
Knowledge-based modelling of voting protocols

A. Baskar∗
Chennai Mathematical Institute

Chennai, India
abaskar@cmi.ac.in

R. Ramanujam
Institute of Mathematical Sciences

Chennai, India
jam@imsc.res.in

S.P. Suresh
Chennai Mathematical Institute

Chennai, India
spsuresh@cmi.ac.in

Abstract

We contend that reasoning about knowledge is
both natural and pragmatic for verification of
electronic voting protocols. We present a model
in which desirable properties of elections are nat-
urally expressed using standard knowledge oper-
ators, and show that the associated logic is decid-
able (under reasonable assumptions of bounded
agents and nonces).

1 Summary

Consider the following scenario: an election is announced
and is to take place on a given date. Voters are given a
choice of candidates, and this is a standard political elec-
tion, with each voter allowed to vote for exactly one can-
didate. On election day, during a specified period, vot-
ers can exercise their franchise in designated voting sta-
tions, or (here is the difference), vote online. What are the
risks and vulnerabilities associated with such an electronic
election? Electronic voting protocols address such issues
and pose solutions. See [Rja02] for a discussion of crypto-
graphic schemes intended as solutions to these problems.

Note that such elections are far from hypothetical. The
2005 general elections in Estonia offered such an on-line
voting option. Moreover, apart from political elections for
office, many corporate decisions (regarding projects, elec-
tion to positions) require voting where bringing voters to-
gether to one place to conduct the election is expensive,
and online elections are either being used or being consid-
ered in such contexts. In any case, such processes are to
be anticipated, and hence articulating properties that must
be ensured of such mechanisms as well as designing means
of verifying such properties of proposed mechanisms be-
comes critical. Formal models of electronic elections be-
come relevant and important in this regard, and their study

∗Supported by the Council of Scientific and Industrial Re-
search (CSIR), India

can reveal vulnerabilities in current (non-electronic) elec-
tions as well.

What have elections got to do with theories of knowledge
and rationality? Before we answer this pertinent question,
we request the reader’s indulgence and list some desirable
properties in election mechanisms ([Rja02]):

Secrecy Every voter’s choice should be private, and others
should not be able to figure out how she voted.

Receipt-freeness No voter has any means of proving to
another that he has voted in a particular manner.

Fairness Voters do not have any knowledge of the distri-
bution of votes until the tallies are finally announced.

Individual verifiability Each voter should be able to
check whether her vote has been counted properly.

The list is merely indicative and by no means exhaustive.
While all these properties relate to the knowledge of agents
at different stages of the election when it is under way,
receipt-freeness is especially interesting. First introduced
in [BT94], this is crucial, since lack of receipt-freeness
(that is, the presence of a receipt) allows vote buying and
coercion which has the potential to drastically affect the
election process.

This property is an assertion about mutual knowledge (and
in a subtle way, common knowledge as well). When a re-
ceipt exists, it could be constructed in any manner that con-
vinces the sceptical second party. Demonstrating that no
such way exists is highly demanding, and is seen as a sig-
nificant challenge to formal models. It is here that knowl-
edge theory helps: based on what is common knowledge,
and how every agent’s knowledge is updated after every
event in the election, we can place limits on what can be
known (in principle), and hence, what kind of proofs can be
constructed by voters. Specifically, this allows us to show
what kind of receipts a voter may construct. Moreover, by
making the perfect encryption assumption, we can carry

out the reasoning in an abstract plane, and reduce the secu-
rity of the election to that of the underlying cryptographic
schemes.

Our contention is that articulating receipt-freeness in terms
of knowledge of agents is not only natural, but also that it
shows the way for how we might verify such a property
in a system. Interestingly, since the reasoning mainly in-
volves placing limits to constructible knowledge, we can
avoid many of the philosophical pitfalls associated with
epistemic reasoning about security (see [RS05] for a dis-
cussion of such issues). Moreover, while we do not elabo-
rate on this here, there are implications for rational agents
as well: for instance, when the mechanism allows the pos-
sibility of certain kinds of receipts, there are incentives for
voters to use them and rational voters would choose their
votes accordingly. In a population of voters, when a subset
can be assumed to vote thus, the choices of each member of
that subset would be influenced. We observe this merely to
remark that knowledge theoretic accounts of elections may
offer implications for design of voting systems as well.

The main contribution of this paper is to set up a formal
model for electronic voting protocols in such a way that as-
sociated security properties are easily seen to be assertions
on agents’ knowledge. The modelling of knowledge itself
is standard, and based on agent indexed equivalence rela-
tions on agents’ information states (which are given by sets
of terms that an agent can construct using a proof system).
Thus, while the model is standard (as found in [PR85] and
[FHMV95], for example), it has elements similar in spirit
to [AN05]. For a discussion of the underlying security pro-
tocol model, refer to [DY83], [CDL+99], and [RS06]. For
work on knowledge-based modelling of security protocols,
refer to [HP03], [RS05], and [HO05].

A feature of this model may be of interest to security the-
orists: while the protocols themselves are expressed in the
Dolev Yao model, the knowledge operators work on a more
basic computational model in the sense of Abadi and Rog-
away [AR00]. That is, the algebra of terms used in mes-
sages uses encryption, pairing etc as operators, whereas
knowledge capabilities of agents are defined only in terms
of bit strings seen by agents rather than term structure.
Thus when an agent receives a term {t}k encrypted with
k and has no knowledge of k or inv(k), she cannot distin-
guish it from any other term {t′}k′ ; indeed, she cannot even
be assumed to know that this is an encrypted term, it might
be channel noise.

We also present a formal logic of knowledge in which
these properties are expressed and show that verification
of these properties for a protocol is decidable under rea-
sonable assumptions (of bounded number of agents and
nonces). However, we intend this to be only a proof of
genericity, that such a decision procedure can be obtained
in a generic form, rather than advocate a specific set of log-

ical operators. We hope that further work on principles of
reasoning with security primitives will lead to the “right”
logic of knowledge for security protocols.

Related work

While electronic voting protocols are well known in the
literature, there have been only a few attempts at for-
mal models and verification. Recently Kremer and Ryan
[KR05] modelled the FOO protocol [FOO92] using applied
pi calculus and expressed receipt-freeness as an observa-
tional equivalence. In this sense, this work is similar to
ours, though their emphasis is on studying how concur-
rency and communication mechanisms affect modelling.
Another similar work is [DKR06], where a stronger no-
tion of receipt-freeness (known as coercion-resistance) is
defined and its relationship with receipt-freeness and pri-
vacy discussed using pi calculus. [CMFP+06] shows that
simultaneously achieving universal verifiability and receipt
freeness is impossible in general.

Our work is closest in spirit to that of [JdV06] and [JP06]:
in the former, [JdV06], a generic and uniform formal-
ism is given to define the notion of receipt and applied
to check receipt-freeness for some protocols. In the lat-
ter, receipt-freeness is expressed in a manner very similar
to ours, but using indistinguishability relations associated
with anonymity. In a sense, our work can be seen as a
general framework for a formal analysis of such a class of
properties. Moreover, the emphasis on a decision proce-
dure distinguishes our treatment from theirs.

2 The formal model

Before we present the formal model, we give an informal
description of how electronic voting protocols work. As
one may expect, such a system consists of three kinds of
agents: voters, administrators and talliers. Administrators
know the voters’ identity, but cannot see the votes, and their
job is to check voters’ eligibility to vote. Talliers see the
votes, but not the voters’ identities, and their job is to count
votes for each candidate and announce the result. Voting
protocols (typically) use one of two cryptographic mecha-
nisms: homomorphic encryption and blind signature.

Homomorphic encryption refers to a secret sharing scheme
by which a secret is split into several parts, and cannot
be reconstructed without getting access to (almost) all the
parts. In protocols using this scheme, voters split their
votes into several shares which they send to administra-
tors. Hence, unless many of he administrators collude, it
is difficult to reconstruct the vote.

The blind signature scheme ([Cha83], [Cha85]) involves
the ability of an agent A to generate, from a term {t}k,
a signed term {tA}k, even without having access to k or
inv(k). In protocols using this scheme, an administrator

receives an encrypted vote from a voter, and without be-
ing able to decrypt the vote, verifies the voter’s eligibility,
“blindly” signs the message and returns it. Now the voter,
who generated k, can strip it off from {tA}k obtaining tA,
which is the vote t duly attested by A. This is then sent
anonymously to the tallier, who verifies the attestation,
and gets the vote t (while not knowing the origin).

Another important and relevant detail is that of commit-
ment: once a voter commits to making a choice, she should
not be able to change her decision. For instance, in the
blind signature scheme above, a voter should not be able to
get an attestation for vote 0 from an administrator but send
1 to the tallier.

We now proceed to formalize these notions. The formal
model we present here is essentially the same as the one
proposed for security protocols in [RS05] and refined fur-
ther in [RS06]. The extensions involve specific primitives
intended to model the features discussed above.

Terms and derivations

Fix a finite set of agents Ag , which includes the set of vot-
ers V , the set of authorities A, a counter C, a server
S, and the intruder I . As one can guess, authorities are
those who verify whether an agent attempting to cast a bal-
lot is indeed a registered voter and entitled to vote, and a
counter sums up votes for each candidate. The server is
an abstraction that allows us to hide details of how keys
are generated and stored. (When you need a key, ask the
server.) The intruder is again an abstraction that quantifies
over the malicious forces at work to compromise security.
The intruder is assumed to have unbounded memory, has
access to all that travels on the public channel, can forge
and block messages. It suffices to consider only one in-
truder (see [CMS00]).

Fix a countable set of fresh secrets N . (This includes
random, unguessable nonces as well as temporary session
keys.) Let Ch be the choices of the voting scheme. To
keep our analysis simple, we consider only Yes-or-No vot-
ing schemes. Here Ch = {0, 1}. B def= N∪Ag∪Ch is the
set of basic terms. We define the set of (potential) keys, K,
to be N ∪ {pub(A), priv(A), sk(A,S) | A ∈ Ag}. Here
pub(A), priv(A), and sk(A,B) denote the public key of
A, private key of A, and (long-term) shared key between A
and B.

The set of information terms is defined to be

T ::= m | k | (t1, t2) | {t1}k | [t1, t2]

where m ranges overB, k ranges overK, A ranges over Ag ,
and t1 and t2 range over T . We define inv(k) for every k ∈
K as follows: inv(pub(A)) = priv(A), inv(priv(A)) =
pub(A), and inv(k) = k for every other k ∈ K.

Further, (t1, t2) denotes the pair consisting of t1 and t2,

and {t1}k denotes the term t1 encrypted using k. The term
[t1, t2] denotes a different kind of pairing that we call blind
pairing.

When agents communicate, they should have the ability
to generate new messages from their current knowledge
(which includes their initial knowledge and the messages
they have previously received). We now define the system
of rules for deriving new messages from old.

A sequent is of the form T ` t where T ⊆ T and t ∈ T . A
derivation or a proof π of T ` t is a tree whose nodes are
labelled by sequents and connected by one of the analz -
rules in Figure 1 and the synth-rules in Figure 2; whose
root is labelled T ` t; and whose leaves are labelled by
instances of the Ax rule. We will use the notation T ` t
to denote both the sequent, and the fact that it is derivable.
For a set of terms T , T

def= {t | T ` t} is the closure of T .

Ax
T ∪ {t} ` t

T ` (t1, t2)
spliti(i = 1, 2)

T ` ti

T ` {t1}k T ` inv(k)
decrypt

T ` t1

T ` [t1, t2] T ` ti
blindspliti(i = 1, 2)

T ` t3−i

Figure 1: Analysis rules

T ` {[t, {m}inv(k)]}k
blindsign

T ` [{t}k, m]

T ` t1 T ` t2
pair

T ` (t1, t2)

T ` t1 T ` k
encrypt

T ` {t1}k

T ` t1 T ` t2
blindpair

T ` [t1, t2]

Figure 2: Synthesis rules

The blindsign rule is a new kind of rule in this system. To
appreciate it, we need to first consider the implementability
of the operators we have introduced. The standard imple-
mentation treats terms as numbers, a pair (t, t′) as concate-
nation of the numbers representing t and t′ (with the num-
bers viewed as bit strings), {t}k as the result of applying
any of the standard public/shared key cryptographic algo-
rithms using the numbers representing t and k (in many
implementations this is just raising t to the kth power mod-
ulo some prime), and [t, t′] as the product of the numbers
representing t and t′. It can be seen that our proof rules
are valid under this interpretation. The blindsign rule rep-
resents the commonly used blind signature scheme, where

inv(k) is chosen to be such that rk·inv(k) = r mod p for
some prime p, and hence (q · rinv(k))k = qk · r mod p.
But there is a caveat: the blindsign-rule, is restricted to the
cases where m ∈ B. Note that the following more general
version of the blindsign rule, where t and t′ are arbitrary
terms, is also valid under the standard interpretation:

T ` {[t, t′]}k blindsign
T ` [{t}k, {t′}k]

But we stick to the simpler version since this is the most
common use of the blindsign rule in practice, and since the
more general version introduces proof-theoretic difficulties
which will detract attention from the main thrust of the pa-
per.

In general, the state of an agent (to be formally defined
below) will be a finite set of terms T , and T will be the
set of terms that this agent can generate in that state, and
hence compose and use in messages. Thus, T represents
the explicit knowledge of data possessed by the agent at
that state, and the following lemma (whose detailed proof
is presented in the Appendix) is hence important.

Theorem 1 Given a finite set of terms T and a term t,
checking whether t ∈ T is decidable in time polynomial
in size of T .

In general, the message-generation capabilities of different
kinds of agents will be different. Typically, an authority
has more power than a normal voter. For instance, we can
define an authority to be one who uses all the proof rules in
the system presented in Figure 1 and Figure 2, whereas a
voter is one who cannot apply the blindsign rule in deriving
new messages from old.

Protocols and their runs

We model communication between agents by actions. An
action is either a send action of the form +(A,B, t) or a
receive action of the form −(A,B, t), or an anonymous
send of the form !(A,B, t), or an anonymous receive of
the form ?(∗, B, t), where t is an arbitrary term, and A and
B are agent names.

We emphasize that while the sender name in a send action,
and a receiver name in a receive action denote the actual
agents that send and receive the messages, respectively, in
a send action we can only name the intended receiver, and
in a receive action we can only name the purported sender.
Further, in an anonymous receive, B does not even have
any indication of the purported sender. As we will see
later, every send action is an instantaneous receive by the
intruder, and similarly, every receive action is an instanta-
neous send by the intruder. Broadcast communications are
also widely used in electronic voting protocols in practice.
For simplicity, we do not model it explicitly, though we

use it in some of the examples. The model can be easily
extended to handle this.

A protocol is just a finite set of parametrized roles
{η1, . . . , ηn}. A parametrized role η[m1, · · · ,mk] is
a finite sequence of actions in which the basic terms
m1, . . . ,mk are singled out as parameters. The idea is that
an agent participating in the protocol can execute many ses-
sions of a role in the course of a single run, by instantiating
the parameters in many different ways.

Typically protocols are presented as a sequence of commu-
nications of the form A→B : t, which denotes the sending
of the message t by A and its receipt by B. To formally
model the fact that the intruder can block messages, and
also fake messages, one typically extracts the actions (send
or receive) of each agents from such a sequence of commu-
nications, and considers interleavings of various sessions
of the roles. We directly present protocols as sets of such
action sequences.

While modelling election protocols, we need to consider
three phases of any agent’s role. The first phase consists
of the message exchanges needed to obtain the necessary
keys from the server for further communication. We think
of this as the pre-election phase.

Then there is the election phase itself, prescribed by the
protocol. Specific to voting protocols is the third phase, the
post-election phase. We need to consider this for a faithful
modelling and verification of voting protocols. The point is
that in any election the voters can reveal certain information
and gain certain benefits much after the election process.
Think of somebody being able to prove that she voted for
a particular candidate and claim her reward. We need to
consider such capabilities as part of the protocol, though
not of the election itself, so that the verification guarantees
(of crucial properties like receipt-freeness) that we provide
are meaningful.

So, technically each role η consists of three parts η1, η2,
and η3. But we treat it as a sequence of actions, and in
examples we present only η2, for simplicity of notation. η1

is mostly standard. We will let the reader infer η3 from
the context. This doesn’t affect the technical details of the
model or the results.

Runs of a protocol

We define the semantics of a protocol in this subsection. It
is given by the set of its runs. Informally, a run is got by
interleaving various sessions of the protocol, where a ses-
sion of the protocol is just a role being played out by some
agent with a particular instantiation of the parameters. Fur-
thermore, this interleaving should be admissible in that the
messages communicated at any stage by an agent should be
constructible by him or her using the current knowledge.
We formalize all these details (succinctly) below. More de-

tails can be seen in [RS06], for instance.

A substitution σ is a map from B to T such that σ(Ag) ⊆
Ag and σ(I) = I and σ(N) ⊆ N . The notion is extended
to arbitrary terms, actions, etc in the obvious manner.

An event of a protocol Pr is a triple e = (η, σ, lp) where
η is a role of Pr , σ is a substitution suitable for Pr and
σ, and 1 ≤ lp ≤ |η|. For events e = (η, σ, lp) and e′ =
(η′, σ′, lp′) of Pr , we say that e ≺ e′ (meaning that e is in
the local past of e′) if η = η′, σ = σ′, and lp < lp′.

An information state (or just state) is a tuple (sA)A∈Ag ,
where sA ⊆ T for each A ∈ Ag . The initial state of Pr ,
denoted by init(Pr), is the tuple (sA)A∈Ag such that for
all A ∈ Ag \ {S},

sA = Ag ∪ Ch ∪ {priv(A), pub(A), pub(S), sk(A,S)},
sS = Ag ∪ Ch ∪ {priv(S), pub(A), sk(A,S) | A ∈ Ag}.

The idea is that the server initially holds all the keys, and
the agents have to request it for the appropriate keys.

The notions of an action enabled at a state, and
update(s, a), the update of a state s on an action a, are
defined as follows:

A send action a is always enabled at any state s.
A receive action a is enabled at s iff term(a) ∈ sI .

update(s,+(A,B, t)) = update(s, !(A,B, t)) def= s′

where s′I = sI ∪ {t}, s′C = sC for C 6= I .

update(s,−(A,B, t)) = update(s, ?(∗, B, t)) def= s′

where s′B = sB ∪ {t} and s′C = sC for C 6= B.

update(s, η) for a state s and a sequence of actions η is
defined in the obvious manner. Given a protocol Pr and
a sequence of its events ξ, infstate(ξ) is defined to be
update(init(Pr), act(ξ)).

Given a protocol Pr , a sequence e1 · · · ek of events of Pr
is said to be an admissible sequence of events of Pr iff the
following conditions hold:

for all i, j ≤ k such that i 6= j, ei 6= ej ,
for all i ≤ k and for all e ≺ ei,

there exists j < i such that ej = e, and
for all i ≤ k, act(ei) is enabled at infstate(e1 · · · ei−1).

Usually, runs are also required to satisfy the property of
unique origination of nonces. This means that there is a
designated set of nonces in the protocol specification which
are meant to be fresh, and that if we use substitute one value
for one of these nonces in one context, the same value can-
not be used for any other designated nonce or for the same
nonce in a different context. The formal details can be
found in [RS06].

Modelling primitives of election protocols

We now discuss examples of primitives used in election
protocols in terms of the formal model.

Blind signatures. Suppose Ammu wants to get Balu
to sign a message m for her, without revealing m to
Balu. This can be done as follows. Ammu sends
[m, {r}pub(B)] to Balu, where r is a some random num-
ber chosen by Ammu. Now Balu signs this message to get
{[m, {r}pub(B)]}priv(B). He will now apply the blindsign
rule and get [{m}priv(B), r]. From this, Balu cannot get
m as he does not know r. But on receiving this message,
Ammu can get {m}priv(B) using the blindsplit rule (since
she has r).

Bit commitment. Suppose Ammu wants to commit a bit
to Balu now and reveal it later. She should not be allowed
to change her mind in the meantime. This can be imple-
mented as follows: Ammu first sends {b}k and later reveals
inv(k). Balu cannot know b unless he has k. Ammu can-
not fool Balu into believing that the bit is some bit b′ differ-
ent from b. This is because of the following fundamental
property of the Dolev-Yao abstraction: two terms {b}k and
{b′}k′ if and only if b = b′ and k = k′. Thus Ammu cannot
find any k′ such that sending inv(k′) to Balu, she can make
him extract a b′ different from b.

Now consider a variant of the bit commitment scheme,
which we call trapdoor bit commitment. Ammu wants to
commit two bits to Balu. Later, she wants to reveal only one
of the committed bits to Balu. To implement this, Ammu
sends [{b}k, {b′}k′] to Balu. If she wishes to reveal b, she
sends ({b′}k′ , inv(k)) to Balu. If she wishes to reveal b′,
she sends ({b}k, inv(k′)). It is easy to show that exactly
one of the bits is revealed to Balu.

3 A protocol example

We present an abstract version of the FOO proto-
col [FOO92] here, and show how it is formally specified
in our model. This protocol is based on the blind signature
scheme outlined in Section 2.

In formally modelling the protocol, we assume a bounded
number of agents (say m, with n of them being voters). We
have three roles: the voter role, the administrator role, and
the counter role. We also assume that when an agent re-
ceives a message through an anonymous channel, she does
not know the sender of the message. We use ∗ to denote the
anonymous sender. Similarly, ×(A, ∗, t) denotes the agent
A broadcasting the message t.

The various roles are given below:

• The voter role:

1. +(V,A, {[{b}r, {k}pub(A)]}priv(V))

2. −(A, V, ([{{b}r}priv(A), k])
3. −(A, V, validation over!)
4. !(V,C, ({{b}r}priv(A), r)

The voter first decides on her vote and applies a bit
commitment scheme with a random number r. She
then sends it to the administrator to affix a blind sig-
nature using another random number k. On getting
a blind signature from the administrator, she retrieves
the signed message using her random number k, and
then waits for the administrator to broadcast a mes-
sage that starts the next stage of election. Now the
voter sends the signed message (which is a bit com-
mitment of her vote with r) to the counter through an
anonymous channel.

• The administrator role

1. −(V1, A, {[{b1}r1 , {k1}pub(A)]}priv(V1))
2. +(A, V1, [{{b1}r1}priv(A), k1])

. . .
2n− 1.−(Vn, A, {[{bn}rn

, {kn}pub(A)]}priv(Vn))
2n. +(A, Vn, [{{bn}rn}priv(A), kn])
2n + 1.×(A, ∗, validation over!)

The administrator’s role is to receive encrypted votes
from registered voters and return blind signatures to
them. When this is done for all voters, the administra-
tor announces the end of this stage of election. Note
that, for simplicity, we do not present error conditions
here.

• The counter role

1. −(A,C, validation over!)
2. ?(∗, C, ({{b′1}r′1

}priv(A), r
′
1))

. . .
n + 1. ?(∗, C, ({{b′n}r′n}priv(A), r

′
n))

n + 2. ×(C, ∗, announce results)

The counter simply collects anonymously mailed
votes, and counts every vote that has been attested by
an administrator. Again, we do not present error situ-
ations.

Actually, the FOO protocol is more complicated: after reg-
istration, voters send the signed votes to the counter, who
then publishes (on a bulletin board, say) the list of bit com-
mitments. This is an ordered list. Looking at this list, the
voter identifies her commitment and sends to the counter
the list number and r through an anonymous channel. This
allows the counter to determine the actual votes and tally
them properly. The counter can also publish the associated
random number with the previously published list, so that
anybody can check if the votes have been counted properly.
We have avoided these communications to save clutter, but
they can be modelled as well.

It is known that the FOO protocol attains secrecy, individ-
ual verifiability, fairness and eligibility. However it does
not satisfy universal verifiability, which asserts that at the
end of the election, we can check that all voters’ votes have
been counted. (This is because the counter can add votes
according to his wish, if some voters refrain from voting.)
The FOO protocol is not receipt-free either, and we discuss
this in some detail, but later, when we have knowledge op-
erators on hand.

4 Logic

We now consider the propositional logic of knowledge and
tense as a logical language for specifying properties of vot-
ing protocols. While the modalities are standard, we con-
siderably restrict the atomic propositions to be in a specific
form, so that the knowledge assertions in this logic are lim-
ited to knowledge that can be constructed by agents. (See
[RS05] for the rationale.) The semantics of the proposi-
tion A has t, given by t ∈ T , where T is A’s “current
state” codifies constructible basic knowledge. The seman-
tics of KA α is based on an observational equivalence on
runs from A’s point of view, and represents the meaning
that an agent attaches to constructible terms.

The set of formulas Φ is given by:

Φ ::= A has t | a | voteA(c) | ¬α |α∨β |G α |H α |KA α

where A ∈ Ag , t ∈ T , a is any action, c ∈ Ch and α, β
range over Φ. The other connectives, ∧, ⊃ and the dual
modalities F, P, and LA are defined in the usual manner.
The atomic proposition voteA(c) says that in the current
state A has decided on the option c ∈ Ch as her vote.

The semantics of the logic crucially hinges on an equiv-
alence relation on runs, which is defined as follows. In-
tuitively, an agent cannot distinguish a term {t}k from any
other bitstring in a state where she has no information about
k. A similar remark applies to a blind pair [t1, t2] when she
has neither of the terms inside.

We define the set Patterns of patterns as follows (where 2

denotes an unknown pattern):

Patterns ::= b ∈ B | (P,Q) | {P}k | [P,Q] | 2

where P,Q range over Patterns .

We can now define the patterns derivable by an agent on
seeing a term t in the context of a set of terms S. In a
sense, this is the only certain knowledge that the agent can
rely on at that state.

pat(b, S) =

{
b if b ∈ B ∩ S

2 if b ∈ B \ S

pat((t1, t2), S) = (pat(t1, S), pat(t2, S))

pat({t}k, S) =

{
{pat(t, S)}k if inv(k) /∈ S

2 otherwise

pat([t1, t2], S) =

[pat(t1, S), pat(t2, S)] if t1 ∈ S

[pat(t1, S), pat(t2, S)] if t2 ∈ S

2 otherwise

We extend the definition to pat(a, S) and pat(e, S) for an
action a, event e and a set of terms S in the obvious man-
ner. For any sequence of actions ξ = e1 · · · en, we define
pat(ξ, S) to be the sequence pat(e1, S) · · · pat(en, S).

An agent A’s view of a run A, denoted ξdA, is the sequence
got by retaining the first occurrence (in order) of every ac-
tion a of A. For two runs ξ and ξ′ of Pr and an agent A, we
define ξ and ξ′ to be A-equivalent (in symbols ξ ∼A ξ′) iff
pat(ξdA,S) = pat(ξ′dA,S′), where S = infstate(ξ) and
S′ = infstate(ξ′).

The semantics of the logic can now be given on standard
lines, where the formulas are evaluated at an instant of a
run of the protocol. The inductive definition is as follows
(where we use the notations ξ(i) and ξi for the ith event of
ξ and the prefix of length i of ξ, respectively):

ξ, i |= A has t if and only if t ∈ infstateA(ξi).
ξ, i |= a if and only if act(ξ(i)) = a.
ξ, i |= voteA(c) if and only if V (ξ,A) = c.
ξ, i |= G α if and only if ξ, j |= α for all j ≥ i.
ξ, i |= H α if and only if ξ, j |= α for all j ≤ i.
ξ, i |= KA α if and only if ξ′, i′ |= α

for all ξ′, i′ such that (ξ, i) ∼A (ξ′, i′).

We say that Pr |= α if for all runs ξ of Pr and all instants
i ≤ |ξ|, ξ, i |= α.

Properties

We now consider the properties of election protocols dis-
cussed in Section 1, and show how they can be expressed
in this logic.

Secrecy. A protocol is said to preserve secrecy (of votes) if
the intruder cannot figure out anyone’s vote. This is speci-
fied by: ∧

A∈Ag,c∈Ch

(voteA(c) ⊃ ¬ KIvoteA(c)).

Receipt-freeness: This asserts that no voter has any means
of proving to another agent that she has voted in a particular

manner. It is surprisingly simple to express in terms of our
logic. Consider a voter A and a run ξ of a protocol Pr .
We want to say that no other agent B “looking at” ξ can
determine for certain what A’s vote (A might have tried her
best to communicate (usually indirect) information about
her vote to B, but even so). The formula is as follows:∧

c∈Ch

(voteA(c) ⊃
∧

B 6=A

¬ KBvoteA(c)).

It is to be noted that such a definition might not be very ef-
fective in practice. For instance, if B can convince A that
B voted in a particular way with 99% certainty, then we
should deem that B has a receipt, even though our model
might not recognise the situation as such. We haven’t ad-
dressed this subtle issue in this paper, and leave it for future
research.

Fairness: A protocol is said to be fair if the voter is pre-
vented from changing her vote as a consequence of par-
tial results. This often means that the voters do not have
any knowledge of the distribution of the votes until they
are finally announced. Here is one version of this property
formalized (where we assume a special atomic proposition
ann , true exactly of runs in which a special announce ac-
tion has happened in the past):

¬ann ⊃
∧

A∈Ag

(LA(
∧

B 6=A

voteB(0))∧LA(
∧

B 6=A

voteB(1))).

Individual verifiability: Each voter should be able to
check whether her vote has been counted properly. Fix a
voter V and a counter C:∧

c∈Ch

(!(V,C, {c}r) ⊃ GKA(ann ⊃ P?(V,C, {c}r))).

Receipt in FOO

Consider the FOO protocol as modelled in the previous sec-
tion, and a situation where there are two voters V1 and V2,
who engage in a normal session of the protocol with the
administrator and the counter. We present only the send
messages in the run. It is implicit that the corresponding
receive events happen immediately.

V1 · 1. +(V1, A, {[{0}r1 , {k1}pub(A)]}priv(V1))
A · 1. +(A, V1, [{{0}r1}priv(A), k1])
V2 · 1. +(V2, A, {[{1}r2 , {k2}pub(A)]}priv(V2))
A · 2. +(A, V2, [{{1}r2}priv(A), k2])
A · 3. ×(A, ∗, validation over!)
V2 · 2. !(V2, C, ({{1}r2}priv(A), r2)
V1 · 2. !(V1, C, ({{0}r1}priv(A), r1)
C. ×(C, ∗, announce results)

Now V1 has voted 0, V2 has voted 1, and the counter has
announced the results. At the end of the run¬KAvoteV1(0)

is true. This is because A can only see the pattern 2 on
receving the first message. Therefore there is another run
of the protocol A-equivalent to the above in which V1 could
have voted differently. Thus A cannot know V1’s vote. But
we claim that (k1, r1) is a “receipt” for the voter V1 with
respect to the administrator. By this we mean the following:
if V1 manages to send the pair (k1, r1) to the administrator
(in violation of the protocol), A can now discern a deeper
pattern in the term he received first. In fact A can determine
that term completely (though not at the time of receiving
the first message).

It is easy to see that, after the receipt of (k1, r1), there is no
run A-equivalent to the above in which V1 could have voted
differently. This is because of a fundamental property of
the basic Dolev-Yao model: {t}k = {t′}k′ if and only if
t = t′ and k = k′, and [t, t′] = [u, u′] if and only if t = t′

and u = u′. Therefore the vote in the first message can
only be 0 in all equivalent messages.

This shows that the FOO protocol does not satisfy receipt-
freeness.

There is more: when V1 sends (k1, r1), we can show
that KV1¬KAvoteV1(0) holds, but that after it is received,
KV1KAvoteV1(0) holds. This reveals the intentionality of
receipt as well.

This scenario highlights another feature: the formula
FKAα ⊃ KAFα is not a validity; while the administra-
tor knows the receipt at the end of the run, and hence the
knowledge formula is initially true, the future receipt is not
known initially. This is unlike typical logics of knowledge
and time, and illustrates an aspect typical of knowledge in
the context of security protocols.

Decidability

Theorem 2 Fix a finite T ⊆ T0. The problem of checking
for a given election protocol Pr and a formula α in Φ,
whether all T -runs of Pr satisfy α (in symbols Pr |=T α),
is decidable.

Note that the set of runs is infinite even though the set of ba-
sic terms is finite, since events may repeat in a run. (Mod-
elling such repetition is forced on us, since an agent can-
not distinguish between repeated events and distinct events
where she sees the same patterns.)

The proof of the theorem proceeds along lines similar to
the one described in [RS05]. We construct an atom graph
for a given formula, whose nodes are locally consistent sets
of formulas. The edge relation relates to the tense modal-
ities and an equivalence relation on nodes (for each agent)
is defined using patterns as above. We then need to define a
reduce relation which collapses repeated events (based on
subformulas), and construct a larger graph. Satisfiability
then reduces to the existence of a good subgraph which sat-

isfies certain closure conditions: crucially, paths in the sub-
graph are closed with respect to eventuality requirements,
and those imposed by the LA operator dual to knowledge.
Verifying the existence of such a subgraph crucially relies
on Theorem 1 which asserts efficient decidability of T ` t.

As a corollary to the theorem above, we see that check-
ing receipt freeness is decidable for electronic voting pro-
tocols, when agents and nonces are assumed to be bounded.
A direct proof of this result is much simpler, and uses the
fact that under the assumptions made. The equivalence re-
lation on runs is of finite index. Each equivalence class
for agent B is further partitioned into two, for each agent
A 6= B: those in which A votes 0 and those in which A
votes 1. Verifying receipt freeness amounts to checking
that each such partition is non-empty. We take the simplic-
ity of this proof as further demonstration of our contention
that knowledge based modelling offers a pragmatic basis
for reasoning about receipt-freeness.

5 Conclusion

We have shown that the implementation of electronic vot-
ing schemes can be fruitfully studied using aspects of the
theory of knowledge. This paper is in the nature of a pre-
liminary study, where the model is set up and the basic de-
cidability questions are addressed. Much more work needs
to be done. For instance, the decidability result presented in
this paper is only for a bounded number of agents, nonces,
etc. The next step is to extend the decidability result to
more general settings.

References

[AN05] S. Artemov and E. Nogina. On epistemic logic with
justification. In Proceedings of TARK X, pages 279–
294, Singapore, July 2005.

[AR00] Martin Abadi and Phillip Rogaway. Reconcil-
ing two views of cryptography (the computational
soundness of formal encryption). In Proceedings
of the IFIP International Conference on TCS (IFIP
TCS2000), volume 1872 of Lecture Notes in Com-
puter Science, pages 3–22, 2000.

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-
free secret-ballot elections(extended abstract). In
Proceedings of 26th Symposium on Theory of Com-
puting, pages 544–553, 1994.

[CDL+99] Iliano Cervesato, Nancy A. Durgin, Patrick D. Lin-
coln, John C. Mitchell, and Andre Scedrov. A Meta-
notation for Protocol Analysis. In P. Syverson, ed-
itor, Proceedings of the 12th IEEE Computer Se-
curity Foundations Workshop, pages 35–51. IEEE
Computer Society Press, 1999.

[Cha83] D. Chaum. Blind signatures for untraceable pay-
ments. In Advances in Cryptology - Crypto ’82,
pages 199–203. Springer-Verlag, 1983.

[Cha85] D. Chaum. Security without identification: transac-
tion systems to make big brother obsolete. Commu-
nications of the ACM, 28(10):1030–1044, 1985.

[CMFP+06] Benoit Chevallier-Mames, Pierre-Alain Fouque,
David Pointcheval, Julien Stern, and Jacques
Traore. On Some Incompatible properties of Voting
Schemes. In Proceedings of the IAVoSS Workshop
on Trustworthy Elections, 2006.

[CMS00] Iliano Cervesato, Catherine A. Meadows, and
Paul F. Syverson. Dolev-Yao is no better than
Machiavelli. In P. Degano, editor, Proceedings of
WITS’00, pages 87–92, July 2000.

[DKR06] Stephanie Delaune, Steve Kremer, and Mark Ryan.
Coercion-Resistance and Receipt-Freeness in Elec-
tronic Voting. In 19th Computer Security Founda-
tions Workshop, pages 28–42. IEEE Computer So-
ciety, 2006.

[DY83] Danny Dolev and Andrew Yao. On the Security of
public-key protocols. IEEE Transactions on Infor-
mation Theory, 29:198–208, 1983.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses,
and Moshe Y. Vardi. Reasoning about Knowledge.
M.I.T. Press, 1995.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kaazuo
Ohta. A practical secret voting scheme for large
scale elections. In ASIACRYPT, pages 244–251,
1992.

[HO05] Joseph Y. Halpern and Kevin R. O’Neil. Anonymity
and Information Hiding in Multiagent Systems.
Journal of Computer Security, 13(3):483–512,
2005.

[HP03] Joseph Y. Halpern and Riccardo Pucella. Modeling
adversaries in a logic for security protocol analysis.
In Formal Aspects of Security, First International
Conference, FASec 2002, volume 2629 of Lecture
Notes in Computer Science, pages 115–132, 2003.

[JdV06] Hugo Jonker and E.P. de Vink. Formalising
Receipt-Freeness. In Information Security Confer-
ence, volume 4176 of Lecture Notes in Computer
Science, pages 476–488. Springer, 2006.

[JP06] Hugo Jonker and Wolter Pieters. Receipt-freeness
as a special case of anonymity in epistemic logic. In
Proceedings of the IAVoSS Workshop on Trustwor-
thy Elections, 2006.

[KR05] Steve Kremer and Mark Ryan. Analysis of an Elec-
tronic Voting Protocol in the Applied Pi Calculus.
In Proceedings of the European Symposium on Pro-
gramming, volume 3444 of Lecture Notes in Com-
puter Science, pages 186–200. Springer, 2005.

[PR85] Rohit Parikh and R. Ramanujam. Distributed Pro-
cesses and the Logic of Knowledge. In Logic of
Programs, pages 256–268, 1985.

[Rja02] Zuzana Rjaskova. Electronic voting schemes. Mas-
ter’s thesis, Comenius University, 2002.

[RS05] R. Ramanujam and S. P. Suresh. Decidability of
context-explicit security protocols. Journal of Com-
puter Security, 13(1):135–165, 2005.

[RS06] R. Ramanujam and S. P. Suresh. A (restricted)
quantifier elimination for security protocols. The-
oretical Computer Science, 367:228–256, 2006.

A The decidability of the message
derivation system

The core of the decidability argument for any logic is to
prove that for a given term t and a set of terms T , the prob-
lem of checking whether T ` t is decidable. We do that in
this section. There is a preliminary definition first:

Define st(t), the set of subterms of a term t, in the stan-
dard manner, with the the following additional clause:
st([t, {m}k]) def= {[t, {m}k], [{t}inv(k),m]}
∪st({m}k) ∪ st({t}inv(k)), and similarly for [{m}k, t].

For a set of terms T , st(T) is defined to be
⋃

t∈T st(t).

Define |t|, the size of a term t, to be the number of symbol
occurrences in t. It is easy to see that |st(t)| ≤ 7 · |t|, and
that |ST (T)| ≤ 7 · |T |, where by |T | we mean the sum of
the sizes of the terms in T .

For ease of presentation, we will assume that the terms in
T ∪ {t} are normal, i.e., they do not contain a term of the
form {[t, {m}inv(k)]}k as a subterm. This assumption al-
lows us to modify the blindsign rule to the following form:

T ` [t, {m}inv(k)] T ` k
blindsign

T ` [{t}k,m]

A normal proof is a proof π such that there is no shorter
proof with the same conclusion as π. Notice that every
subproof of a normal proof is a normal proof, and that no
proper subproof of a normal proof π has the same conclu-
sion as π. The following observations are useful:

Two successive applications of the blindsign rule cannot
occur in a normal proof. The proof is as follows: Suppose
a normal proof π ends with two successive applications of
the blindsign rule. Then it can only look as follows:

(π1)

.

.

.

T ` [{n}k, m]

(π2)

.

.

.

T ` inv(k)
blindsign

T ` [n, {m}inv(k)] T ` k
blindsign

T ` [{n}k, m]

But then, π1 has the same conclusion as π, contradicting
the normality of π.

In a normal proof, there cannot be an application of a
blindpair rule followed by an application of a blindsign
rule followed by an application of a blindsplit rule. The
proof is as follows: Suppose a normal proof π ends with a
blindpair rule followed by a blindsign rule followed by a
blindsplit rule. Then it looks as follows:

(π1)

.

.

.

T ` t

(π2)

.

.

.

T ` {m}inv(k)
blindpair

T ` [t, {m}inv(k)]

(π3)

.

.

.

T ` k
blindsign

T ` [{t}k, m]

(π4)

.

.

.

T ` m

T ` {t}k

But then π is not normal, since the following is a shorter
proof of T ` {t}k.

(π1)

.

.

.

T ` t

(π3)

.

.

.

T ` k
encrypt

T ` {t}k

We use these facts in the proof of the following proposition.

Proposition 3 Let π be a normal proof of T ` t, and let r
be a term occurring in π. Then r ∈ st(T ∪ {t}), and if π
ends in an application of an analz rule, r ∈ st(T).

Proof: We prove this by induction on the structure
of proofs. We will use the fact that subproofs of normal
proofs are also normal. So the induction hypothesis is al-
ways available to us. We present only the most important
case:
Suppose π is of the following form and r is a term occur-
ring in π:

(π1)

.

.

.

T ` [t, t′]

(π2)

.

.

.

T ` t′
blindsplit

T ` t

We claim that [t, t′] ∈ st(T), whence st(T ∪ {[t, t′]}) =
st(T ∪ {t′}) = st(T). Now by the induction hypothesis,
any r′ occurring in π1 belongs to st(T ∪{[t, t′]}) = st(T),
and any . Since [t, t′] belongs to st(T), t also belongs to
st(T). Now, any r occurring in π either occurs in π1 or is
the same as t. In either case, r ∈ st(T).

If π1 ends in an analz -rule, then by induction hypothe-
sis, [t, t′] ∈ st(T), and we are done. Otherwise, there
are two cases to consider. The first case is that π1 ends
in a blindpair rule. This case cannot happen, since then π1
would have a subproof with T ` t as conclusion, contrary
to the assumption that π is normal. The only remaining
case is that π1 ends in a blindsign rule. Then it has to be
the case that t = {u}k and t′ = m for some k ∈ K and
m ∈ B, and π looks as follows:

(π′1)

.

.

.

T ` [u, {m}inv(k)]

(π′′1)

.

.

.

T ` k
blindsign

T ` [{u}k, m]

(π2)

.

.

.

T ` m
blindsplit

T ` {u}k

Now since π is a normal proof, π′1 will not end in a
blindpair rule or a blindsign rule, as observed earlier. The
only other possibility is that π′1 ends in an analz -rule.
Thus, by induction hypothesis [u, {m}inv(k)] belongs to
st(T), and hence so does [{u}k,m] and {u}k, by our def-
inition of st(T). Thus [t, t′] ∈ st(T) in all cases, and we
are done. a

Theorem 1 Given a finite set of terms T and a term t,
checking whether t ∈ T is decidable in time polynomial
in size of T .

Proof:

Suppose there is a proof of T ` t. Then there is a normal
proof of T ` t. Also, all the terms occurring in this proof
are subterms of T ∪ {t}. Further, along every branch of a
normal proof, the same term cannot occur twice. Thus the
height of a normal proof of T ` t is bounded by the size of
st(T ∪ {t}), and hence by D = 7 · |T ∪ {t}|. Therefore it
suffices to check if there exists a proof of T ` t of height D.
This is easy to check. Start with T ′ = T ∪ {t} and repeat
D times the following step: Replaces T ′ by T ′′ ∩ st(T ∪
{t}), where T ′′ is all the terms got by one application of a
synth or analz rule to two terms in T ′. Finally check if t
belongs to T ′. Since the proof system we have presented is
monotone, this ensures that if a rule is applicable at some
stage, it remains applicable even at a later stage. So the
above procedure correctly yields all the terms of interest
that are derivable from T by proofs of height at most D.
Thus the problem of checking whether t ∈ T is decidable
in polynomial time. a

