements to the above 
on uniformity [3, 12], the culminating result in this line of research was Agrawal’s 
theorem [13] that AC0-complete sets were also AC0 isomorphic (where the reductions 
are dlogtime uniform), for all these complexity classes, including NP.

4 The Logspace Complexity Lens
A recurring theme in Eric’s work has been small-space classes. More specifically, 
logarithmic space, in different computation modes. The most restrictive, of course, is 
deterministic logspace DLOG. Add nondeterminism to get NLOG. Add a stack, to get 
LogDCFL. Add both, get LogCFL. Add thresholding, get PL. As we add more and 
more resources, what more can we compute? Impose semantic restrictions: symmetry 
– SL, few counting paths – FewL, unambiguity – ULOG. How much does the com-
puting power drop? Related to these, yet fundamentally a different question, concerns 
counting accepting paths in space-bounded computation models. What kind of func-
tions can be so represented? These questions, in their many guises, have intrigued Eric, 
and over the years, he has contributed significantly to building a  good understanding 
of the landscape here.

4.1 Unambiguous Acceptance

In the eighties, Valiant and Vazirani showed that satisfiability can be r educed, prob-
abilistically, to instances with none or just one solution; fixing t he r andomness ap-
propriately tells us that NP is contained in ⊕P/poly. Mulmuley, Vazirani and Vazirani 
established the Isolation Lemma, a witness-pruning technique that is more amenable to 
parallel and/or small-space computation. Gál and Wigderson used this lemma to prune 
NLOG witnesses, establishing that NLOG/poly is contained in ⊕LOG/poly. A cru-
cial ingredient in their proof was the construction of min-unique graphs; between any 
pair (u, v) of nodes, the shortest distance is achieved by a unique path. However, they 
only used this property for the pair (s, t). Using it for all pairs of the form (s, u), Eric



and Klaus Reinhardt showed that in fact a different pruning yields a unique witness, 
establishing the following theorem.

Theorem 4 (Theorem 2.2 and Corollary 2.3 in [34]). NLOG (and even NLOG/poly) is 
contained in ULOG/poly.

This is a great result; in the non-uniform world, nondeterminism can be made un-
ambiguous without increasing the space required. And why is this desirable? Well, 
amongst other things unambiguous computation gives witness functions which could 
conceivably be useful in designing parallel algorithms for search problems. The 
NL/poly=UL/poly result is a central result in a body of work studying limiting non-
determinism in space-bounded computation: promise classes with polynomially many 
accepting paths, strong unambiguity, etc. In an earlier piece of work with Klaus-Jörn 
Lange [18], Eric had shown that reach-unambiguous logspace computation can be sim-
ulated deterministically in space less than O(log2 n). Just clarifying various subtleties 
in differing notions of unambiguity is itself a valuable contribution of that work.

In the late eighties, Immerman and Sclepscenyi had developed the inductive count-
ing technique to complement non-deterministic space. It was this technique that was 
built on, and generalized to what the paper calls the double counting technique, to 
disambiguate NLOG and obtain Theorem 4.

4.2 Unambiguous Counting
Counting accepting paths in nondeterministic computation gives us the well-known 
function classes #P, #LOG, and so on. Their closure under subtraction gives the Gap 
classes, first defined by Fenner, Fortnow and Kurtz. One way of defining an analogue 
of unambiguity for the Gap classes is requiring the gap function to be 0 or 1, giving the 
so-called stoic classes like SPP and its logspace analogue SPL. A language L is in the 
class SPL if there is a nondeterministic logspace machine with the property that for all 
words x, the difference between the number of accepting computations of M on X and 
the number of rejecting computations of M on x is 1 when x ∈ L, and 0 when x < L. 
The class SPL contains NLOG and is contained in NC2.

The perfect matching problem has fascinated complexity theorists for years. It 
is a natural problem that does not yet characterize any nice complexity class (that 
is, we don’t know of a class for which it is complete via suitable reductions). Its 
counting version is famously #P-complete, its decision and search versions are in P 
and randomized NC. Decision is in non-uniform NC2, but we do not know if it is 
in deterministic NC. (Very recent excitement - it is almost there! it is in quasi-NC, 
and for bipartite graphs it is also in pseudo-deterministic NC.) Combining ideas from 
the isolation lemma and a combinatorial algorithm for the determinant, Eric and his 
co-authors Reinhardt and Zhou showed the following:

Theorem 5 (Theorems 3.1, 3.2 in [26]). The perfect matching problem (decision) is in 
non-uniform SPL. The search problem is in the functional version non-uniform FSPL.



In the non-uniform world, this is the best upper bound we have for the perfect 
matching problem.

4.3 Planar Reachability

Matchings in planar graphs turns our intuition that counting is at least as hard as search 
and decision on its head. Counting perfect matchings in planar graphs is in P and even 
NC, whereas in general graphs deciding existence via shallow circuits so far seems 
to need non-uniformity or quasi-polynomial size. Some of Eric’s work has delved 
into how planarity helps in the quintessential NLOG problem reachability; see for 
instance [5]. It explores bounds for solving REACH on various kinds of grid graphs. 
In particular, it shows that reachability on layered grid graphs can be decided in ULOG. 
Research on this theme continues today; we still do not know if planar reachability is 
provably easier than NLOG, but we do know it is in ULOG. Another nice result from 
[5] is that planar reachability and planar unreachability are logspace equivalent.

4.4 Symmetry

Adding a stack to logspace computation – it now becomes necessary to explicitly re-
strict time to polynomial, otherwise you get all of P. With the poly time bound, we have 
a non-deterministic pushdown automaton with an auxiliary logspace worktape, and it is 
easy to see that such a machine can simulate a logspace reduction to a context-free lan-
guage. Sudborough showed that it can in fact do no more; any such computation can be 
decomposed into a deterministic logspace reduction followed by a non-deterministic 
pushdown-automata computation. Hence the class of languages accepted by such ma-
chines is called LogCFL, and the work of Ruzzo and of Venkateswaran shows that 
it is also characterized by semi-unbounded log depth poly-size circuits SAC1 or by 
poly-size poly-degree circuits. This class has figured frequently in Eric’s w ork. We 
mention one particular result here. As with NLOG, computation in this class can be 
made unambiguous non-uniformly. Unlike with NLOG, where the restriction to sym-
metric computation was long known to be somehow easier – upper bounds on SL 
included ⊕LOG, DTIME,SPACE(poly, log n2), DSPACE(log n4/3) – and was finally 
shown by Reingold to coincide with determinism (the famed SL=L result from 2004), 
LogCFL behaves more like a time-bounded class in the context of symmetric compu-
tation. More precisely,

Theorem 6 (Theorem 3.1 in [19]). NAuxPDA-TIME(nO(1)) = SymAuxPDA-
TIME(nO(1)). That is, for polynomial-time-bounded AuxPDA, symmetry and nonde-
terminism coincide.



4.5 The PL and C=L Hierarchies
Probabilistic logspace PL is a bit of a strange class. Here, restricting the time to poly-
nomial is not necessary, the class remains the same. Eric, along with Ogihara, gave a
simpler proof of this than was earlier known, using closure properties of GapL. This
work [25] also gave us circuit characterizations of various logspace hierarchies. We
now know that AC0(PL) is exactly the PL hierarchy. So no more do we need to deal
with messy details while relativizing space-bounded computation; life simplified!

An interesting variant of PL is the exact counting class C=L defined as follows:
A language is in C=L if for some nondeterministic logspace machine, the numbers of
accepting and rejecting computations are equal exactly for words in the language. It is
easy to see that all of SPL is contained in C=L, but there could be much more. Whether
the class C=L is closed under complement remains an intriguing open question. The
most natural complete language for C=L is singular integer matrices.

In [25], an analogous result for the exact counting hierarchy was also shown;
AC0(C=L) equals the C=L hierarchy. In subsequent work with Beals and Ogihara [9],
Eric showed that this hierarchy also equals NC0(C=L), and that it collapses to LC=L.
He showed that this hierarchy captures the essence of something fundamental in linear
algebra – determining whether the rank of a given integer matrix is an odd number is
complete for this hierarchy.

Theorem 7 ([9]). The following problems are complete for AC0(C=L):

FSLE = {(A, b) | A ∈ Zm×n, b ∈ Zm×1,∃x ∈ Qn×1 : Ax = b}
OddRank = {A | A ∈ Zm×n, rank(A) is an odd number}

Comp.Rank = {(A, i, b) | A ∈ Zm×n, rank(A) = r, bit i of r is b}

An interesting “trick” described explicitly in this paper is a logspace transforma-
tion mapping integer matrix M to M′ while preserving non-singularity, but with the 
additional property that if M is singular, then M′ has rank exactly one less than full-
rank.

5 Circuit Complexity and related questions

5.1 Boolean Circuit Lower Bounds
Obtaining exponential lower bounds against general Boolean circuits is one of the holy 
grails in complexity theory. Straightforward counting arguments tell us that most lan-
guages cannot be recognized by small circuits. But finding and explicitly describing 
one – searching for hay in a haystack – is notoriously hard. Little wonder then that 
we sharpen our tools working with restricted circuits. There was the heady excite-
ment in the eighties of discovering that parity needs exponential-size in constant-depth 
circuits, even if augmented with modulo-3 gates (Ajtai; Furst, Saxe, Sipser; Hastad;



Razborov, Smolensky). Soon thereafter came a different kind of excitement: a single
query to the Permanent is enough to decide languages anywhere in the polynomial hi-
erarchy (Toda). In work with Vivek Gore, Eric noticed a most significant fact about the
techniques in Toda’s result: they could be exploited to give significant lower bounds
against uniform constant-depth circuits, even such circuits augmented with modular
counting (ACC circuits). In particular, he showed that a uniform constant-depth cir-
cuit with modular counting cannot compute the permanent unless it has exponential
size.

Theorem 8 (Theorem 3.4 in [11]). The permanent function does not have uniform
ACC(subexp) circuits.

The permanent is of course a function; an analogous but slightly weaker result
holds for languages in PP. Namely, PP does not have uniform ACC circuits of sub-
subexp size. (The definition of this kind of size functions is rather technical; suffice to
keep in mind that they are super-polynomial!)

The notion of uniformity used here is a polynomial-version of DLOGTIME unifor-
mity; for subexp size, we could think of it as polylogtime uniformity. The lower-bound
proof crucially uses this notion, and does not work for less restrictive notions of unifor-
mity. But let us pause to consider: are lower bounds against uniform circuits interesting
at all? Well, one of the earliest known separations is the time hierarchy theorem, and it
tells us that EXPTIME-complete languages do not have uniform polynomial-size cir-
cuits. No one’s saying that’s not interesting! And as in the case of the Permanent, we
do not know how to prove this separation in the non-uniform setting. We do not even
know whether the separation holds; whether EXPTIME is in P/poly is wide open.

A crucial ingredient in this uniform-ACC lower bound for the Permanent is a
special kind of depth-reduction result that was proved in [11]. Every subsexp-size
ACC circuit can be converted, uniformly, to a depth-2 subexp-size circuit of the form
SYM◦AND, where the AND gates have relatively small fanin. Essentially this result,
in the non-uniform setting, was established by Beigel and Tarui building on preceding
work by Yao, by Eric himself, and by Toda. But the notion of uniformity required here
is quite restrictive, and much care was needed to establish that it goes through in this
setting as well. Formally, the result is as follows.

Theorem 9 (Theorem 3.1 in [11]). Suppose L is accepted by a uniform ACC(subexp)
circuit family. Then it is accepted by a uniform depth two circuit family of s(n) sized
circuits that have the following properties:

1. Level one has a subexponential number of AND gates each with fan-in
(log s(n))O(1). Given the name of an AND gate, its exact fan-in can be computed
deterministically in time (log s(n))O(1).

2. Level two has a symmetric gate. Given the number of AND gates that evaluate to
one, the symmetric gate can be evaluated deterministically in time (log s(n))O(1).



This ACC depth-reduction has proven to be probably more significant than Eric 
then thought! Over 20 years later, the fact that this depth-reduction is uniform, and 
hence efficiently computable, was exploited by Ryan Williams while designing an 
algorithm for circuit satisfiability o f s ubexp-size ACC c ircuits. T his a lgorithm i s a 
crucial ingredient in his proof separating NEXP from non-uniform ACC.

Incidentally, a few years later, Eric went on to extend the lower bound to uniform 
constant-depth threshold circuits. He showed:

Theorem 10 (Corollary 1 in [20]). The Permanent does not have uniform poly-size or 
even quasi-poly-size TC0 circuits.

5.2 Arithmetic Circuits
Counting classes have been mentioned above; they typically consist of functions that 
count accepting paths in non-deterministic computation models, or the closure un-
der subtraction of such functions. They are often naturally characterized by arithme-
tized versions of the Boolean circuits that correspond to the nondeterministic com-
putation. Arithmetization over various algebras gives different kinds of counting. 
For instance, the class LogCFL (which coincides with the class of languages ac-
cepted by polynomial-time AuxPDA) is characterized by uniform semi-unbounded 
circuits SAC1. Arithmetizing them over +, × gives circuits counting accepting paths; 
the class #SAC1. One of Eric’s early investigations concerned arithmetization over 
non-commutative algebras. Over commutative rings, a striking result from the work 
of VSBR (Valiant, Skyum, Berkowitz and Rackoff) states that a polynomial-size 
polynomial-degree circuit can be restructured to an equivalent semi-unbounded log-
depth circuit. Kosaraju and Nisan gave explicit examples of non-commutative cir-
cuit classes where such a depth-reduction is provably not possible; the underlying 
rings are (union, concat). Eric’s contribution was two-fold: firstly, he re-examined the 
VSBR depth-reduction and gave a uniform version of it (the VSBR construction is 
non-uniform; it needs polynomial identity testing). Secondly, he showed that a some-
what weaker depth-reduction, to unbounded rather than semi-unbounded circuits, also 
works for the non-commutative ring of (max, concat).

Theorem 11 (Theorem 3.1 in [15]; see also [16]). If f is computed by a family of arith-
metic circuits over (Σ∗, max, concat) of polynomial size and degree, then f is computed 
by a family of arithmetic circuits over (Σ∗, max, concat) of polynomial size with depth 
O(log2 n).

This was the first i nstance o f d epth-reduction f or a  n on-commutative r ing, and 
showed that function classes like OptLOG and OptLogCFL have NC algorithms.

It is intuitively clear that the thresholding operation is intimately connected with 
counting. This is why, for instance, PP and #P are equivalent with respect to 
polynomial-time Turing reductions. This obvious connection, however, becomes non-
obvious when dealing with very small circuit classes. In another interesting piece of



work with Manindra Agrawal and Samir Datta, Eric helped make this intuition precise
for constant-depth circuits. This work characterizes the Boolean class TC0 in terms of
the counting class #AC0 with one threshold gate or equality check on top, establishing
the following:

Theorem 12 (Theorem in [2]). TC0 = PAC0 = C=AC0.

The paper has several caveats about the type of uniformity, and the potential dif-
ference between DiffAC0 (functions reporting the difference of #AC0 functions) and
GapAC0 (functions computed by constant-depth arithmetic circuits with xi, 0, 1,−1 at
leaves). However subsequent work has ironed out all these niggling questions; the Diff
and Gap AC0 classes coincide, and with an exact threshold on top, characterize TC0

with all notions of uniformity discussed there.
A lovely construction by Barrington shows that polynomial-size Boolean formulas

(and hence, by Brent’s depth-reduction, languages in the class NC1) have equivalent
polynomial-size, width-5 branching programs. An equally lovely construction by Ben-
Or and Cleve lifts this idea to arbitrary commutative rings, giving width-3 branching
programs. An equivalent way of stating this result is that IMM3,n – evaluating the
product of n 3 × 3 matrices of indeterminates – is complete for algebraic NC1. What
about multiplying 2 × 2 matrices? Eric and Fengming Wang showed that this is not
hard enough, by showing that IMM2,n is not universal.

Theorem 13 (Theorem 1.2 in [27]). For k ≥ 8, the 2k-variate polynomial

f (x1, . . . , x2k) =

k∑
i=1

x2i−1x2i

cannot be computed by algebraic programs of width 2 over any field. Hence I MM2,n is 
not complete for algebraic NC1 under regular projections.

(Projections are restrictive reductions allowing only substitution by variables or 
field constants. Regular projections allow substitutions by general affine forms.)

This theorem is a great example of a result which intuitively we all believed must 
be true, but could not (or would not, or whatever; but finally did not) prove, until all 
the details were ironed out in [27] with a proof that is more complex than what the 
statement seemed to warrant.

Theorem 13 is in contrast to the Boolean case, where Lipton and Zalcstein showed 
that (Boolean) IMM2,n is indeed hard for NC1, albeit under slightly less restrictive AC0 

reductions.

6 To conclude ...
After reading this article, some of you may want to know more about these 
areas of complexity theory. We recommend reading Eric’s expository articles 
and surveys, all of which are available online from his publications page at 
https://www.cs.rutgers.edu/ allender/publications/. Happy reading!
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