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Introduction

Let G be a simply connected, semi-simple algebraic group over C. Let
P ⊂ G be a parabolic subgroup, and let Y = G/P be the homogeneous
space. In a recent paper [KS], we showed that

if Y = G/P is as above and f : Y → Y is a finite (algebraic) self
map of degree > 1, then Y ∼= Pn.

The paper arose out of an attempt to understand the following problem
of Lazarsfeld [L]:

Problem -99 Suppose G is a semi-simple algebraic group over C, P ⊂ G
a maximal parabolic subgroup, Y = G/P . Let f : Y → X be a finite,
surjective morphism of degree > 1 to a smooth variety X; then is X ∼= Pn?
(n = dimX = dimY )

Lazarsfeld (loc. cit.) answers this in the affirmative when Y = Pn, using
the proof by S. Mori [M] of Hartshorne’s conjecture. We also showed that
Lazarsfeld’s problem has an affirmative answer if Y is a smooth quadric
hypersurface of dimension ≥ 3. This includes the case of the Grassmannian
Y = G(2, 4). The general case seems to be open even for other Grassmann
varieties.

Our goal in this paper is to study the analogous problems for continuous
maps. Our homogeneous spaces are all complex submanifolds of complex
projective spaces CPn, with the usual topology; we drop the C to simplify
notation. We show

Theorem 1 Let Q be a smooth quadric hypersurface in Pn+1, where n =
2k + 1. Then for any positive integer d ≡ 0 (mod 2k) there exist continuous
maps f : Pn → Q satisfying f∗(OQ(1)) = OPn(d).

Note that such maps have degree greater than one whenever d > 1. We also
show
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Theorem 2 Let Q be a smooth quadric hypersurface in Pn+1. Then there
exists a positive integer m and continuous maps of degree (m · d)n from Q
to Q, for all d ∈ N.

Clearly Theorem 1 implies Theorem 2 in the case when n is odd, since there
is an obvious map Q → Pn of degree 2. However, we also construct self
maps of Q of odd degree, when n is odd. Observe that the degree of any
self map of Q is an n-th power.

Our proofs are by obstruction theory, using the standard (Bruhat) cell
decomposition, and by induction on the dimension. The cases when n is
even and odd are dealt with separately, and the induction is in steps of 2.
From the computation of the homotopy groups of quadrics, such a division
seems natural.

In the paper [KS], we had also proved:

Proposition 0 Let k ≤ n, 2 ≤ l ≤ m be integers, such that there exists a
finite surjective morphism between Grassmann varieties

f : G(k, k + n) → G(l, l +m).

Then k = l,m = n and f is an isomorphism.

We do not know whether there are continuous maps of degree bigger than
one f : G(k, k + n) → G(l, l +m) with k 6= l, m 6= n and kn = lm.

We wish to thank P. Polo and A. R. Shastri for stimulating discussions.

1 Preliminaries

1.1 Cell structure

We begin by recalling the cell decomposition of a quadric hypersurface in a
form convenient for us. We will proceed by induction on dimension. The
two smallest dimensions are :

n = 1: Q is P1 ↪→ P2 as a conic and has a natural cell decomposition
Q = C ∪ {∞}. We have for d ∈ N maps Fd : Q → Q (z 7→ zd)
preserving the cell structure.

n = 2: Q is P1 ×P1 ↪→ P2 via the Segre embedding and has a natural
cell decomposition

Q = (C×C) ∪ (C× {∞}) ∪ ({∞} ×C) ∪ {(∞,∞)}.

For all d ∈ N, we have maps Fd : Q → Q ((z, w) 7→ (zd, wd))
which preserve the cell structure.
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We henceforth assume that n ≥ 3.

Scholium 1 Q has a cell decomposition with cells in each even (real) di-
mension (the Bruhat cell decomposition) such that we have:

1. For n ≥ 3, Q(2n−2) = C is the projective cone over Q′ ⊂ Pn−1, a
smooth quadric hypersurface of complex dimension n− 2.

2. There is exactly one cell in each even (real) dimension except in di-
mension n for n = 2k.

3. Q(n) may be explicitly described as follows:

n = 2k: Q(n) = L′ ∪ L′′, where L′, L′′ ∼= Pk are linear subspaces of
Pn+1 and L′ ∩ L′′ = L ∼= Pk−1.

n = 2k + 1: Q(n) = L ∼= Pk is a linear subspace of Pn+1.

4. For n ≥ 3, Q(n+2) ⊂ C is the Thom space over Q′(n) of the complex
line bundle OQ′(n)(1).

Proof: Let p be any point of Q and let H ⊂ Pn+1 be a hyperplane tan-
gent to Q at p. Then Q ∩H = C is the projective cone over Q′ ⊂ Pn−1, a
smooth quadric hypersurface of complex dimension n−2 (i.e. C is the Thom
space of the complex line bundle OQ′(1) = OPn−1(1) |Q′). By induction on
dimension we get a cell decomposition of Q′. If Q′(m) is the m-skeleton of Q′,
and C(Q′(m)) is the Thom space of OQ′(m)(1), then C(Q′(m)) − C(Q′(m−1))
is a union of cells of dimension m+2. Thus, we obtain a cell decomposition
of C. Since Q− C = Cn, we obtain the desired cell structure. �

We shall use the following construction.
Construction 1 LetX, Y be compact topological spaces, L andM complex
line bundles on X and Y respectively. Let f : X → Y be a continuous map,
such that there is an isomorphism ϕ : L⊗d → f∗(M), for some positive
integer d. Then there exists a map Φ : L → M giving a commutative
diagram

L
Φ−→ M

↓ ↓
X

f−→ Y

where Φ is the d-th power map on fibres of the vertical arrows. The re-
striction of Φ to the S1-bundles X̃, Ỹ of L, M respectively induces a
map f̃ : X̃ → Ỹ , which has degree d along the fibres. If C(X,L) and
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C(Y,M) denote the Thom spaces of L and M respectively, we have a map
C(f) = C(f, ϕ) : C(X,L) → C(Y,M) induced by Φ.

In particular, if X ⊂ PN is a projective variety, f : X → X an algebraic
self-map, L = M = OX(1), and ϕ is an isomorphism of algebraic line
bundles, then C(X,L) is the projective cone (in PN+1) of X and C(f) can
be regarded as an algebraic self-map of C(X,L). Note that ϕ is unique upto
a scalar multiple.

We had noted the existence of morphisms Fd : Q→ Q for each d > 0, for
a smooth quadric Q of dimension one or two. These maps satisfy Fd1 ◦Fd2 =
Fd1d2 for all d1, d2 > 0. By repeatedly applying the above constructions, we
obtain

Lemma 2 For each d > 0, there is an algebraic morphism

Fd,n : Q(n+2) → Q(n+2)

and an algebraic isomorphism

ϕd,n : OQ(n+2)(d) → F ∗d,n(OQ(n+2)(1))

such that

(i) under the identification (by Scholium 1)

Q(n+2) = C(Q′(n),OQ′(n)(1))

we have
Fd,n = C(Fd,n−2, ϕd,n−2)

.

(ii) Fd1,n ◦ Fd2,n = Fd1d2,n.

�

If Fd,n−2 : Q′(n) → Q′(n) extends to a continuous map f ′ : Q′ → Q′, then
the isomorphism ϕd,n−2 can be extended to an isomorphism (of topological
complex line bundles)

ϕ′ : OQ′(d) → f ′∗(OQ′(1)).

Then the induced continuous map C(f ′) = C(f ′, ϕ′) : C → C restricts to
Fd,n on Q(n+2) ⊂ C. Since Q is obtained from C by attaching Cn via a map
a : S2n−1 → C, the map C(f ′) : C → C extends to a map f : Q→ Q if and
only if C(f ′)∗([a]) = m[a] ∈ π2n−1(C), for some m ∈ Z. Thus, we need to
compute π2n−1(C), and the action of C(f ′)∗ on it.
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1.2 Computation of Homotopy groups

We have the S1-fibration (Hopf fibration) S2n+3 → Pn+1. Let Q̃ → Q be
the restriction of this to Q.

Scholium 3 Q̃ is the total space of the unit sphere bundle of the tangent
bundle of Sn+1. Hence we have a fibration

Sn → Q̃→ Sn+1. (∗)

Proof: If (z0 : · · · : zn) are homogeneous coordinates on Pn+1, ui = <(zi)
and vi = =(zi), then we may take

S2n+3 = {(ui, vi) |
∑

u2
i +

∑
v2
i = 2}.

We may assume that Q is defined in these coordinates by the equation∑
z2
i = 0, so that

Q̃ = {(ui, vi) |
∑

u2
i =

∑
v2
i = 1 and

∑
uivi = 0}.

Hence, the projection to the ui’s is a fibration of the required sort. �

For any subset A ⊂ Q, let Ã denote its inverse image in Q̃, so that there
is an induced S1-fibration Ã → A. For any abelian group G let 2G denote
its 2-torsion subgroup and let G/2 = G⊗ Z/2Z.

Lemma 4 (i) If n is odd, then for i ≤ 2n− 1, we have a short exact
sequence

0 → πi(Sn)/2 → πi(Q̃) → 2πi(Sn+1) → 0.

(ii) If n is even, then we have a split exact sequence for each i

0 → πi(Sn) → πi(Q̃) → πi(Sn+1) → 0.

Proof: In the long exact sequence

· · · → πi(Sn) → πi(Q̃) → πi(Sn+1) ∂i→ πi−1(Sn) → · · ·

the boundary maps ∂i are the maps on πi induced by a map (well defined
upto homotopy) ∆ : ΩSn+1 → Sn coming from the fibration (∗). Suppose s :
Sn → ΩSn+1 = ΩΣSn is the map inducing the suspension homomorphisms
Σi : πi(Sn) → πi+1(Sn+1). Since (∗) is the spherical fibration associated
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to the tangent bundle of Sn+1, it is well known (see [W] IV, (10.4)) that if
θ = ∆ ◦ s,

[θ] = 1 + (−1)n+1 ∈ πn(Sn)

where 1 ∈ πn(Sn) is the standard generator. From the Freudenthal Suspen-
sion theorem, Σi is an isomorphism for i ≤ 2n−2, and Σ2n−1 is a surjection.

We shall often make use of the following well known result (see [W] XI,
(1.11), (1.12), (1.16)).

Scholium 5 Let f : Sn → Sn be any continuous map of degree d, where
n > 1. Then the induced map

f∗ : πi(Sn) → πi(Sn)

is

(i) multiplication by d if i < 2n− 1

(ii) multiplication by d on the torsion subgroup, for i = 2n−1 (and in
particular on π2n−1, if n is odd)

(iii) multiplication by d2 on π2n−1(Sn)⊗Q.

�

If n is even, then [θ] = 0 so that θ∗ = 0. Hence, ∂n+1 vanishes. Thus (∗)
has a homotopy section and the long exact sequence for this fibration splits
into short exact sequences as asserted in (ii).

If n is odd, Scholium 5 implies that θ∗ acts as multiplication by 2 on
πi(Sn) in the range i ≤ 2n− 1. This proves (i). �

2 The odd dimensional case

We begin by recalling the statement of Theorem 1.

Theorem 1 Let Q be a smooth quadric hypersurface in Pn+1, where n =
2k + 1. Then for any positive integer d ≡ 0 (mod 2k) there exist continuous
maps f : Pn → Q, where f∗(OQ(1)) = OPn(d).

Proof: This is obvious for n = 1. We may assume, by induction, that
the theorem holds for quadrics of dimension n− 2.
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Pn has a cell decomposition where the skeleta are linear projective sub-
spaces of smaller dimension. By Scholium 1 we have a cell decomposition
of Q whose n − 1 skeleton is the projective cone C over a smooth quadric
Q′ of dimension n − 2. For any d′ ≡ 0 (mod 2k−1), the induction hypoth-
esis gives us a map f ′ : Pn−2 → Q′ satisfying f ′∗(OQ′(1)) = OPn−2(d′).
Since Pn−1 is the projective cone over Pn−2, Construction 1.1 yields a map
C(f ′) : Pn−1 → C.

The obstruction to extending this map to a map Pn → Q is a class
O(C(f ′)) ∈ H2n(Pn, π2n−1(Q)). By Lemma 4, the group π2n−1(Q) has
exponent 4. Let f̃ be the composite

Pn−1 α→ Pn−1 C(f ′)→ C,

where α is the restriction of the map β : Pn → Pn preserving the cell
structure, and given in suitable homogeneous coordinates by

(z0 : · · · : zn) 7→ (z2
0 : · · · : z2

n).

The obstruction to extending f̃ to a map Pn → Q is

O(f̃) = β∗(O(C(f ′))) ∈ H2n(Pn, π2n−1(Q)).

But clearly β∗ = 0 on this cohomology group.
Let f : Pn → Q be an extension of f̃ . We have a commutative diagram

of integral cohomology groups

H2(Q)
f∗−→ H2(Pn)

↓ o ↓ o
H2(Q′)

f ′′∗−→ H2(Pn−2)

where f ′′ is the composite of f ′ with the restriction of β. Since f ′′∗ is mul-
tiplication by 2d′, so is f∗. �

We now prove the following refinement of Theorem 2, in the odd dimen-
sional case.

Theorem 2′ Let Q ⊂ Pn+1 be a smooth quadric hypersurface with n =
2k+1. Then there exists a continuous map f : Q→ Q of degree dn whenever

(i) d ≡ 0 (mod 2k), or

(ii) d = e2
n−1

, for some integer e.
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Proof: Clearly (i) follows from Theorem 1. We prove (ii) by showing
that for the chosen integers d the map Fd,n : Q(n+2) → Q(n+2) extends to a
map f : Q → Q. By induction, we may assume that Fd,n−2 : Q′(n) → Q′(n)

extends to a map f ′ : Q′ → Q′, for Q′ a smooth quadric hypersurface of
dimension n − 2, and d = e2

n−3
for some e > 0. We have constructed (see

(1.1)) a map C(f ′) : C → C which satisfies C(f ′) |Q(n+2)= Fd,n. By com-
puting C(f ′)∗ on π2n−1(C) we will show that the obstruction to extending
the four-fold composite C(f ′)4 to a self map of Q vanishes.

There is a filtration F on π2n−1(C) given as follows. Take F0 = π2n−1(C);
F1 is the kernel of the composite

π2n−1(C) '→ π2n−1(C̃)
γ→ H2n−1(C̃,Z),

where γ is the Hurewicz map; and finally F2 = im (π2n−1(Q(n)) → π2n−1(C)).
Clearly C(f ′)∗ is compatible with this filtration and induces a map

gr FC(f ′)∗ on gr Fπ2n−1(C). This map may be computed as follows.

Lemma 6 (i) F2, F1/F2 are vector spaces over Z/2.

(ii) The natural composite map

π2n(Q,C) → π2n−1(C) → F0/F1 ↪→ H2n−1(C̃,Z)

is an isomorphism, giving a direct sum decomposition

π2n−1(C) ∼= F1 ⊕ π2n(Q,C).

(iii) gr FC(f ′)∗ is multiplication by dn.

Proof: We have a commutative diagram with exact bottom row

H2n(Q̃, C̃) ∂→ H2n−1(C̃,Z)
α ↑ ↑ γ

0 → π2n(Q̃, C̃) → π2n−1(C̃) → π2n−1(Q̃) → 0

The boundary homomorphism ∂ is an isomorphism by the long exact
sequence of homology for the pair (Q̃, C̃), and α is an isomorphism by the
relative Hurewicz theorem. This proves (ii) and gives an isomorphism F1

∼=
π2n−1(Q̃). The self map C̃(f ′) of C̃ is of degree dn and this gives (iii) for
F0/F1.

Since Q(n) = L is a linear projective subspace of Pn+1, L̃ is an Sn in Q̃;
it is easy to check that, in the fibration (∗), this maps isomorphically to a
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great sphere S ⊂ Sn+1. In fact L̃ is a section of the sphere bundle of the
tangent bundle of S which is contained in Q̃ by Scholium 3. Let D− be a
hemisphere capping S in Sn+1 and let U be its inverse image in Q̃. We have
the following

Sublemma 7 Let i : Sn → Q̃ be a fibre of (∗) lying over a point of D−.
A unit tangent vector field v on S ∼= Sn gives a map v : Sn → Q̃ which is
homotopic within U to the inclusion i.

Proof: Let p be the point of D− orthogonal to S (i.e. the “pole”). We
have a map ` : S × [0, π] → D− given by

(x, t) 7→ sin(t) · p+ cos(t) · x.

For all (x, t) ∈ S× [0, π] let n(x, t) be the tangent vector at the point `(x, t)
given by sin(t) · x − cos(t) · p. Then, d`(x,t)v(x) is orthogonal to n(x, t) in
the tangent space of Sn+1 at `(x, t) so that we get a map H : S× [0, π] → Q̃
given by the formula

(x, t) 7→ d`(x,t)v(x) + sin(t) · n(x, t).

Clearly H(x, 0) = v(x) and H(x, t) = x considered as a tangent vector at p.
�

Thus we have isomorphisms

F2
∼= im (π2n−1(L̃) → π2n−1(Q̃)) = im (π2n−1(Sn) → π2n−1(Q̃)),

where Sn → Q is the inclusion of the fibre of (∗). Hence F2 is a vector
space over Z/2, and by Scholium 5 the action of gr FC(f ′)∗ on it is by
dk+1 ≡ dn (mod 2). Further, we obtain an isomorphism

F1/F2
∼= π2n−1(Q̃)/im (π2n−1(L̃)) ∼= 2(π2n−1(Sn+1, D−)),

so that F1/F2 is a Z/2-vector space.

Let g : (Dn+1, Sn) → (Q̃(n+1), L̃) be the generator of πn+1(Q̃(n+1), L̃) ∼=
πn+1(Q(n+1), L) ∼= Z. We have a diagram, commutative upto homotopy,

(Dn+1, Sn) → (Q̃(n+1), L̃)
ϕd ↓ ↓ F̃d,n

(Dn+1, Sn) → (Q̃(n+1), L̃)

9



where ϕd is a map of degree dk+1. From the Scholium 5 we see that (ϕd)∗
induces multiplication by dk+1 on π2n−1(Dn+1, Sn).

By the sublemma we have isomorphisms

πn+1(Q̃(n+1), L̃) '→ πn+1(Q̃, L̃) '→ πn+1(Sn+1, D−),

so that the composite ρ : (Dn+1, Sn) → (Sn+1, D−) of g and the natural

map (Q̃(n+1), L̃) → (Sn+1, D−) is also a generator for πn+1(Sn+1, D−). By
the Freudenthal suspension theorem, ρ∗ is an isomorphism on π2n−1. From
the diagram

H2n(Q̃, C̃;Z) ∂→ H2n−1(C̃, L̃;Z)
α ↑ ↑ γ

0 → π2n(Q̃, C̃) → π2n−1(C̃, L̃) → π2n−1(Q̃, L̃) → 0

where α, ∂ are isomorphisms,we see that

im (π2n−1(Dn+1, Sn) → π2n−1(C̃, L̃)) = ker(π2n−1(C̃, L̃) → H2n−1(C̃, L̃;Z)).

In particular, F1/F2 is contained in this image; thus C(f ′)∗ acts by multi-
plication by dk+1 ≡ dn (mod 2) on F1/F2,and this completes the proof of
(iii). �

From this lemma we see that we have ϕd ∈ Hom (π2n(Q,C), F1) = F1

and ψd ∈ Hom (F1/F2, F2) ⊂ End (F1) such that, for all pairs (a, b) in
π2n−1(C) = π2n(Q,C)⊕ F1 we have the equation

C(f ′)∗(a, b) = (dna, dnb+ ψd(b) + ϕd(a)).

Since both F1, F1/F2 are of exponent 2, it follows that the four-fold com-
posite of C(f ′) satisfies

C(f ′)4∗(a, 0) = (d4na, 0),

and this proves the theorem. �

3 The even dimensional case

In this section we prove the following theorem
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Theorem 2 Let Q be a smooth quadric hypersurface of dimension n = 2k.
There is an integer m such that for any positive d ≡ 0 (modm), the map
Fd,n : Q(n+2) → Q(n+2) extends to a continuous map f : Q → Q (of degree
dn).

Proof: Suppose that for some d > 0, the map Fd,n−2 : Q′(n) → Q′(n)

extends to a map f ′ : Q′ → Q′. Then the map C(f ′) : C → C, obtained by
the construction of (1.1), restricts to Fd,n : Q(n+2) → Q(n+2). We compute
below the obstruction to extending C(f ′) to a map f : Q→ Q.

As in the odd dimensional case, we begin by observing that we have the
diagram with exact bottom row

H2n(Q̃, C̃) ∂→ H2n−1(C̃,Z)
α ↑ ↑ γ

0 → π2n(Q̃, C̃) → π2n−1(C̃) → π2n−1(Q̃) → 0

where the vertical maps are Hurewicz maps. Since ∂, α are isomorphisms,
the composite

π2n(Q,C) → π2n−1(C) ∼= π2n−1(C̃)
γ→ H2n−1(C̃)

is an isomorphism, and

π2n−1(C) ∼= π2n(Q,C)⊕ π2n−1(Q) ∼= π2n(Q̃, C̃)⊕ π2n−1(Q̃).

From Lemma 4, we have a split exact sequence for each i

0 → πi(Sn) → πi(Q̃) → πi(Sn+1) → 0,

where the splitting is obtained from a homotopy section of (∗). Since
Q(n) = Q(n+1), the map πi(Q(n)) → πi(Q) is an isomorphism for i = n,
and a surjection for i = n + 1. In particular, the homotopy section of (∗),
and the inclusion of the fibre Sn ⊂ Q̃ of (∗), factor through Q(n). Hence
π2n−1(Q(n)) → π2n−1(Q) is surjective. Thus

π2n−1(C) ∼= π2n(Q,C)⊕ im (π2n−1(Q(n))).

We can refine this a little. Since πn(Q(n)) ∼= πn(Q) ∼= Z, there is a map
g̃ : Sn → Q̃(n), inducing a map g : Sn → Q(n), such that g̃, g represent
generators of πn, and g̃ is homotopic to the inclusion of the fibre of (∗);
further,

πn(Q̃(n)) ∼= Hn(Q̃(n),Z) ↪→ Hn(Q(n),Z),
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and (Fd,n)∗ acts by multiplication by dk on Hn(Q(n),Z). Then there is
an inclusion h : π2n−1(Sn) ↪→ π2n−1(C) induced by g and a homotopy
commutative diagram

Sn µ→ Sn

g ↓ ↓ g
Q(n) Fd,n→ Q(n)

where µ has degree dk.
Next, an easy computation shows that L̃′ ∼= Sn+1 ⊂ Q̃(n) ⊂ Q̃ maps

isomorphically onto Sn+1 in the fibration (∗). Further Fd,n restricts to a self
map of L′ of degree dk.

Thus we have a decomposition

im (π2n−1(Q(n)) → π2n−1(C)) = h∗(π2n−1(Sn))⊕ π2n−1(L′).

The action of C(f ′)∗ on the left is compatible with this decomposition, and
induces µ∗ on π2n−1(Sn), and (Fd,n)∗ on π2n−1(L′). Note that since n is
even, π2n−1(Sn) ∼= Z ⊕ π2n−1(Sn)tors (where the subscript “tors” denotes
the torsion subgroup).

Lemma 8 (i) C(f ′)∗ acts by multiplication by dn on π2n−1(C)⊗Q.

(ii) With respect to the direct sum decomposition

π2n−1(C) = π2n(Q,C)⊕ (Z⊕ π2n−1(Sn)tors)⊕ π2n−1(L′),

C(f ′)∗ has a matrix of the form
dn 0 0 0
0 dn 0 0
ϕ1 ϕ3 dk 0
ϕ2 0 0 dk+1


where

ϕ1 ∈ Hom (π2n(Q,C), π2n−1(Sn)tors)
ϕ2 ∈ Hom (π2n(Q,C), π2n−1(Sn+1))
ϕ3 ∈ Hom (Z, π2n−1(Sn)tors)

Proof: From the Scholium 5, the action of µ∗ on π2n−1(Sn)tors is by dk,
while it is by d2k = dn on π2n−1(Sn)⊗Q. The action of (Fd,n)∗ on

πn+1(L̃′) ∼= Hn+1(L̃′,Z) ∼= Hn(L′,H1(S1))
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is by dk+1. From the Scholium, this implies that (Fd,n)∗ acts by dk+1 on
π2n−1(L′). Hence (ii) follows, once we prove (i).

Now Q(n) = L′ ∪ L′′ where L′ ∩ L′′ = L ∼= Pk−1. Since πn(L) is finite,
we see that πn(Q(n)) → πn(Q(n), L) is injective. We have a diagram, whose
vertical arrows are Hurewicz maps,

Hn(Q(n),Z)
∼=→ Hn(Q(n), L;Z)

↑ ↑ o
πn(Q(n)) → πn(Q(n), L)

so that the Hurewicz map on πn(Q(n)) is injective.
Consider the quotient map

Q(n) = L′ ∪ L′′ → (L′ ∪ L′′)/L ∼= Sn ∨ Sn.

This induces an isomorphism on Hn, and hence an injection on πn. We have
a diagram

Q(n) Fd,n−→ Q(n)

↓ ↓
Sn ∨ Sn ρ−→ Sn ∨ Sn

where ρ = ρ′ ∨ ρ′′, and ρ′, ρ′′ are self maps of Sn of degree dk.
Let (Sn∨Sn)⊗Q be the space obtained from Sn∨Sn by localising at Q.

The map Q(n) → (Sn ∨ Sn)⊗Q extends to a map ψ : C → (Sn ∨ Sn)⊗Q,
since πi(Sn ∨ Sn)⊗Q = 0 for n < i < 2n− 1. Further, the diagram

C
C(f ′)→ C

ψ ↓ ↓ ψ
Sn ∨ Sn ⊗Q

ρ→ Sn ∨ Sn ⊗Q

commutes upto homotopy, since there are no obstructions to extending the
constant homotopy on Q(n).

The map ψ∗ : π2n−1(C)⊗Q → π2n−1((Sn ∨ Sn)⊗Q) is injective on the
summand

(π2n−1(Sn)⊕ π2n−1(L′))⊗Q = π2n−1(Sn)⊗Q

by construction. Hence the map

ν : π2n−1(C)⊗Q → H2n−1(C̃,Z)⊕ π2n−1((Sn ∨ Sn)⊗Q)
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is injective. The action of C(f ′)∗ ⊗Q is obtained by restricting the action

of C̃(f ′)∗ ⊕ (ρ⊗Q)∗ to the image of ν.
We have an isomorphism (see [W] XI (1.6), (1.7))

π2n−1(Sn ∨ Sn) ∼= π2n(Sn × Sn)⊕ π2n−1(Sn)⊕ π2n−1(Sn),

and ρ∗ acts by (ρ′ × ρ′′)∗ on the first summand, and by ρ′∗ = ρ′′∗ on the
other two summands. Since ρ′, ρ′′ have degree dk, one easily computes from
Scholium 5 that (ρ⊗Q)∗ acts by d2k = dn on π2n−1((Sn ∨ Sn)⊗Q).

Finally, we have an isomorphism H2n−1(C̃,Z) ∼= H2n−2(C,H1(S1)), so

that C̃(f ′)∗ acts on H2n−1(C̃,Z) by dn. This completes the proof of (i). �

We now easily complete the proof of the Theorem. Assume by induction
that, for all d ≡ 0 (modm′), the map Fd,n−2 : Q′(n) → Q′(n) extends to a
map f ′ : Q′ → Q′. Let m = (m′N)2, where N annihilates π2n−1(C)tors.
If d ≡ 0 (modm), then d = d1d2 where d1 = em′N and d2 = m′N for
some integer e. We then have self maps f ′1, f

′
2 extending Fd1,n−2, Fd2,n−2

respectively. Then C(f ′1 ◦ f ′2) = C(f ′1) ◦ C(f ′2) is an extension of Fd,n, and
one readily computes from the above lemma that it acts by multiplication
by dn on π2n−1(C). Hence C(f ′1 ◦ f ′2) extends to a self map of Q. �
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