
Two Ways to Scare a Gruffalo

Shikha Singh1, Kamal Lodaya2, and Deepak Khemani1

1 Dept of Computer Science and Engineering, IIT Madras, Chennai 600036, India
cs16d008@smail.iitm.ac.in, khemani@cse.iitm.ac.in

2 Bengaluru 560064

Abstract. This paper applies and extends the results from [22] on
agent-update frames and their logic. Several interesting examples of ac-
tions for forgery and deception, agent-upgrade and agent-downgrade are
considered. Going on from the earlier paper, a second interesting chil-
dren’s story is modelled using these ideas. A dynamic epistemic logic is
defined with all these actions and provided with a complete axiomatiza-
tion. Decision procedures for satisfiability and model checking follow. A
planning-oriented approach is also discussed.

Keywords: Agent-update · Deception · Forgery · Completeness and De-
cidability · Epistemic planning

1 Introduction

In [22], the authors modelled Julia Donaldson’s children’s story The Gruffalo [14]
in dynamic epistemic logic [28]. The technical enhancement required extending
the update modality, specified by an action frame U = (E,Oi, pre, post) [3], with
a product update operation providing the updated Kripke model. We extended
the semantics with agent-update frames U = (E,Oi, O

+
i , O

−
i , pre, post), which

allow adding and deleting agents at states of the Kripke model. The different
viewpoints of agents provided in an action frame are used to model deception.
An extended sum-product update operation underlies this development.

Our work showed us the flexibility and extendibility provided by action
frames. Our extensions were extremely general, and dealing with how to as-
cribe beliefs to the updated agents was a challenge. The axioms we came up
with seemed quite ad hoc.

In The Gruffalo, a mouse runs into a fox, owl and snake, all intent on eating
it. It deceives them by claiming it is friends with a terrible gruffalo, and they all
run away. In a magical twist, the gruffalo appears and wants to eat the mouse.
The mouse claims everyone is scared of it and takes the gruffalo to fox, owl and
snake, each of whom run away on seeing them. The gruffalo is convinced this
must be because of the mouse, and it too runs away.

Remark 1 (Historical). The story by Donaldson [14] is close to one in the Arabian
Nights [7]. Donaldson’s story is simpler and easier to model in pure doxastic
logic. It appears this Arabian nights story is derived from a simpler one in the
Buddhist Jataka tales, which go at least as far back as the 3rd century [13].

2 S. Singh et al.

In this paper we model a sequel: Julia Donaldson’s The Gruffalo’s Child [15].
Here is the story in brief. There are several agents in the story. We begin with
four: the gruffalo (child) g, mouse m, fox f and owl o, and all four believe in
each others’ agency. For simplicity, we do not consider a snake agent from the
book. The gruffalo has been brought up to believe that the mouse is big and
bad, which it is skeptical about. In the context of the story, “big and bad” means
that it eats gruffalos. The gruffalo first meets the fox (instead of the snake in the
story) and then the owl, both of whom reiterate this belief. The gruffalo remains
skeptical. It then meets the mouse who is not big at all, and it sees that it can
eat the mouse. The mouse utilizes the rising Moon to project a big shadow of
itself. This reverses the gruffalo’s belief and it runs away.

Remark 2 (Historical). A similar idea (a solar eclipse) was used by Tintin in
Prisoners of the Sun [16].

To model the story we introduce agent-upgrade and agent-downgrade op-
erations: the mouse is downgraded in the gruffalo’s eyes, and then the mouse
upgrades itself. We see them as variants of agent-addition and agent-deletion.
There is a different way to present belief upgrade and downgrade without chang-
ing the set of agents [24, 4, 25] using ordered Kripke models. Although we do not
study this, our work suggests that the two approaches may be inter-translatable.

Our paper [22] and the present paper began with a problem in AI planning.
This is seen as model checking from a logic perspective [10, 11], and has been
studied in DEL [18, 17]. We sketch how formulating it in logic suggests ways to
tackle it.

Remark 3 (On stories). Amarel [1] suggested using the folk problem of mis-
sionaries and cannibals to study planning problems in artificial intelligence.
Smullyan’s books, starting from [23], are masterpieces of logic puzzles of various
kinds. The book of [27] is an inspiring account of modelling epistemic puzzles
as stories. Woods’s books on fiction [31, 32] explore the paradox that Sherlock
Holmes lived in 221B Baker Street in the 19th century, and that he didn’t since
he didn’t exist then.

Here is an outline of the paper.
Section 2 gives some basic definitions of models, as well as the agent-update

semantics of [22]. In Section 3 we define a few kinds of agent-updates and a
logic with which we can use them. In particular we show how forgery can be
modelled in addition to deception, as well as new operations of agent upgrade
and downgrade. These updates are used to model the story from The Gruffalo’s
Child [15]. In Section 4 we prove the usual theoretical results: completeness of
the proof system, algorithms for satisfiability and model checking. Section 5 has
a discussion suggesting a more planning-oriented approach.

We want to thank Hans van Ditmarsch, Anantha Padmanabha, R. Ramanu-
jam and Yanjing Wang for discussions on the earlier paper [22] which led to the
writing of this paper.

Two Ways to Scare a Gruffalo 3

2 Models and logic

We begin with Kripke structures.

Definition 1 (Kripke model). M = (S, {Ri | i ∈ A}, V), where model M
consists of a set of possible worlds S and accessibility relations Ri ⊆ S × S for
every agent i ∈ A, and a valuation function V : Prop → 2S assigns states to a
proposition. sRit abbreviates 〈s, t〉 ∈ Ri and it means that at a world s, agent
i believes possible that the world may be t. When an agent relation is reflexive,
symmetric and transitive the worlds are said to be indistinguishable by the agent.
A pointed Kripke model is written as (M, s) where s ∈ S is a designated state.

In the figures, a directed arrow labelled with i from world s to world t depicts
sRit and an undirected line between two worlds, say s and t, labelled with i,
represents arrows for sRit and tRis.

We will assume a fixed set of propositions Prop throughout this article.
When used as an input to an algorithm, the size of a Kripke model is the sum
of the number of states |S|, the number of agents |A|, the sizes of the accessi-
bility relation |Ri| of every agent i and the size of the valuation, presented in
some convenient manner such as a bitvector of states for every proposition. The
asymptotically dominant component will be the sizes of the relations, which can
be quadratic in the number of states. The size of the valuation is only linear in
the number of states. Thus the input is of size O(|A||S|2).

2.1 Updating Kripke models with actions

We present our agent-updates in the style of Baltag, Moss and Solecki’s action
frames [3], further developed in [26].

We formally define Agent Update frames on a countable set of potential agents
A and a finite A ⊆ A of agents in a model [22]. The logic EL will be defined in
Definition 4.

Definition 2 (Agent-update frame on A ⊆ A). An agent-update frame is
a finite structure U = (E, {Oi | i ∈ A}, {O+

i | i ∈ A}, {O
−
i | i ∈ A}, pre)

with a finite set of events E, observability relations for each agent: Oi, O
+
i , O

−
i

⊆ E × E, the former two being transitive, together with function pre : E → EL
which assigns a precondition for each event. uOiv means that agent i perceives
event u as event v. uO+

i v means that event u adds agent i, we collect such added
agents i in the set Add(u). uO−i v means that event u deletes agent i, and Del(u)
is the collection of such deleted agents. A pointed agent-update frame is written
as (U, u) where u ∈ E is a designated event.

A pointed frame (U, u) with u ∈ E specifies the semantics of an action which
updates a Kripke model, applied at event u where the precondition pre(u) holds.
See Definition 3 below.

In pictures, in addition to the traditional (solid) arrows (here denoted as Oi)
in an action frame on A, we have two other types of arrows: sum arrows, dashed,

4 S. Singh et al.

for O+
i , which can range over new agents outside A, and del arrows, dotted, for

O−i on A in the agent-update frames. Where required, the precondition of an
event is shown alongside. Otherwise the precondition at an event u can be taken
as pre(u) = >.

We use letters a, b, g, h, i, j, k to denote agents, s, t to denote worlds in Kripke
frames, and u, v, w, x to denote events in the agent update frames throughout
the paper. We will use RX for a subset of agents X to abbreviate the transitive
closure of

⋃
{Rj | j ∈ X}.

A skip event, represented as an event with > precondition and self-loops for
all agents A, denotes no change. It will be frequently seen in agent frames.

The updated model after an action is formalized as a product of a Kripke
model with an action frame [3].

We defined sum-product update [22] to describe belief update for the existing
agents and to ascribe beliefs to the newly added agents, and drop beliefs of the
deleted agents. During model transformation, for an existing agent a, the possible
worlds for an agent in the updated model are inherited from the possible worlds
it considered earlier. In world (s, u) (after execution of event u in world s) of
the product model, another world (t, v) is possible if and only if t is possible
from s, and v is possible from u. For the agent i being added due to an agent
adding event u (i ∈ Add(u)), the worlds that i considers possible at (s, u) are
observer-dependent.

The beliefs of the existing agents are determined by product, the beliefs of
the newly added/deleted agents are determined by sum/difference. We describe
the transformation of a model on A when an agent-update frame on A is applied
to it, and we call it sum-product update. This is product update for agents in A,
along with sum and difference for agents in Add() and Del() respectively. An
agent’s deletion takes priority over its addition.

Definition 3 (Sum-product update). Given a pointed Kripke model (M, s)
on agents A and a pointed agent-update frame (U, e) with U = (E,O,O+, O−, pre)
on agents A, the updated pointed Kripke model (M ∗ U, (s, e)), is defined as:
(S′, {R′a | a ∈ A′}, V ′) on the updated set of agents A′ (those a such that R′a is
nonempty), where:

1. S′ = {(s, u) |M, s |= pre(u)} ∩ (S × E)
2. V ′(p) = {(s, u) ∈ S′ | s ∈ V (p)}
3. R′a is the transitive closure of (Qunf

a ∪Qasc
a ∪Qinh

a), where:
unforgotten: (s, u)Qunf

a (t, v) ⇐⇒ sRat and uOav and not uO−a v
ascribed: (s, u)Qasc

a (s, v) ⇐⇒ uO+
a v, for a ∈ (Add(u) \Del(u))

inherited: (s, u)Qinh
a (t, u) ⇐⇒ sRObs(u)t, for a ∈ (Add(u) \Del(u))

2.2 Logic

We define our agent-update logic using the BNF below. Let p ∈ Prop be a
proposition, Y,X,H be disjoint subsets of A and i an element. We add specific
agent-changing operators U given in the BNF below to obtain the language

Two Ways to Scare a Gruffalo 5

AUL. The sublanguage without these operators is called EL. The book of Van
Ditmarsch, Van der Hoek and Kooi [28] presents various dynamic epistemic
logics.

Definition 4 (Formulas of updates and language AUL).

U ::=skip | p for X | p dcv X | +Y for X | −Y for X |⇑ Y for X | ⇓ Y for X |
H : +Y dcv X | H : −Y dcv X | H : ⇑ Y dcv X | H : ⇓ Y dcv X

φ ::=p | ¬φ | (φ ∧ φ) | Piφ | 〈U〉φ

The modality Piφ is read as “agent i possibly believes φ”. The dual modality
Biφ = ¬Pi¬φ is read as “agent i believes φ”. The other modalities are action
modalities, 〈U〉φ is read as “after possible update U , φ holds”. The dual modality
is [U]φ = ¬〈U〉¬φ. The updates will be explained through examples in Section 3.

Each action operator U is provided a specific action frame F (U). More specif-
ically, given these fixed frames (defined in Section 3), the semantics of AUL can
be defined as follows, using Definition 3 for sum-product update. We use u for
the designated event of the update.

Definition 5 (Truth at a world in a model). Given a formula φ, at a pointed
Kripke model (M, s), the assertion “formula φ is true at world s in model M ” is
abbreviated as M, s |= φ and recursively defined as:

– M, s |= > (always),
– M, s |= p ⇔ s ∈ V (p),
– M, s |= ¬φ ⇔ not (M, s) |= φ,
– M, s |= (φ ∧ ψ) ⇔ (M, s) |= φ and (M, s) |= ψ, and
– M, s |= Piφ ⇔ for some t, sRit and (M, t) |= φ

– M, s |= 〈U〉φ iff (M ∗ F (U), (s, u)) |= φ

A formula is valid if it is true in all models at all worlds. It is satisfiable if
it is true in some model at some world.

We work only with transitive relations Ri, hence Biφ =⇒ BiBiφ is a valid
formula. It says that positive belief is introspective. In our models, ¬Biφ =⇒
Bi¬Biφ is not a valid formula. It says that negative belief is introspective. Chellas
has a textbook treatment of modal logic [9] which describes such correspondences
of valid formulas with properties of Kripke frames.

Independently of Wang et al [30] which has the same idea, we model existence
of agents at a world using presence of that agent’s accessibility at the world. We
sometimes use the “agency” of an agent i, by which we mean: An agent i exists at
a world s in model M iff (M, s) |= Pi>. An agent i exists for another agent j at
a world s if i’s agency holds at all the worlds t reachable by j from s. Formally,
BjPi>.

6 S. Singh et al.

2.3 Proof system

The proof system gives axioms and inference rules to prove valid formulas. There
are 8 axioms below and 2 standard inference rules. Several axioms for the update
operators will be presented in Section 3.

1. all instances of propositional tautologies
2. Ba(φ =⇒ ψ) =⇒ (Baφ =⇒ Baψ)
3. Baφ =⇒ BaBaφ
4. [U](φ =⇒ ψ) =⇒ ([U]φ =⇒ [U]ψ)
5. [U]p⇔ (pre(u) =⇒ p)
6. [U]¬φ⇔ (pre(u) =⇒ ¬[U]φ)
7. [U](φ ∧ ψ)⇔ ([U]φ ∧ [U]ψ)
8. 〈skip〉φ ⇐⇒ φ
9. From φ and φ =⇒ ψ, infer ψ
10. From φ, infer Baφ

3 Agent-update actions and their logic

In this section, we will examine different kinds of agent-update actions.
We first identify a set of agents whose beliefs remain unchanged at an event

in an agent-update frame.

Definition 6 (Observer). The set of observers Obs(u) at an event u in an
agent-update frame is those j with agency at u such that uOjv ⇐⇒ v = u.

A subset of these are deceivers. In brief, the deceived come to believe the
situation depicted at event v observable from u. But at u, the deceivers’ beliefs
are unchanged.

Definition 7 (Deceiver). In an agent-update frame if event v is observable at
u by X (uOXv), the set of deceivers Dcvr(u, v) is observers at u, Dcvr(u, v) ⊆
Obs(u), whereas the deceived Dcvd(u, v) are those D ⊆ X disjoint from Dcvr(u, v)
such that D ∪Dcvr(u, v) are observers at v.

Agents from A which are added, deleted, observed at u or deceived at v, or
to whom information is communicated participate in an action. We call other
agents remote.

The following axioms are validities. The first axiom says that no beliefs
change for remote agents. The next axiom is the epistemic action axiom (we
call it belief-action) which is common in the literature [3, 2, 28]. It says that for
agents which are observers at the designated event u, beliefs after the update
can be reduced to beliefs before the update.

11. 〈U〉Pkφ ⇐⇒ Pk〈skip〉φ, for k ∈ A \ (Add() ∪Del() ∪Obs(u) ∪Dcvd(u, v))
12. 〈U〉Pjφ ⇐⇒ Pj〈U〉φ, for j ∈ Obs(u)

Two Ways to Scare a Gruffalo 7

(a)

(b)

Fig. 1: (a)Alice informing Bob, F (p for {a, b}); (b)Alice lying to Bob, F (a :
p dcv b)

3.1 Private update and lying

Example 1. Suppose Alice knows the truth value of proposition p and Bob does
not know. The actions of Alice telling Bob the truth value of p (p for {a, b})
and Alice lying to Bob about the truth value of p (a : p dcv b) are depicted in
Figure 1 [29].

In Figure 1a, top left is a Kripke model, bottom left is an action frame with
Obs(u) = {a, b} and on the right is the product Kripke model. Alice telling Bob
that p is true is modelled with a single event with precondition p, such that both
Alice and Bob believe p after the update. Another agent c is unaffected.

Whereas in Figure 1b above left is a Kripke model, below left is an action
frame with Obs(u) = {a}, Dcvr(u, v) = {a} and Dcvd(u, v) = {b}, on the right
is the product Kripke model. Alice lying to Bob that p is true is modelled us-
ing v with precondition p, representing perception of Bob, while event u with
precondition ¬p and with an outgoing Bob-arrow to event v is the perception of
Alice. Agent c remains unaffected.

The next axiom expresses a validity about information communicated during
an update. The remote agent axiom covers the other agents.

13. 〈p for X〉Pjφ ⇐⇒ (p ∧ Pj〈p for X〉φ), for j ∈ X = Obs(u)

Next we have the axioms for lying. The first reduces to the previous truthful
update axioms. This is a pattern which we will repeatedly see in deception. The
belief-action axiom covers agents in H = Dcvr(u) = Obs(u) and the remote
agent axiom covers the rest.

8 S. Singh et al.

14. 〈H : p dcv X〉Pjφ ⇐⇒ (¬p ∧ Pj〈p for X ∪H〉φ), for j ∈ X = Dcvd(u, v)

3.2 Forgery with deception and without

The first agent-update operator we consider is agent-addition H : +Y dcv X
which is deceptive [20, 21]. For our example we consider a generalization where
the deceivers H do not reveal themselves but use a forged message pretending
to be from I.

(a) F (H forge I : +Y dcv X) (b) H forge I : +Y for X

Fig. 2: Forgery

Example 2. Figure 2a is from The final problem of Sherlock Holmes [12] with
H = {Moriarty}, X = {Dr.Watson}, and I = {Innkeeper}.

Moriarty wants to deceive Dr Watson away from Holmes by saying that
there is a lady who is ill at their inn and needs his help. Such an attempt would
not succeed because Watson would not believe Moriarty. So Moriarty forges a
letter from the innkeeper, and Watson gets deceived. Thus Watson believes the
innkeeper knows of the existence of the lady, whereas Moriarty knows that the
innkeeper knows nothing.

We consider lying H : +Y dcv X plausible when Y are new agents, thus the
deceived are credulous. The set of agents is now A′ = A ∪ Y . When all the Y
are new fictitious agents (we restrict to Y ∩A = ∅), the next axiom is valid. For
observers and remote agents, we do not repeat the axioms.

15. [H forge I : +Y dcv X]Bl⊥, for l ∈ Y = Add(v) (so 〈H forge I :
+Y dcv X〉Plφ ⇐⇒ ⊥)

16. 〈H forge I : +Y dcv X〉Pjφ⇔ Pj〈+Y for X ∪I〉φ, for j ∈ X = Dcvd(u, v)

The second axiom above is a belief-action which reduces the deceptive agent-
addition operator to a private agent-addition operator which is described next.

Two Ways to Scare a Gruffalo 9

Example 3. Figure 2b illustrates a variant of the Sherlock Holmes story if such
a lady did exist. For example, Moriarty could send a lady agent to the inn who
could then have pretended to be ill. The forged message from the innkeeper
would say a lady is arriving at the inn and has requested a physician’s help. The
innkeeper is not aware of the existence of the lady.

17. 〈H forge I : +Y for X〉Plφ ⇔ φ ∨
∨

h∈H Ph〈H forge I : +Y for X〉φ,
for l ∈ Y = Add(u) = Add(v) (so 〈H forge I : +Y for X〉Pl> is valid)

18. 〈H forge I : +Y for X〉Pjφ⇔ Pj〈+Y for X ∪ I〉φ, for j ∈ X = Obs(v)

3.3 Agent-deletion with deception and without

In modelling the gruffalo story we use commonsense conditions from AI, which
include actors: an action is carried out by an actor. Initially we have the agent
set A = {m, f, o}. Associated with this is a commonsense order Co = {f >
m, o > m} reflecting that foxes and owls eat mice. Co does not have any agent
a > f or a > o. For example, the action of fox eating mouse has precondition
Pm>∧Pf> and postcondition ¬Pm>. Candel Bormann points out [8] that this
order underlies the story. In the action language of Baral et al [5], additional
predicates present(m) and present(f) are used to denote that these agents are at
the initial location in order to being part of the set A. In our modelling locations
play no role so we dispense with these conditions.

(a) (F (H : −Y dcv X), u) for deceptive
agent-deletion update

(b) (F (−Y for X), u) for private
agent-deletion update

Fig. 3: Agent-deletion

In Figure 3a, deceivers H, whose beliefs about agency of Y (which are neither
deceiver nor deceived) are unchanged at u, deceive X into believing that agents
Y ⊆ A \ (X ∪H) have been privately deleted at v for themselves and for H.

In a private deletion, agents Y are selectively deleted for observers in X ⊆ A
(Y ⊆ A \ X), at event u in an agent update frame. The remaining agents are
oblivious at v.

Example 4. In Figure 3b, the dotted self-loop for Y at u could stand for the
mouse i ∈ Y being eaten by the fox f , observed by others X(f ∈ X), the rest of

10 S. Singh et al.

the animals being oblivious of the meal. The beliefs of the rest of the animals in
A \X are unchanged, v is a skip. In particular, the animals in A \X believe in
the agency of i at v.

Based on the commonsense order, we have the actionsAct = {f : −m for X, o :
−m for X}, for subsets X ⊆ A. We will make up the action syntax as we go
along, it is copied from the AUL update modalities and only meant to informally
refer to the actions. The actors are f and o respectively (which do the eating).
The actions −f for X and −o for X of fox or owl being eaten are not in Act
since they do not respect the commonsense order: there is no agent eating them.

Because no i-arrows remain after i-deletion, the next axiom is valid. The next
two axioms follow from belief-action axiom.

The next three axioms for deceptive agent-deletion follow from belief-action
axiom.

19. 〈H : −Y dcv X〉Piφ⇔ Pi〈skip〉φ, for i ∈ Y = Del(v)∪A\(Del(v)∪Obs(u)∪
Dcvd(u, v))

20. 〈H : −Y dcv X〉Phφ ⇔ Ph〈H : −Y dcv X〉φ, for h ∈ H = Dcvr(u, v) =
Obs(u)

21. 〈H : −Y dcv X〉Pjφ⇔ Pj〈−Y for (X ∪H)〉φ, for j ∈ X = Dcvd(u, v)

Here is the key axiom for private agent-deletion.

22. [−Y for X]Bi⊥, for i ∈ Y = Del(u). So 〈−Y for X〉Piφ ⇐⇒ ⊥.

Fox tries to convince gruffalo The initial situation in the Gruffalo’s child
story is modelled with M0 with a designated world s as is shown in Figure 4.
(M0, s) |= Pg>∧Pf>∧Po>∧Pm>∧¬Pmp. By the proposition is meant p ⇐⇒
¬Pg>, that is, a “big bad mouse” is one which eats gruffalos.

Example 5. In The Gruffalo’s child, the first move is fox telling the gruffalo g
of a mouse which likes to eat fox. This move is modelled as a combination of
the addition and deletion actions. We write it as a f : (−g) for g action. At v1,
the fox believes the mouse believes in eating gruffalos, which we represent as a
deletion of gruffalo at x1. At u1, the gruffalo does not buy the belief. Another
agent, the owl, is oblivious of this interaction at w1.

Owl tries to convince gruffalo

Example 6. The mouse runs into the owl after deceiving fox and makes a de-
ceptive move again, o : (−g) for g, as before a combination of an addition and
a deletion in Figure 5. At v2 the owl believes that the mouse believes in eat-
ing gruffalos. At u2 the gruffalo does not accept believing this, with fox being
oblivious of the interaction.

Two Ways to Scare a Gruffalo 11

Fig. 4: Fox tries to convince gruffalo of a gruffalo-eating mouse

Fig. 5: Owl tries to convince gruffalo that there is a gruffalo-eating mouse

3.4 Private agent-addition: +Y for X

In Figure 6, agents Y are selectively added at event u for observers X ⊆ A
(Y ∩X = ∅) in an agent frame. Agents in Y can be outside A. Event v is a skip
event that does not change anything for anyone. At u, agents in A \X believe
that event v occurs; they consider that all agents in A are observers at v.

12 S. Singh et al.

Fig. 6: (F (+Y for X), u) for private agent-addition update

Example 7. In Figure 6, let a new agent owl i ∈ Y appear in the action+Y for X
as indicated by the dashed arrow. The actor is Y , so we could write it as Y :
+Y for X. The mouse m is present on the scene at u, it constitutes X(m ∈ X).
Other animals such as the fox f in A \X are unaware of the agency of i at this
moment. They believe that nothing happens at v (a skip).

The agent set A = {m, f, g} is expanded to A′ = {m, f, g, i}. The common-
sense order Co is unchanged, it has g > m from the earlier introduction of
the gruffalo by fox. An action a : +i for X with i > a does not respect the
commonsense order, how would a commandeer such a performance?

When all the Y are new agents (so we restrict to Y ∩A = ∅), the next axiom
is a valid equivalence. The next two axioms follow from the belief-action axiom.

23. 〈+Y for X〉Piφ ⇔ φ ∨
∨

j∈X Pj〈+Y for X〉φ, for i ∈ Y = Add(u) (so
〈+Y for X〉> is valid)

3.5 Downgrade and deceptive downgrade

Figure 7a shows an agent-downgrade action. In the literature with ordered
Kripke models [24, 4], such updates typically refer to a proposition. For example
an action ⇓ p would place worlds satisfying p below worlds that do not satisfy
p. Our interest in [22] was in existence of agents, where we introduced agent-
addition and agent-deletion operations. In this paper, we attempt integrating
these ideas into commonsense situations which appear in AI modelling, which
are represented by the order Co. Hence agent-downgrade (and agent-upgrade)
actions will affect propositional values related to the commonsense order.

Example 8. The agent-downgrade action is motivated by our story The Gruffalo’s
child. Here g ∈ X at event u downgrades the mouse m ∈ Y at event v, which
it had heard of from fox and owl as eating gruffalos, to one which does not eat
gruffalos. That is, the commonsense order Co is updated to remove m > g. This
has the postcondition Pm>, f continues to be present but without its desire to
eat m the mouse remains safe. However, notice that at event v, a self-loop for
agent g is added. That is, if the high-grade mouse considered gruffalos as ver-
min which it had eaten up, the low-grade mouse allows gruffalos to peacefully
co-exist.

The explanation above serves to reduce agent-downgrade to agent-addition,
which provides a simple axiom.

Two Ways to Scare a Gruffalo 13

(a) F(⇓ Y for X) (b) F(H : ⇓ Y dcv X)

Fig. 7: Agent-downgrade

24. 〈⇓ Y for X〉Pmφ ⇐⇒ Pm〈+X for Y 〉φ, for m ∈ Y = Obs(v), X = Add(v)

The deceptive downgrade 〈H :⇓ Y dcv X〉φ removes j-deletion arrows (j ∈
X), however H does not believe that j is not capable of eating Y , as shown in
Figure 7b.

25. 〈H :⇓ Y dcv X〉Pgφ ⇐⇒ Pg〈⇓ Y for (X ∪H)〉φ , for g ∈ X = Add(x)

Fig. 8: Mouse appears for gruffalo

The mouse appears

Example 9. Further in The Gruffalo’s child, the gruffalo runs into a mouse which
is not big and bad. We model this as a downgrade ⇓ m for g about m appearing
for gruffalo. m doesn’t have any g-deletion arrow. See update U3 illustrated in
Figure 8.

14 S. Singh et al.

3.6 Upgrade and deceptive upgrade

An i-upgrade for j is one which adds the possibility of j-deletion as shown in
Figure 9a.

(a) F(⇑ Y for X) (b) F(H : ⇑ Y dcv X)

Fig. 9: Agent-upgrade

The deceptive upgrade also adds j-deletion arrows for X. Beliefs of A \X as
well as H about Y ’s capabilities will be unaffected as shown in Figure 9b.

26. 〈⇑ Y for X〉Pmφ ⇐⇒ Pm〈−X for Y 〉φ, for m ∈ Y = Obs(v), X = Del(v)

As usual, the axioms for deceptive upgrade use those for upgrade.

27. 〈H :⇑ Y dcv X〉Pgφ ⇐⇒ Pg〈⇑ Y for (X ∪H)〉φ, for g ∈ X = Del(x)

Fig. 10: Mouse deceives gruffalo that it is the big bad mouse, F (m : ⇑ m dcv g)

Mouse deceives gruffalo

Two Ways to Scare a Gruffalo 15

Example 10. Further in the story, the mouse deceives the gruffalo m :⇑ m dcv g
by showing m capable of eating g. This makes the upgraded m have a −g arrow,
although m itself does not believe in its upgraded capability. Owl is oblivious at
w4. This is illustrated in Figure 10.

Mouse uses the Moon to implement this projection action, m uses Moon : ⇑
m dcv g. Modelling these ideas require several location properties in the planning
domain, which are ignored in our simple setup.

Fig. 11: Mouse deceives gruffalo that there is a big bad mouse

Mouse deceives gruffalo another way

Example 11. We present an alternate modelling. This may be what the author
intended in The Gruffalo’s child, since the mouse talks about a friend, although
there is some ambiguity in the book. In this model the mouse deceives the
gruffalo that there is a different big bad mouse M with another combination
of agent-addition and agent-deletion m : (+M : −g) dcv g action, as shown in
Figure 11. Mouse is an observer of event u4 at which g observes +m : p-addition
at v4. Owl is oblivious at w4. In any case, the gruffalo runs away and the story
has a happy ending.

4 Some results for Agent Update Logic

Theorem 1 (Completeness). The proof system of Sections 2.3 and 3 is sound
and complete over transitive Kripke models.

Proof. For the proof we define the lexicographic size of a formula, following the
DEL book [28, Definition 7.38]. For all formulas, this is as expected, for ex-
ample `(Paφ) = 1 + `(φ); except only the update formula: `(〈U〉φ) is defined

16 S. Singh et al.

as (4 + `(U))`(φ). This means that the lexicographic size of the left hand side
of every bi-implication in the proof system is greater than the lexicographic
size of its right hand side. For example, for axiom 23: 〈+Y for X〉Pjφ =
φ∨

∨
j∈X Pj〈+Y for X〉φ, it can be shown that (4+n+ k)(1+m) > (1+n)+

(4+ n+ k)m where n is |X|, k is |Y | and m is `(φ). Thus a reduction algorithm
can apply these equivalences to go from an AUL formula to an equivalent EL
formula. EL is complete over transitive Kripke models [9]. ut

The reader may ask what is achieved by having a proof system with 2 gen-
eral axioms and 15 specific axioms for 10 update operations (excluding skip),
compared to the couple of axioms for a single general update operation in [22].
We will discuss this in the context of AI planning in Section 5.

Next we provide decision procedures mentioned in [22]. The proof of the first
theorem follows from the completeness argument.

Theorem 2 (Satisfiability). There is a polynomial space algorithm to check
satisfiability of an AUL formula.

Theorem 3 (Model checking). Given a transitive Kripke model, checking
whether an AUL formula holds at a designated state can be done in polynomial
time.

Proof. A labelling algorithm can be implemented by saving the action updates
as one proceeds inwards in the formula (without performing the updates). On
evaluating a belief modality which requires an agent relation in the updated
model, the relation after the updates is calculated by using the saved updates.
An extra multiplication by the length of the formula is needed for the number
of modalities this has to be done for. This gives a polynomial time algorithm for
model checking on transitive models. ut

5 Planning

The planning community has traditionally worked with a fixed set of actions Act,
and a planning problem is defined as a triple 〈S,Act,G〉 where S is the start
state that is completely specified, and G is the set of goal predicates that are
desired to be true. The goal predicates G may be true in many states, and any
one of them may be acceptable to the planner. For example, in the Gruffalo’s
child story both the mouse running away and the gruffalo running away would
satisfy the goal of the mouse being alive.

In the real world the set of actions available to an agent may virtually be
unlimited, limited only by the agent’s imagination. For a planner, considering a
much larger set of actions may be intractable. In the real world agents normally
pick a familiar sequence of actions that have been known to work in the past.
For example a traveller may choose between going by bus to the airport or hiring
a taxi based on time and money constraints. But what if there were to be a taxi
strike and time is running out? In that scenario the traveller may think of the

Two Ways to Scare a Gruffalo 17

option of calling up a friend to drop him to the airport, an action that one would
not normally consider.

We propose that when the set of operators may be potentially unlimited, one
can prescribe a graded set of partitions that are accessible to the planner, in a
lazy evaluation manner. Thus the set Act may be partitioned into an ordered
set of subsets Act1 ⊂ Act2 ⊂ The planner can now operate with an iterative
broadening algorithm in which it begins searching for a plan with the minimal
set Act1 and under certain conditions broadens it to Act2, and so on. This
broadening could be when a plan cannot be found within a reasonable time with
only the set Act1, but there could be other conditions too involving sub-goal
interaction.

The above scenario is exemplified in the stories that we are considering where
desperate agents seek desperate solutions, often in life threatening situations. For
example, the default plan that a mouse may have is to flee in the presence of a
hungry predator, but spatial proximity may prohibit that, prompting it to think
of other options. In the original story by Donaldson [14], the mouse invents the
Gruffalo, with fingers crossed that the predator will swallow the story. And when
the unexpected happens and the relieved mouse next encounters the Gruffalo in
flesh and blood, it is compelled to spin yet another yarn.

The approach that we are advocating is to not limit a planner to a fixed set of
actions, but have access to graded sets of actions when a plan with fewer actions
cannot be found. The actions in the extended sets may be computationally more
demanding, or may have a lesser chance of success.

The goal for the planner is Pm> after one step. Informally speaking we have
a set of actions Act1 available to model check the transitive closure 〈Act+1 〉Pm>
(this is outside the logic AUL) at the initial state [11, 17]. Since [Act1]¬Pm>,
the goal is unreachable after 1 step, the base of the transitive closure. Thus from
this Act1, the planner moves to a larger set of actions Act2.

To reach the goal we restrict ourselves to actions that add agents from Sec-
tion 3, that only alter matters related to agent existence. Since the possible
agents form an infinite set, for a practical solution we will have to use some rules
about how to go about adding agents.

First rule We use the following commonsense inference rule. Suppose s |=
Pf>∧Pm>. If s |=

∧
a>m,a6=f∈A ¬Pa>, for Co ⊇ {f > m}, then add fresh g /∈ A

to get A′ = A ∪ {g} with Co′ = Co ∪ {g > f}. The word “fresh” indicates that
the agents outside A form one equivalence class; an arbitrary g is chosen from
them, thus dividing the equivalence class into {g} which gets added to A′ and
another equivalence class of the agents outside A′.

Let Act be the current set of actions. Consider Act ∪ {g : −f}. The new
action is not applicable since Pg> is false in the initial state.

So one generates a new action, +g for f which has the postcondition Pg>
for the sub-goal. This action does not identify an actor. Try m : +g for f using
agent m as actor. (g : +g for f is useless because precondition Pg> is not

18 S. Singh et al.

met.) But the commonsense order m < f < g says mouse cannot commandeer
a gruffalo to appear for fox.

So one generates a new actionm : +g dcv f . This action has an actor present,
respects commonsense (assuming a credulous fox) and achieves the desired sub-
goal. The fact that gruffalo g is fictitious helps in plausibility. So the action set
expands to Act′ = Act ∪ {g : −f,m : +g dcv f}.

This process can be repeated for the owl. The goal Pm> is reached.

Second rule Here is another inference rule. If Pm>∧Pf>∧
∧

f>a>m∈A ¬Pa>,
then add fresh h /∈ A with the new commonsense order Co′ = Co ∪ {f > h, h >
m} on the expanded agent set A′ = A ∪ {h}.

By the reasoning process we saw above, this will eventually lead to an action
m : +h dcv f being added to Act. For example, mouse leads the fox to believe
there is a hen which is more delicious than itself. The mouse has to still find a
way to escape, but for the moment the action is plausible as it preserves Pm>. It
requires a planning domain where the story will move to a location where mouse
can escape. This is basically the action in Book 4 of the Panchatantra stories
[6, 19] where the monkey who foolishly asked a crocodile to ferry it across the
river on its back, only to find itself being considered a meal, tells the crocodile it
has left its most delicious heart on the shore, and exhorts the crocodile to swim
to the river bank so that the heart can be recovered. This requires a planning
domain where river and its bank are modellable.

Remark 4 (Historical). The Panchatantra stories are dated to the 3rd century.
One of the stories appears in sculpture at a Nalanda temple (7th century).

Third rule Here is another inference rule. In a commonsense order with m >
g ∈ Co, remove m > g to get Co′ = Co \ {m > g}. This is the essential idea
behind the action of agent-downgrade. In the Gruffalo’s child, the downgrade
leads to Co′ = (Co \ {m > g}) ∪ {g > m}.

These are only suggestions towards a planning-oriented view of the agent-
update logic.

Conclusion

Van Ditmarsch, Van der Hoek and Kooi’s book on DEL [28, Section 6.1] has a
discussion on action frames as syntax and semantics for a logic. In this paper, we
suggested using an explicit syntax for our agent-update modalities. The bulk of
the paper is a discussion on what kind of syntax works to model stories in an AI
planning setting. The usual theoretical results of completeness and algorithms
for satisfiability and model checking were obtained. Our syntactic view suggests
an approach to synthesis which can be used in planning. A collaboration between
people working in logic and AI can lead to fruitful results in this area.

Two Ways to Scare a Gruffalo 19

References

1. Saul Amarel. On representation of problems of reasoning about action. In Donald
Michie, editor, Machine Intelligence 3, pages 131–171. Edinburgh Univ press, 1971.

2. Alexandru Baltag and Lawrence S Moss. Logics for epistemic programs. Synthese,
139(2):165–224, 2004.

3. Alexandru Baltag, Lawrence S Moss, and Slawomir Solecki. The logic of common
knowledge, public announcements, and private suspicions. In Itzhak Gilboa, editor,
Proc. 7th TARK, Evanston, pages 43–56. Morgan Kaufmann, 1998.

4. Alexandru Baltag and Sonja Smets. A qualitative theory of dynamic interactive be-
lief revision. In Giacomo Bonnano, Wiebe van der Hoek, and Michael Wooldridge,
editors, Logic and the foundations of game and decision theory (LOFT 7), pages
9–58. Amsterdam Univ press, 2008.

5. Chitta Baral, Gregory Gelfond, Enrico Pontelli, and Tran Cao Son. An action
language for multi-agent domains. Artif. Intell., 302(103601), 2022.

6. Georg Bühler. Panchatantra (5 volumes). Bombay, 1891.
7. Richard F. Burton. The book of the thousand nights and one night. Kama Shashtra

Society, 1888.
8. Daniel Candel Bormann. Moving possible workd theory from logic to value. Poetics

today, 34(1–2), 2013.
9. Brian F Chellas. Modal logic: an introduction. Cambridge University Press, 1980.
10. Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. Weak,

strong, and strong cyclic planning via symbolic model checking. Artif. Intell.,
147(1-2):35–84, 2003.

11. Alessandro Cimatti, Marco Pistore, and Paolo Traverso. Automated planning. In
Handbook of Knowledge Representation, pages 841–867. Elsevier, 2008.

12. Arthur Conan Doyle. The memoirs of Sherlock Holmes. G. Newnes Ltd., 1894.
13. E.B. Cowell and R.A. Neil. The Jatakas or stories of the Buddha’s former births.

Cambridge University Press, 1907.
14. Julia Donaldson. The Gruffalo. Pan Macmillan, 1999.
15. Julia Donaldson. The Gruffalo’s child. Pan Macmillan, 2004.
16. Hergé. Prisoners of the sun. Casterman, 1949.
17. Yanjun Li, Quan Yu, and Yanjing Wang. More for free: a dynamic epistemic

framework for conformant planning over transition systems. J. Log. Comput.,
27(8):2383–2410, 2017.

18. Benedikt Löwe, Eric Pacuit, and Andreas Witzel. Del planning and some tractable
cases. In International Workshop on Logic, Rationality and Interaction, pages 179–
192. Springer, 2011.

19. Arthur W Ryder. The Panchatantra. University of Chicago Press, 1925.
20. Chiaki Sakama. A formal account of deception. In Deceptive and counter-deceptive

machines, AAAI Fall symposia, Arlington, pages 34–41, 2015.
21. Stefan Sarkadi, Alison Panisso, Rafael Bordini, Peter McBurney, Simon Parsons,

and Martin Chapman. Modelling deception using theory of mind in multi-agent
systems. AI Commun., 32(4):287–302, 2019.

22. Shikha Singh, Kamal Lodaya, and Deepak Khemani. Agent-update models. arXiv
preprint arXiv:2211.02452, 2022.

23. Raymond M. Smullyan. What is the name of this book? Prentice-Hall, 1978.
24. Johan Van Benthem. Dynamic logic for belief revision. J. Appl. Nonclass. Logic,

17(2):129–155, 2007.
25. Johan Van Benthem. Modal logic for open minds. CSLI, 2010.

20 S. Singh et al.

26. Johan Van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication
and change. Inform. Comput., 204(11):1620–1662, 2006.

27. Hans Van Ditmarsch and Barteld Kooi. One hundred prisoners and a light bulb.
Springer, 2015.

28. Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic epistemic
logic, volume 337 of Synthese library. Springer Science & Business Media, 2008.

29. Hans Van Ditmarsch, Jan Van Eijck, Floor Sietsma, and Yang Wang. On the logic
of lying. In Jan Van Eijck and Rineke Verbrugge, editors, Games, actions and
social software, volume 7010 of LNCS, pages 41–72. Springer, 2012.

30. Yanjing Wang, Yu Wei, and Jeremy Seligman. Quantifier-free epistemic term-
modal logic with assignment operator. Ann. Pure Appl. Log., 173(103071), 2022.

31. John Woods. The logic of fiction: A philosophical sounding of deviant logic. Mou-
ton, 1974.

32. John Woods. Truth in fiction: Rethinking its logic. Springer, 2018.

