
Plenitude
Sreehari K and Kamal Lodaya∗

Mathematics department, Indian Institute of Science, Bengaluru 560012, India

Abstract

Oliver and Smiley’s mid-plural logic is extended with indefinite descriptions.

1 Introduction
Plural logic has become popular, from the extensive literature we cite [Lin83, Boo84, Bur04,
Yi05, FL17], for a recent criticism see [FN20]. Oliver and Smiley wrote a book on the subject
[OS13] which we take for granted as our base and will frequently refer to. Here is a brief
summary of what we require.

The basic idea in their extension of first-order logic to a two-sorted free logic is that vari-
ables are divided into singular (apple) and plural (apples) sorts. Combinations a,b, a.b and
-a exhibit Boolean structure of plurals. The idiosyncratic notation reflects Oliver and Smiley’s
desire to avoid ontological commitment to sets. Plural variables do not come under the scope
of quantification in mid-plural logic [OS13, Chapter 12], it is shown that there is an expressive-
ness jump both for plural definite descriptions (the apples) and plural quantifiers (∀apples)
rendering axiomatization impossible. By restricting quantification, Oliver and Smiley obtain
completeness for mid-plural logic following a carefully worked out Henkin argument.

Our approach is as follows. When talking of existence, one can say there is only a single x
such that A(x), or there exist exactly two x 6= y such that A(x) and A(y), or there exist exactly
three distinct x, y, z such that A(x), A(y) and A(z), and so on upto some finite number. Then
we start running out of variables to talk. So we suggest Many a, where a is of plural sort, to
describe a large but finite number of singular variables ranging over the elements of a.

Many and Few are indefinite descriptions, they do not stand for a fixed quantity. In a
domestic application one may say there are many apples in the refrigerator, when the number
may be something like a dozen. In a societal application one may say there were many people
in the market, when the number may be something like a thousand. Even in a single discourse,
for the statements that there are many apples in the refrigerator and there were many people
in the market, the magnitude of the two plurals may not be comparable.

There exist Many(a,b), that is, there are many individuals which are among a or b, does
not imply that Many a or that Many b. This is discussed below. Many a ∧Many -a could
be consistent, for example in a close election. ¬Many a ∧ ¬Few a could be consistent, we do
not insist on having to decide among them. The range inbetween is called a penumbra [Fin75],
following an idea from [PPP01] a predicate BetFew,Many a could be introduced.

Few a ∧ Few -a could be consistent because the domain may have only few elements. But
this reduces to zeroth-order logic where quantifiers are not required. So for simplicity we assume
the plenitude of the domain, that there are many values in the domain.

We follow Philip Peterson’s work [Pet79] which had Few x, Many x and Most x quantifiers
and bound variables ranging over individuals. In his logic Many x A ⊃ Few x A is valid and
Few x A ≡Most x ¬A. We accept that Few is a degree of plenitude lower than Many [Urq86].
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Harvey Friedman interpreted there exists a set with many elements as a generalized quan-
tifier : there exists a set of positive measure, and proved a completeness theorem [Fri78, Fri79,
Ste85]. The treatment here is not quantified but propositional, linguistically justified by an
interest in finite plurals. This article addresses Open Problem 2.7 of Moss and Raty [MR18].

2 Syntax
The signature of our logic contains all the symbols in mid-plural logic (which extends first-
order logic) plus the indefinite plural descriptions. Thus there are singular variables for which
we use x, y, . . . , plural variables for which we use a,b, . . . . There are also constants, function
and predicate symbols forming terms of mixed sort for which we use a, b, . . . , exhaustive and
indefinite descriptions, combinations of plurals, connectives ∧,∨,¬,⊃,≡ and quantifiers ∀,∃.

Terms are as in Oliver and Smiley. They include variables and constants, function terms
f (a1, a2, ..., an), exhaustive descriptions x:A—which are not written {x:A} to refrain from
ontological commitment to sets—and plural combinations -a, a.b, a-b and a,b for complement,
intersection, difference and union.

Atomic formulas include predicates P (a1, a2, ..., an), inclusion a 4 b, read as a among b, and
indefinite descriptions Many a, Few a, Most a (the last definable as Few -a) and, if required,
BetFew,Many a.1 A finite number of plenitude degrees (say few,many, plenty), possibly with
penumbral predicates, can be allowed with small changes to the axioms and proofs below.

Atomic formulas equality a = b and constants true and false are definable as two-way
inclusion, x = x, etc. Boolean formulas are as usual. Exhaustive and indefinite descriptions
can define quantifiers, ∃xA as x:A = x:A, ∀xA as x:A = x:true, Many x A as Many(x:A).

A? distributes predicate A over a plural, that is, A?(a) when every x 4 a satisfies A(x).
Using exhaustive description, “There are many apples in the refrigerator” can be written as
Many(x: apple(x) ∧ inFridge(x)). By defining plurals such as apples = x:apple(x), this can
be written as Many(apples.inFridge). “Many apples are red” is Many(apples.red?).

Following Oliver and Smiley, a model has multi-valued interpretation of plural terms. Our
interpretation is richer because it has to be said whether those multi-values are many, are few,
so the interpretation now has degrees “many” or “few” or inbetween. A plural term a.b has
degree many only if both constituents also do. A plural term a,b has degree many if either
constituent does. The lack of the necessity/sufficiency of the conditions makes plurals indefinite.

3 Examples
One might say that there are few continents because one can count them on one’s fingers. We
want to avoid explicit information on counts. Extending this information to plural terms is not
inferential. 8 planets is not many, whereas it appears that 80 planets would be many, a ten-fold
division of many instances may result in each quotient having not many instances. For instance
one may accept the truth of Many apples, Many inOrchard and Many inFridge and of
Many apples.inOrchard, but not of Many apples.inFridge. We accept that Many a.b
implies Many a and Many b.

The pigeonhole principle Many a,b ⊃ (Many a∨Many b) is not deemed valid. (Friedman
had a corresponding axiom, see [Ste85].) This rules out a proof of a König lemma of the form:
If in a tree with many nodes, all nodes have few chldren, then there must be a path in the tree
with many nodes. This is because, beginning with a root with many descendants, an induction

1 In supervaluations Few a ∨Many a [Fin75], or in subvaluations Few a ∧Many a [Hyd97], could serve.



step would come to the few children of a node having many descendants. This is a collective
and non-distributive property of these children [Yi99], it may be that each of 8 (few) children
has 8 (few) descendants but together they have 64 (many). Multiplication of few by few could
yield a collective many, see Gabbay and Schlechta in the context of non-monotonic logic [GS09].

To switch to something non-mathematical, there is a lively controversy among astronomers
and the general public on whether there are many planets, hinging on what defines a planet.
Thus, whether there is a planet which goes around the Sun once in 10000 years depends on the
belief that there are many planets, as follows.

The belief that there are many planets is based on the principle that planethood is primarily
determined by size. Other astronomical details such as rigidity and not being a satellite enter
the picture, they are ignored here. Bodies with diameter more than 900 km and not “clearing”
their orbits are called dwarf planets. Ceres and Pluto are dwarf planets. The orbit of Pluto
intersects that of the traditional planet Neptune, but by taking Pluto to be a dwarf planet,
Neptune’s orbit is clearing. It is believed that there are more dwarf planets to be found, since
they are smaller and difficult to observe.

Let the older planets in our solar system (except Pluto) come under the plural

clearing = x: diam(x) > 900 ∧ clear(x),

stating that their size is above 900 km, and they “clear” their orbit of other planets. The new
category of dwarf planets is the plural

dwarf = x: diam(x) > 900 ∧ ¬clear(x).

The state of our solar system is the formula (most planets orbit the Sun in < 300 Earth years):

A = Many dwarf ∧ Few clearing ∧ ∀x(x 4 clearing ⊃ orbit(x) < 300)∧
pluto 4 dwarf ∧ ceres 4 dwarf ∧ orbit(pluto) < 300 ∧ orbit(ceres) < 300.

There are two definitions of planets, planet1 = clearing then implies Few planet1, and
planet2 = dwarf,clearing implies Many planet2. Astronomers are divided on whether to
include the dwarf planets among the planets (see [Bro10] for a popular account):

B = (planet = planet1) ∨ (planet = planet2).

Sedna, discovered on 14 November 2003, is about the size of Ceres, although it is not yet
classified as a dwarf planet because we do not know about its rigidity. Here is what we know.

C = (diam(ceres) > 900 ≡ diam(sedna) > 900) ∧ orbit(sedna) > 10000.

Therefore A,C ` sedna 4 planet2. Since Many planet and Few planet cannot both be true
(this is formalized as an axiom below), we get A,B,C,Many planet ` sedna 4 planet.

By first-order logic, A,B,C,Many planet ` ∃x(x 4 planet ∧ orbit(x) > 10000).

4 Axioms
In addition to the axioms and inference rules in Oliver and Smiley, we add the following. Our
semantics will rely on an intuitive notion of degrees of plenitude.

1. Many (x:true) asserts there are many elements in the domain. This is an assumption.



2. ∀x(x 4 a ⊃ x = a) ⊃ Few a says that singletons are few, so few will end up getting a
lower degree than any other.

3. a 4 b ⊃ (Many a ⊃ Many b) ∧ (Few b ⊃ Few a) expresses monotonicity of plenitude.
It follows that Many a.b ⊃ Many a and Many a ⊃ Many a,b, and under the same
antecedent a 4 b, that Many -b ⊃Many -a.

4. Few a ⊃ ¬Many a partitions the plural sort into degrees: few, many and the penumbral
BetFew,Many (which could be ruled out by another axiom). Plural terms are created by
exhaustive description of a formula A, so implicitly with every formula there is a degree.

5. ¬Many a ⊃ Many -a relates negation to plenitude. If there are not many individuals
among a, there will be many in the complement given that there are many elements
in the domain. This partitions Many a into three degrees based on the degrees of -a:
Many a ∧Many -a and the remaining two obtained from the previous axiom.

6. ∀x((Few a ⊃ Few a,x∨BetFew,Many a,x)∧(Many a ⊃Many a-x∨BetFew,Many a-x)∧
(BetFew,Many a ⊃ (Few a-x ∨BetFew,Many a-x) ∧ (Many a,x ∨BetFew,Many a,x)))
sets up the degree ordering in the presence of a penumbral predicate.

5 Semantics
Recall the semantics given for (x:A) in Oliver and Smiley. Let val be an assignment. It is lifted
to exhaustive descriptions using the clause:

val(x:A) are the individuals val′(x) for every x-variant val′ of val such that val′ |= A.
We add a Tarskian definition. The semantics is intuitive and the axioms try to capture that

intuition. The third clause illustrates how penumbral predicates could be handled.

Definition 5.1. val |= Many a if and only if there are many among val(a).
val |= Few a if and only if there are few among val(a).
val |= BetFew,Many a iff there are more than few and less than many among val(a).

Theorem 5.2 (Completeness). The axiomatization above extending Oliver and Smiley’s is
weakly complete.

Proof. We work with finite theories. The Henkin-style completeness proof for mid-plural logic
in Oliver and Smiley is followed, only the differences introduced by our syntax are specified.

In the Lindenbaum construction of the model from a finite consistent set ∆, when a distinct
singular h 4 a for Henkin constant h is encountered in the enumeration as a possible addition
to a finite consistent set ∆, its consistency with respect to ∆ has to be checked.

Suppose Many a in ∆. Find maximal b under the 4 order such that ∆ ` b 4 a∧¬Many b.
Count distinct singular h 4 a, this must be above the count of distinct singular h 4 b. If
required create many fresh singular witnesses h and add h 4 a, h 4 -b,∃x(x = h) to ∆
(sufficient to cross intermediate degrees and penumbras), and also add the plenitude conditions
h 6= h′ for every two such h, h′. By monotonicity and negation Many(a,h) is consistent when
Many a is.

Suppose Few a in ∆. Find minimal b under the 4 order such that ∆ ` a 4 b ∧ ¬Few b.
Count distinct singular h 4 a, this must be below the count of distinct singular h 4 b and
adding one to the former should preserve the separation of counts.

Suppose a penumbral BetFew,Many a in ∆. Find maximal b and minimal c under the 4
order such that ∆ ` b 4 a∧Few b and ∆ ` a 4 c∧Many c and preserve separation of counts.



Indefinite semantics of Many and Few are used here. What is required for completeness is
that there are choices which lead to a maximal consistent set.

In the Truth Lemma for the model constructed in Oliver and Smiley [OS13, Chapter 12,
Lemma 9], we have three additional cases to prove. Here is one of the requirements:

The assignment val |= Many a if and only if the formula Many a is one of the truth set ∆.

Starting from the right, if Many a is one of the truth set ∆, by our construction, many h
such that h 4 a are in ∆. By our plenitude conditions they are distinct. So many x-variants val′
of val with x 4 a exist. Since a = x:x 4 a, there are many among val(a) and val |= Many a.

For the other direction, contrapositively, if ¬Many a is one of the truth set ∆, our con-
struction and the partition axiom ensure that at all stages there are not many h such that
h 4 a were added to ∆. Thus there are not many x-variants val′ of val with x 4 a. Since
a = x:x 4 a, there are not many among val(a) and val 6|= Many a.

Remark 5.3. Should one use a Skolem function for quantified formulas like ∀xA(x,a) when the
scope of the free plural a is within the quantifier? Thus in ∀x(Many a ∧ A(x,a)) where a
appears only inside the quantifier, the plenitude of a will depend on the value of x.

6 Discussion
We thank Kit Fine, Anantha Padmanabha, Rohit Parikh, Abhisekh Sankaran, Byeong-Uk Yi
and two anonymous referees for reading our earlier version and commenting on it.

Possible meanings for indefinite descriptions are through comparison classes [Sol11], intervals
[Ret18] or (semi)lattices [Lin83, Bur16]. The structure of these scales, for example, the two
scales of plenitude in Many(apples.inFridge) ∧Many(apples.inOrchard), is not clear.

Indefinite descriptions can be applied to other areas, we take as our basis Kit Fine’s Rutgers
lectures on vagueness and sorites arguments [Fin20]. For vagueness there have been sugges-
tions to use nonclassical logics [Dum75, Fin20], supervaluations [Fin75], games [Wri75, Par20],
subvaluations [Hyd97] and bounded arithmetic [Par20]. Our approach extends that of degrees
and intervals, anticipating the problem Fine mentions of “penumbral connection”. Thus, in
talking about two colours between which there is a penumbra, one could use a singular logic
with predicates such as Orange(x), Red(x) and BetOrange,Red(x) over an underlying linear
order which may be discrete or dense.2 Supervaluations which make more “precise” valuations
correspond to shrinking the range of the penumbral predicate. In the most “precisified” view
the penumbra shrinks to nothing. The approach of epistemic uncertainty is encompassed by
leaving the boundaries between these various predicates indefinite.

Fine argues for global indeterminacy rather than local, that is, when doing a global “march”
from orange to red, one is forced to choose a boundary. We rely on an irreflexive symmetric ad-
jacency relationship between predicates [PPP01], allowing an indefinite BetOrange,Red between
adjacent colours, but not BetY ellow,Red between distant colours (there could be applications for
such predicates). The transitive order 4 in this article provides a more global context.

Parikh explains his development of Yessenin-Volpin’s ultrafinitism [YV70] to show the util-
ity of vague reasoning irrespective of semantics [Par20]. This article also seeks to increase
expressiveness of the logical language disturbing the classical framework as little as possible.
Whether there is cognitive access to plenitude [Yi18] is an interesting question.

2For example, the additive 3-byte RGB colour model in computer graphics has values Orange = (255, 128, 0)
and Red = (255, 0, 0).
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