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ABSTRACT

xagonal Cellular Automata (HCA) are defined as a
Mm%nwwmmon of the rectangular 2-D cellular automata GNOB
studied in the literature. Equivalence of HCA and RCA is
shown. Some algorithms for manipulation of patterns on the
HCA are presented. The application of HCA to mmjm_.m.ﬁEm and
parsing languages over hexagonal arrays, as ammod.cma by mmvm
mBBBmmnm_Boaw_m Eowom“ma.c%m#oﬁocm%msam._noBonmw,

is discussed.

1. INTRODUCTION

Hexagonal arrays and hexagonal patterns are found in the literature
on picture processing and scene analysis™®®,  These arrays have been
studied as formal models®®, where the authors introduce array grammars to
generate languages of hexagonal arrays. They also indicate the application
of such models to 2-D representations of 3-D scenes composed of
rectangular parallelepipeds, and to the problem of recognition of perceptual
twins®,

Cellular automata as acceptors for string languages have been
studied extensively®”®!®, Systolic pyramid automata®, which are in some
sense equivalent to 2-D cellular automata, have been studied with respect
to recognition of matrix and array grammars®'*9, In this paper we
introduce hexagonal cellular automata (cells placed on a triangular grid),
and study their relation to the formal models for hexagonal arrays®.
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Section 2 introduces hexagonal cellular automata, gives definitions,
shows equivalence to Turing machines, and gives two examples to illustrate
basic algorithms for pattern manipulation. Sections 3 and 4 study the
relation of these automata to hexagonal kolam array languages and
controlled table L-array languages respectively, the two models proposed in
(15). Generators and acceptors for these languages are described.

2. HEXAGONAL CELLULAR AUTOMATA

In the 2-D cellular automata discussed in the literature!”, cells are
arranged on a square lattice, i.e., in a one- to-one correspondence with
IxXI(I is the set of integers.). Each cell is directly connected to its two
adjacent vertical neighbours and two horizontal neighbours. The underlying
interconnection structure is a rectangular grid; so henceforth we shall
refer to these cellular automata as RCA (rectangular CA). Hexagonal
cellular automata (HCA) are defined as a direct extension of RCA. In these
CA, the underlying interconnection structure is the equiangular triangular
grid. Thus each cell has six neighbours, arranged in a regular hexagon with
itself at the centre (fig. 1); hence the name.

The operation of the HCA is exactly like the operation of the RCA.
There is a finite set of states Q; each cell is in some state q €Q at every
time instant; at successive time instants all cells synchronously change
state depending on their current state and the current states of their six
neighbours. The transition function at each cell is identical; it is as if
multiple copies of the same finite state automaton are placed at each cell.
We assume the existence of a special state, d, called the quiescent state,
and, as in the case of RCA, stipulate that at any time instant only a finite
number of cells are non-quiescent. Further, a cell with a quiescent
neighbourhood remains quiescent (neighbourhood of a cell = itself and its
six neighbours).

Formally, an HCA is a 3-tuple H = (Q,q, §) where Q is the set of
states, aamo is the quiescent state, and §:Q xQ = Q is the transition
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function subject to mﬁo. Qs 9> 9ys Gy Gy nov = q, The arguments to & are
as follows: the first argument is the state of the cell under consideration,
and the next six arguments are the states of its six neighbours read in
clockwise order starting from the top. The function value gives the new
state of the cell under consideration. Rather than write 6 (x,a,b,c,d,e,f) =
y, we write this pictorially as

d
A configuration of the HCA is an assignment of states to cells on
the triangular grid, such that at most a finite number of cells are non-
quiescent. At each time instant, each cell simultaneously changes state as

per the transition function, giving rise to a new configuration.

In sections 3 and 4 we shall consider languages of hexagonal
arrays(*®, and see how HCA relate to these classes of languages. Two
models will be considered: a) the generator model, and b) the recogniser
model. In the generator model, the HCA starts from an initial configuration
and generates all the arrays belonging to a language L. Clearly, it may not
be possible to generate these arrays at successive time steps; intermediate
transitions may be required. Let H, H, .. , H, .. be an enumeration of
all arrays in L. Then whenever the HCA enters a configuration equal to
H, it should indicate this. For this we adopt the convention that whenever
an H, is generated, the bottommost cell of H, cell 'D', will enter a
special state. Thus intermediate configurations of the HCA are either not
convex hexagons at all, or ones in which the cell 'D' is not in a special
state.

For the recogniser model, the initial configuration is the input array,
i.e., a convex hexagon. Its bottommost cell is now considered to be the
distinguished cell 'D'. At any time t, if cell 'D' goes into an 'accept'
state, then the input array belongs to the language L. Thus the notion of

acceptance by an HCA can be defined for hexagonal array languages. If

137

the input hexagon H does not belong to the language, the behaviour of the
acceptor can be anything. However, if we can define an acceptor which
also goes to a prespecified reject state when H is not in the language, then

we have a stronger notion of acceptance, termed recognition“®.

In an HCA, the interconnection graph is an equiangular triangular
grid. It .consists of 3 families of parallel lines, with orientations _w /, and
\ respectively. Removing any one family leaves a graph isomorphic to the
rectangular grid, as shown in fig. 2. Clearly, an HCA has all the
connections of the RCA, and more. A mapping between the two CA may be
defined as follows:

In an HCA, each cell x has 6 neighbours, whose positions are as
indicated. In an RCA, a cell X has 4 neighbours - left(L), up(U), right(R),
and down(D) as shown below.

a U
f b

X L X R
e ¢

d D

If a cell x of an HCA is to be mapped onto cell X of an RCA,
consider the 4 neighbours resulting when the family of vertical lines of the
HCA is deleted. i.e.,

e C

These may be mapped to the 4 neighbours of X as follows:

fix) = L(X), b(x) = U(X),
c(x) = R(X), e(x) = D(X). (1)

Doing a similar mapping for the neighbours of b and e, we get

a(x) = L(U(X)), d(x) = D(R(X)). (2)

The mapping is shown in fig. 3. The neighbourhood of cell x, as
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represented in the RCA, is highlighted. The missing vertical lines of the
HCA are the dotted left-to-right diagonals of the RCA. It is also clear how
an RCA can be mapped onto an HCA; for cell X of the RCA mapped onto
cell x of the HCA, -equation 1 gives the relationship between the
neighbours of X and the neighbours of x.

The transitions of the RCA (Q, q,, 60) can be simulated by the HCA
(Q, g, 64) in one step as follows:

a b
f b
m: X = mw f x ©
e c
d e

The transitions of the HCA can be simulated by the RCA at half-
speed; i.e., for each transition of the HCA, the RCA goes through 2

transitions as follows:

c a--b-c-d-e
mrm h i = ghi, f—-g-—-h-—-1-]j
m k-—-1-m-n-o0
giving rise to the intermediate abc bed cde
configuration, and fgh ghi hij
kim Imn mno
bed b
g c
S« [ fgh ghi hij | = & h
m i
Imn n

Thus we have the following theorem:

Theorem 2.1 : Every HCA can be simulated by an RCA and vice versa; i.e.,
HCA and RCA are equivalent in power.
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From this it follows that the sequential machine characterisation of an
RCA can also be used for the HCA.

An RCA R can be simulated by a Turing machine M with a 2-D
worktape T which stores in its cells the configuration of the RCA. For a
single transition of the RCA, M will go through a series of transitions,
sequentially updating the states of all cells with a non-quiescent
neighbourhood. Thus a Turing machine can simulate any RCA and hence any
HCA.Conversely, a HCA or RCA can simulate any Turing machine, because
it contains an unbounded 1-D CA within it, and 1-D CAs have been shown
to simulate Turing machines®. Thus we have the following result:

Theorem 2.2 : Hexagonal Cellular Automata and Turing machines are

exactly equivalent in computing power.

Similar to the one-way 1-D and 2-D CA, we can define one-way
HCA, OHCA, where a cell gets input only from neighbours in positions e, d,
¢, and gives output only to neighbours in positions f, a, b. The OHCA can
be shown to be equivalent to the one-way RCA and thus also equivalent to
the trellis defined in (3).

If the states of a CA are mapped onto integers, then the CA is said
to be totalistic if the transition function depends only on the sum of the
states of all cells in the neighbourhood of a given cell. For every HCA, an
equivalent totalistic HCA which simulates it in real time can be constructed.
The construction is based on giving a suitable colouring for the underlying
graph and then applying the technique described in (2).

The interconnection structure for the HCA is the equiangular
triangular grid. Thus any convex hexagon represented on the HCA is
equiangular and has opposite sides parallel. It can be shown that if the
lengths of the sides of the hexagon, taken in clockwise order, are p, q, r,
s, t, u, (see fig. 4) then s =p +k t=q-kand u-=r +k, for some k.
If k = 0, then the opposite sides of the hexagon are parallel and equal;
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such hexagons are referred to as b-hexagons®™. If k = 0, we have a non-b
hexagon. A b-hexagon with p = ¢ = r has opposite sides parallel and all
sides equal; it is a regular hexagon.

Several pattern transforms can be defined for convex hexagons;
typical examples are rotation through multiples of 60° and mirror reflection
about an edge. Similarly, property checking for convex hexagons is of
interest for properties like regularity, 60° rotation symmetry, 120° rotation
symmetry and so on. Algorithms on the HCA for some of the above
problems have been presented in (5). For illustration, two of them are given
below. The convex hexagon is represented on the HCA by having cells
within the hexagon in some non-quiescent state and all other cells in
quiescent state. Some observations which are often used in the algorithms

are given below.

(i) In a convex hexagon, cells along the border 'know' that they are
on the border. This is so because cells on vertices of the hexagon have
exactly 3 quiescent neighbours, while cells along an edge have exactly 2

quiescent neighbours.

(ii) If cells along a continuous non-self-intersecting path on the HCA
are marked, then they can operate in conjunction as a 1-D CA, even
though they may not be in a straight line. This follows from the fact that
along the path, each cell knows its predecessor and successor (this
information must be imparted at the time of marking the path). See fig. 5.

(iii) Each cell affects the change of state of everycell in its
neighbourhood. This can be viewed as the sending of signals by a cell to
all its neighbours. The algorithms presented below will thus talk of signals
being sent across the HCA, rather than state changes at cells.

Algorithms:

(1) Firing Squad problem for a regular hexagon :
Given a regular hexagon as the initial configuration, with the
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distinguished cell D (bottommost vertex) in state $ and all other cells in
state @, we wish to achieve, at some time t, a configuration where all
cells of the hexagon are in state #, such that no cell of the hexagon

enters state # prior to t.

The firing squad problem for linear arrays (initial configuration $@"“',
final configuration #") has been solved in various ways®. The time taken
for this algorithm, L(n), has been shown to be at least 2n-2. This algorithm
can be easily extended to RCA as follows. Let the topleft cell of the mxn
rectangle be in state $. In time L(n), all cells in the topmost row can be
brought simultaneously into an intermediate state #’. At this time, each
cell c, of the topmost row can initiate a firing squad algorithm on the jth
column; so in another L(m) time units all cell in each column go to state #
(denoted as 'fired'), i.e., all cells in the entire rectangle fire at time L(n)
+ L(m).

For a regular hexagon H, the trick lies in dividing the hexagon into
rectangles which can fire simultaneously. To do this, D sends signals Se Sy
and mm to cells F, B, E respectively. See fig. 6. Mm returns to D from E.
Thus Sps mm and S, reach F, B and D at the same time instant 2n (where
n is the length of a side). Cells B, D, F are the corner vertices of
rectangles BCOA, DEOC and FAOE respectively. They can run RCA firing
squad algorithms on these rectangles, firing all cells of H after a total
time of 2n + 2L(n). Note that the cells along the radii OA, OC and OE
must be able to keep track of signals for 2 distinct RCA algorithms, since
they participate in the firing squad algorithms of both rectangles adjacent
to them.

(2) To move a convex hexagon parallel to an edge until the edge reaches
a prespecified boundary.

Without loss of generality, assume that the edge is vertical (edge
BC of fig. 4) and the desired movement is to the right. A boundary GG’ to
the right of edge BC and parallel to it is premarked as the edge along
which edge BC of the shifted hexagon must finally reside. Note that there
is no straight line path for right movement. So a g-pulse must travel right
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in a zigzag fashion, moving to the neighbour at position b at odd time
instants and to the neighbour at position ¢ at even time instants. So the
pulse travels as a tuple (g, up) or (q, down) indicating whether it will
move to neighbour b next (and become (g, down) there ) or to neighbour c

( and change to (g, up) ). Positions of neighbours of a cell are shown in
figure 1.

The rightmost column of the hexagon H sends pulses, travelling right
at unit speed, at time t = 1. The next column sends out pulses at t = 2,
the third rightmost column at t = 3 and so on. Effectively, a column sends
pulses right one time unit after the column to its right has done so. When
the rightmost column pulses reach GG’, they stop moving and 'stabilise';
i.e., they revert from tuples (g,up) or (g,down) to singletons q. The pulses
from other columns stabilise when they find that the pulses to their right
have stabilised; i.e., they halt one column before the previous column. Thus
if GG' is m columns away from BC, then the rightmost column stabilises at
time t = m, the next at t = m+1, and so on. See fig. 7. If the width of H
along the direction normal to GG' 1is w, then this algorithm requires m+w-1
units of time.

3. GENERATING AND RECOGNISING
HEXAGONAL KOLAM ARRAY LANGUAGES

The main motivation for studying HCA has been to study its
relationship to the languages of hexagonal arrays®®. 1In (15), formal
grammatical models for generating such arrays have been discussed. The
main point to be noted is that unlike strings, hexagons cannot be
concatenated to give hexagons. So the grammatical models use arrowhead
concatenation, which is illustrated in fig. 8.

A hexagonal kolam array grammar has 3 disjoint sets of alphabets -
nonterminals, intermediates and terminals. There are 3 types of rewriting
rules : (i) In the first type, called non-terminal rules, the left hand side
(Lh.s) has one non-terminal and the right hand side (r.h.s) has exactly one
non-terminal along with zero or more intermediates. Treating the
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intermediates as terminals, these rules are either left linear or linear.
(ii) The second type has a single terminal rule with a non-terminal on the
L.h.s and a hexagonal array of terminals on the r.h.s.. (iii) In the third
type, comprising of intermediate rules, usually the intermediate languages
are specified rather than enumerating the intermediate rules. These

languages c¢onsist of arrowheads made up of terminal symbols.

Derivation proceeds as follows:

Initially, - non-terminal rules are applied in sequence, with arrows
indicating direction of concatenation, and parentheses inserted at €ach
step. This results in a string with intermediates and one non-terminal. In
the second phase, the non-terminal is replaced by a hexagonal array of
terminals, using the terminal rule. In the last phase, starting from the
innermost parenthesis, each intermediate is replaced by an arrowhead of
appropriate size (appropriate with respect to concatenation) from the
corresponding language. This arrowhead is concatenated to the existing

hexagon to get a new hexagon.

The grammar is called regular (R) or linear (L) according as the
first phase (applying non-terminal rules) is left linear or linear. (Note : In
this context, a linear rule is one which involves arrowheads of opposite
directions, like S — ((S' 1 a) | b). This parallels the linear rule S - aS'b
of string grammars.) Further, a regular grammar may be R:R or R:CF or
R:CS according as all intermediate languages are regular, or all are
context-free and at least one is not regular, or all are context-sensitive
and at least one is not context-free. Similarly, we have (L:R), (L:CF) and

(L:CS) grammars.

example 3.1 G, is an R:R grammar.
OH = A<~ H. Huw mwk.v

V=V, UV,

vV, = 1S, S;}} non-terminals
v, = {a,b,c,x,y,z} intermediates
I={G, Y} terminals
P=P VP,
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o)
1

, = {S> A:m\mvzgeov. Sy (((S7x)Ry)|2)}
non-terminal rules

terminal rule

L =, Ly Ly L, L, L} set of intermediate languages

L, =L, = {GKG>G" where the letters of the arrowhead are
written clockwise and the letter within < > appears at the vertex of the
arrowhead.

L, = {GXGXG™}, L = {Y¥>Y™}
L =1L, = {YXKY>Y?}

A typical derivation is shown below:

Phase 1 S = (((S, 7 a) \ b) e c)

> ((IS 2 %Iyl | z] 2a)\ b)} )

G
G G
Phase 2 2 (((I[I G 7?xIRyllzl72a)\b)|c
G G
G
Phase 3 Y
G Y
G G
> (((IL G Y Nyl}zl2a)\b)Jec)
G G

G

>l Y

> Y

u*
o

Consider the generator
start off in some specified
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Q
<!

yz17a)Xb) | c)

G Y 7aXb))| e

G

model HCA for L, = L(G,). The HCA should
initial configuration H and generate all
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hexagonal arrays belonging to L. A natural choice for H, is the r.h.s of

the terminal rule. The arrays of L, say H, H, ..., H, ... are such that

1

H, has i concentric hexagons of Y's. So the HCA can generate H, , from

H, in a very natural way, in 2 steps, as described by the transition
function below.

6(Y)=Y, §(G) =G, sV =V, &0 =6
(where § (x) = y means that a cell in state x goes to state y independent
of the states of its neighbours.)

—h
o

& q, = q, if a,b,c,dse,f = q,

=Y if exactly 1, or 2 adjacent neighbours, are in state
G (i.e., the cell borders an H. )

= G if exactly 1, or 2 adjacent neighbours, are in
state Y, (i.e., the cell is on an edge of H_.)

Clearly, this HCA goes through a series of configurations Cop Cps vens
Om. ... Where every C,, belongs to the language and every ONZ does not. As
per the convention adopted in section 2, if Om is a hexagon belonging to
the language, then the bottommost cell D of C, should go into a special

state to indicate this. So we can modify the transition function such that

S q |= (G if a =Y and bc,det = q,

and keep the rest of the function unaltered. Also, the initial configuration
is changed to
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G G
G
G G
(G,#)

The first 3 configurations this HCA goes through are shown in fig.

Now, it is clear why the distinguished cell is allowed to change with
time; it is visually more appealing. This is merely a matter of convenience;
it is possible to fix the distinguished cell a priori and to send signals to it
when it must enter a special state.

Another point to note is that in the above example, the
concatenation of three arrowheads (a,b,c or x,y,z) Iis simulated
simultaneously in one transition by the HCA; all boundaries of the hexagon

expand simultaneously. This is possible because of symmetry in the resulting
hexagons.

example 3.2 G, is a R:CF grammar
G,=(V, I, P, S, 1)
V=V, UV, Vs=1{8} V, = {xy,z}

I= {0, B},
P=P UP,P ={S>(((S72x)\y | 2)
B
B B
P, = {S > B}
B B
B

= {O<B>0"

X

L=1{L, L, L} L

ﬁv. = {O<B>O"B}, L, = {BOXB>O"B}
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The first three members of L(G,) are shown in fig. 10.

In this grammar, again, successive hexagons I_. - I., ... can be
generated by padding the previous hexagon with an outer border. Thus a

generator model HCA for L, = L(G,) starts with initial configuration

B

B B
(B,#)

Let Hy, H, ..., H,

i

, ... be an enumeration of the hexagons in L,. The
HCA goes through a sequence of transitions such that at time t = i, the
configuration of the HCA is H,, with node D indicating membership in L, by
symbol #. The transition function can be given as follows:

§(B) =B, §(0) =0, § ([B,#1) = B,

mﬁov = O if q, is on the border but not a vertex,
= B if q, is a new vertex adjacent to B,
= [B,#] if q, is a new vertex adjacent to [B,#].
= q, otherwise

In general, for any hexagonal kolam array grammar (HKAG), a
generator model HCA can be designed by examining the production rules

present in the grammar. Let G be an HKAG G = (V, I, P, S,Z)

\Y

<H U v, v, = non-terminals

V, = intermediates
P = P; U P,
L = set of intermediate languages
I = set of terminals
P, has rules of the type S, ~»S, #a | S,"b | S, | c

where mz m~m<1 a,b,c € Vs
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HuN has a terminal rule mHIV H,

where mﬂm<1 H is a hexagonal array.

Following the pattern along which derivation proceeds, the HCA
should generate strings over mH<~. using rules from P, where S, occurs on
the l.h.s of the rule in P,. It should then construct H, and concatenate
arrowheads according to the string generated. A deterministic HCA would
thus work as follows: The initial configuration is H, with cell D marked
as the distinguished node. D can be viewed as the topmost cell of a 1-D
CA with cells arranged vertically rather than horizontally. This CA can
simulate a Turing machine which enumerates all strings generated using P.
Such an enumeration is possible because these strings belong to a regular
or linear language and hence form a recursive set. Whenever the CA
enumerates a new string S, oL, the enumeration process is suspended.
Initially H exists in the configuration; at later stages it will have to be
reconstructed. Since H is finite, its description can be included within the
state of D, and H can be constructed. o is a string of intermediates, say,
a,a,...8 . After H has been constructed, D sequentially examines a, i=1to
n. Each a, has, associated with it, a direction of concatenation, 7' or N or
}. Let 7 be the direction of concatenation. Then D sends a signal to
vertex B, signifying that an arrowhead from language L, is to be appended
to the two edges adjacent at B. To make all cells o:,gmmm edges react
simultaneously, B must initiate a firing squad algorithm on the edges. Then
the cells again participate in simulating a Turing machine to enumerate
the strings of L . When a string of appropriate length (with respect to
concatenation) mm, generated, enumeration stops and the string is
concatenated to the arrowhead. B now sends a signal to D to indicate that
the concatenation is complete and the next symbol a,, may be scanned.
Note that if the arrowhead is to be appended at D itself, then after
concatenation, the new distinguished cell as well as the 1-D vertical CA
below it are shifted one unit downwards. When D has finished processing
all a, the resulting hexagon above D (i.e., ignoring the vertical string below
D) is one which belongs to the language. So for one time unit, D enters a
special state to indicate membership in L. It then erases the hexagon (to
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avoid overlap with the next one) and resumes the suspended process of
enumerating strings over mH<N. as per P.. Thus the HCA systematically
generates all hexagons in L(G).

For accepting the language L = L(G) where G is an HKAG, the
initial configuration of the HCA will be some convex hexagon H’, with the
bottommost cell D marked as the distinguished node. The HCA has to
decide whether H'€ L(G). First consider some simple examples.

example 3.3 Consider O:.n:m grammar defined in example 3.1. H' is the
input (initial configuration) of the acceptor HCA. The acceptor can merely
reverse the steps of the generator, and, after every alternate step, check
whether the hexagon remaining is H,. This can be done as follows: All
border cells in state G (or Y) with non-boundary adjacent cells in state
Y (or G) go to state BG (or BY). For testing whether a cell is on the
boundary, states BG and BY are considered equivalent to q,. When a
boundary cell is unable to make a transition, it sends a signal to D.
(Signal travels vertically down and then along the edge to D.) When D
gets such a signal, it initiates a checking algorithm which determines (i)
whether the non-quiescent non-BG/BY cells form a convex hexagon,
and, if yes, (ii) whether this convex hexagon is equal to H. If the answer
to either (i) or (ii) is No, H' ﬁ L(G,), else H'€ L(G,). Since H' is finite,
the checks in (i) and (ii) run in finite time. Thus EQL can be accepted.
In fact, rejection is also done, so the HCA described above is a recogniser
for L.

In the general case, acceptance becomes more difficult. The
technique used for the generator HCA can be used here also; i.e.,
generate strings S &, « & <M. using P, and now delete rather than append
arrowheads according to o< ., If at any stage deletion fails because the
arrowhead present is not a member of the intermediate language, then
string S is discarded and a new string m_on. is generated. Also, if after
all arrowheads corresponding to & have been deleted, the hexagon left
behind is not H, the r.h.s. of the terminal rule in G, then m;x is
discarded and a new S oK is generated. The input must be available for
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testing the new string, so the preceding deletes should be only logical, i.e.,
it must be possible to recover the input configuration. However, if for a
5K generated using P, deleting arrowheads corresponding to & leaves
behind H, then clearly the input H' belongs to L(G). So D goes into an
accept state. This means that through this mode of acceptance, rejection

may take infinite time; i.e., recognition may not always be possible.

Another method of acceptance is to use the generator model HCA as
a subroutine to generate hexagons belonging to L(G). Every hexagon so
generated can be shifted so that its edges AB and BC are aligned with
those of the input H' (using algorithm 2). Then at each cell the two
hexagons are compared. If no cell sends a reject value to D, then D
accepts the input. Else the generator is resumed to generate further

hexagons.

A parser for the language will not only determine membership of the
input, but further, if the input belongs to the language, it will produce a
sequence of rules of G, which, when applied in that order starting from
the start symbol, derive the input. The acceptors described above can be
modified to restricted parsers in the sense that recognition may take
infinite time, but if the input is accepted, the corresponding sequence of
rules is also generated. To do this, consider the first model. Strings
S, are generated and tested. Along with the string, the rules used to
generate it can also be stored. Then, if a string leads to success, the set
of rules is already stored within the cellular array. In the second model,
the generator HCA is used. This HCA can store, in the vertical 1-D array
below its distinguished node, the rules used to generate the hexagonal
array. Then in case the two hexagons match, the parsing sequence is again

stored within the cellular array.

Both the accepting methods discussed above are slow and inefficient.
However for most specific examples, efficient acceptors can be designed
after an ad hoc examination of the production rules present.
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4. GENERATING AND RECOGNISING CONTROLLED TABLE HEXAGONAL
L-ARRAY LANGUAGES

L-systems were originally defined for string languages to describe
the growth of biological systems. These systems have been extended to
rectangular arrays"®, circular patterns®, and hexagonal arrays®. In
this section we will study the latter and their relation to HCA.

The controlled table hexagonal arrays®™ are either 0-L (context
independent) or 1-L (context dependent, dependence on one neighbour). The
starting point (axiom) is a hexagon, and there are three types of tables
corresponding to the three directions of concatenation A, X, and 4_\ (6
directions may also be considered.) Each table consists of 0-L rules in
normal form a - bc or 1-L rules in normal form ab - acd with
neighbourhood context. Application of a table means that the set of rules
in the table acts in parallel along the entire edge defined by the
arrowhead. The sequence of application of tables in the arrowhead
directions is controlled by regular, context-free or context-sensitive
languages. Consider the example given below.

example 4.1 G, = (V, H, ®, C)

V = {O, X} is the set of terminals,

H = O X is the axiom,

e - {T, T,, T,} is the set of tables, and
C = {(T,T,T)" | n ) 0} is the control language regulating the
application of tables.
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=]
1

{ OX / 00X, XX / XXX }
{ XO X\ X00, XX R XXX }
o} o X | X
{f X O, X X}
X X

=
1

|
1

The first three members of this language are shown in fig. 11. The
sequence of application of tables for generating H, is shown in fig. 12.

To give a generator HCA for this language, note that an HCA can
incorporate the effect of a control string T, T,T, in one step, whereby all
border cells change state from X to O, and all quiescent cells change state
to X if they have a neighbour in state X. Thus, starting with the axiom Hj
as the initial configuration (bottommost cell in state [X,#] rather than X),
the HCA generates all hexagons belonging to the language through the
following transitions :

6(0) = O, §(X) = 0O, 8 ([X,#]) = O,

¢(g,) = X if all non-quiescent neighbours are in state X,
= [X,#] if there is only one non-quiescent neighbour, in state [X,#]
= q, otherwise.

example 4.2 G, = (V, H, ¢, C) where

Vv = {0, B, P, X}
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|
n

{B # BO, O # 00, P # PO, X # XO}
{B X BB, ON BO, P X BP, X X BX}
Eew.oeo.weﬁxeﬁ

P P P P

S
] i

Here T, has the effect of appending an arrowhead with all Os, T,
appends arrowheads with all Bs, and T, appends arrowheads with all Ps.
This is an example of a grammar where control Mﬁ:ﬁ._ﬁ: | n ) 0} gives a
language different from that obtained with control (L, T.E) | n» 0} Let
C be the former control, i.e., a context-sensitive control. To generate L,
= L(G,), an HCA must start with initial configuration H,), and revert to it
after generating each H, because H,, cannot be directly generated from
H. To achieve this, let the configuration be H, i > 0 (obtained through
control Hmemeu:, and let D, (the distinguished cell of H,) be in state [P,#].
D, sends a signal to all quiescent cells bordering H,, to change to a special
state $. D, then fires all edges which delete symbols P, B, O and then
pass the delete signal inwards. So in i time steps the configuration
changes to one with axiom H,, markers $ along the boundary positions of
H,, (to be constructed), and special state S at cell D, of H. See fig. 13.
D, now sends a signal to B which fires off edge ABC for applications of
table T,. With each application of T,, edge ABC advances towards the $8.
When it reaches the $ edge, application of T, is stopped and a signal is
sent to F. The process is repeated on edge EFA, applying T,, until $& are
reached, and then on edge CDE, with table T,. At this stage, D, reverts to
state P, D, enters state [P,#], and the process of generating H,, begins.
(H, is generated from H, by a slight modification of the above.) Thus all
hexagons belonging to L, are generated.

For the general case, let G = (V, H,, € , C) be a controlled table
hexagonal L-array grammar. To generate L(G), the HCA begins in the
initial configuration mo. As in the case of HKAG, the 1-D CA vertically
below D systematically generates all strings in C. (C may be regular, CF
or CS.) For every such string o generated, the HCA constructs axiom H,
(which may have been overwritten for the previous string), and, by sending

signals to appropriate vertices, applies tables in the sequence defined by .
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The process is similar to that of appending arrowheads in an HKAG
generator. One point of difference is that in a 1-L system, the quiescent
boundary cells have to change state depending on not only the boundary
cells but also cells one unit inside the boundary. This requires an
intermediate step. For instance, along the 7/ direction, to implement a rule
ex = egh, the quiescent cell does not know state e directly. So the
intermediate step brings information outwards as follows:
a

[ % = [ex].

In the next step, the e and x cells are in states ye, ex for some y.
So the quiescent cell (in position b) now knows both e and x directly from
its neighbour and can accordingly change state. Such intermediate

transitions must be defined for all directions.

Recognising such languages follows the method described in section
3: generate-and-compare. So it is not discussed here. In both types of
languages, this recognition method will be inefficient, and it will be of
interest to investigate efficient recognition algorithms for the HCA.

5. CONCLUSION

In this paper, hexagonal cellular automata have been introduced as a
variation of the 2-D RCA, and their relationship to hexagonal array
languages has been investigated. One of the applications of hexagonal
arrays is to the 2-D representation of 3-D scenes composed of rectangular
parallelepipeds. Manipulating (rotation, translation and scaling) such scenes
is an important part of computer graphics software. It would be very
useful if efficient parallel algorithms for these, running on 2-D or even 3-
D cellular processors, could be devised. Also, it is of interest to find more
efficient ways of accepting hexagonal array languages. This could assist in
pattern recognition where the patterns are types of blocks.
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FIGURES

O: cell in HCA
O : its neighbour

Figure. 1.
Neighbourhoods in HCA

Figure. 2.
HCA with family
of vertical lines

missing.
NN NN
Nja Nb N
N / / N —-J@C_\m. w
/M N JX.x \le HCA embedded
AN
TN // on RCA
N d
NINEN D
AN

D

Figure. 6.
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Figure . 4.
Lengths of sides of
a convex hexagon.

Figure. 5.
1-D CA embedded in
HCA configuration

\
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Firing Squad Algorithm
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X X
X X X
0 X X 0 X
0 e o o}
0 X T1 X 0 X
X o X
X X X
X
X
X X
X o) - X .
0
X 0 o = H
0 0 X T3
X 0 X
X X
X

Control string = ._._ ._.N ._.w
Figure. 12 Derivation of Hy in L(Gy)

$
$5 3 ¢
e k)
$ _____>Boundary of
M Hi,1 to be
$ Constructed
$

To be deleted before
constructing Hj, 1

Figure. 13. Generator HCA for L(G,)
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