ECC, Chennai — October 8, 2014

A heuristic quasi-polynomial algorithm for discrete logarithm in small characteristic

<u>Razvan Barbulescu¹</u> Pierrick Gaudry² Antoine Joux³ Emmanuel Thomé² IMJ-PRG, Paris

Loria, Nancy

LIP6, Paris

Context

The discrete logarithm problem (DLP)

In a cyclic group G, given a generator g and an element g^a , FIND a. We can search the smallest positive integer solution a or, more common, the residue of a modulo a prime factor ℓ of #G.

Choices for G

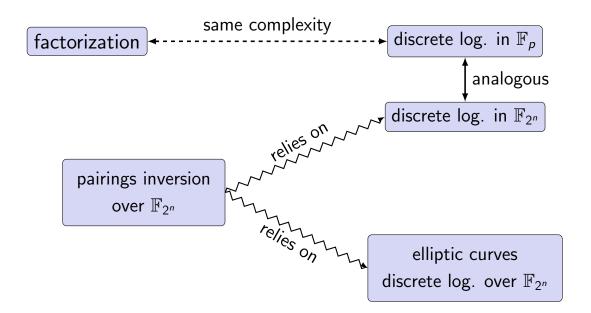
- 1. elliptic curves (estimated of exponential difficulty);
- 2. multiplicative group of finite fields (subexponential)
 - 2.1 small characteristic, e.g. \mathbb{F}_{2^n} and \mathbb{F}_{3^n} ,
 - 2.2 non-small characteristic, e.g. \mathbb{F}_p and \mathbb{F}_{p^2}

Example

When $G = (\mathbb{F}_p)^*$, given two integers g and h, if it exists, FIND x in

$$g^x \equiv h \mod p$$
.

Motivation



 F_Q is the field of Q elements, Q prime power.

Shanks' baby-step giant-step algorithm

Let $K \approx \sqrt{N}$ and write the discrete log of x as

 $x = x_0 + K x_1$, with $0 \le x_0 < K$ and $0 \le x_1 < N/K$.

Algorithm

1. Compute **Baby Steps**:

For all *i* in [0, K - 1], compte g^i .

Store in a hash table the resulting pairs (g^i, i) .

2. Compute Giant Steps:

For all j in $[0, \lfloor N/K \rfloor]$, compute hg^{-Kj} . If the resulting element is in the BS table, then get the corresponding i, and return x = i + Kj.

Theorem

Discrete logarithms in a cyclic group of order N can be computed in less than $2\lceil\sqrt{N}\rceil$ operations.

Shanks' baby-step giant-step algorithm

Let $K \approx \sqrt{N}$ and write the discrete log of x as

 $x = x_0 + K x_1$, with $0 \le x_0 < K$ and $0 \le x_1 < N/K$.

Algorithm

1. Compute Baby Steps:

For all *i* in [0, K - 1], compte g^i .

Store in a hash table the resulting pairs (g^i, i) .

2. Compute Giant Steps:

For all j in $[0, \lfloor N/K \rfloor]$, compute hg^{-Kj} . If the resulting element is in the BS table, then get the corresponding i, and return x = i + Kj.

Theorem

Discrete logarithms in a cyclic group of order N can be computed in less than $2\lceil\sqrt{N}\rceil$ operations.

Multiplicative group of finite fields is **not** a generic groups!

History

For two constatnts $\alpha \in [0,1]$ and c > 0, we put

$$L_Q(lpha, c) = \exp\left(c + o(1))(\log Q)^lpha (\log \log Q)^{1-lpha}
ight)$$

Put $n = \log Q$.

- $L_Q(0) = n^{O(1)}$ i.e. polynomial;
- $L_Q(1) = 2^{O(n)}$ i.e. exponential;
- $L_Q(1/2) \approx 2^{\sqrt{n}}$; DLP algorithms invented in 1979 1994.
- $L_Q(1/3) \approx 2^{\sqrt[3]{n}}$; DLP algorithms invented in 1984 2006.

Smoothness

Definition

A polynomial in $\mathbb{F}_q[t]$ is *m*-smooth if it factors into polynomials of degree less than or equal to *m*.

Computation

One can test if a polynomial is smooth by factoring it (probabilistic polynomial).

Theorem (Panario–Gourdon–Flajolet)

The probability that a degree-*n* polynomial is *m*-smooth is $1/u^{u(1+o(1))}$ where $u = \frac{n}{m}$.

Cases:

- ▶ n = D, m = D/6 gives a constant probability;
- ▶ n = D, m = 1 gives a probability $1/D! \approx 1/D^D$.

▶ $n = \log_q L_x(\alpha, \cdot)$, $m = \log_q L_x(\beta, \cdot)$ gives a probability of $1/L_x(\alpha - \beta, \cdot)$;

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$. We have

$$t^5 \equiv 2(t+1)(t^3+t^2+2t+1) \mod arphi$$

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$. We have

$$\begin{array}{rcl} t^5 &\equiv& 2(t+1)(t^3+t^2+2t+1) &\mod \varphi \\ t^6 &\equiv& 2(t^2+1)(t^2+t+2) &\mod \varphi \end{array}$$

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$. We have

$$t^5 \equiv 2(t+1)(t^3+t^2+2t+1) \mod \varphi$$

 $t^6 \equiv 2(t^2+1)(t^2+t+2) \mod \varphi$

$$t^7 \equiv 2(t+2)(t+1)(t+1) \mod \varphi$$

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$. We have

$$t^{5} \equiv 2(t+1)(t^{3}+t^{2}+2t+1) \mod \varphi$$

$$t^{6} \equiv 2(t^{2}+1)(t^{2}+t+2) \mod \varphi$$

$$t^{7} \equiv 2(t+2)(t+1)(t+1) \mod \varphi$$

The last relation gives:

$$7 \log_g t \equiv \log_g 2 + 1 \log_g (t+2) + 2 \log_g (t+1) \mod 11$$

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$. We have

$$\begin{array}{rcl} t^5 &\equiv& 2(t+1)(t^3+t^2+2t+1) & \mod \varphi \\ t^6 &\equiv& 2(t^2+1)(t^2+t+2) & \mod \varphi \\ t^7 &\equiv& 2(t+2)(t+1)(t+1) & \mod \varphi \end{array}$$

The last relation gives:

$$7 \log_g t \equiv 1 \log_g (t+2) + 2 \log_g (t+1) \mod 11$$

Proposition

If $a \in \mathbb{F}_q^*$ and ℓ is a factor of $q^k - 1$ coprime to (q - 1), then $\log a \equiv 0 \mod \ell$.

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q=3, k=5, $arphi=t^5+t^4+2t^3+1$, $g=t\in\mathbb{F}_{3^5}.$ We have

t ⁵	\equiv	$2(t+1)(t^3+t^2+2t+1)$	${\sf mod} \varphi$
t ⁶	\equiv	$2(t^2+1)(t^2+t+2)$	${\rm mod}\ \varphi$

$$t^8 \equiv \ldots$$

The last relation gives:

$$7 \log_g t \equiv 1 \log_g (t+2) + 2 \log_g (t+1) \mod 11$$

 $8 \log_g (t+1) = 1 \log_g (t+2) \mod 11$

$$9\log_g(t+2) = 2\log_g t \mod 11$$

We find $\log_g(t+1) \equiv 158 \mod 11$ and $\log_g(t+2) \equiv 54 \mod 11$.

Proposition

If $a \in \mathbb{F}_q^*$ and ℓ is a factor of $q^k - 1$ coprime to (q - 1), then $\log a \equiv 0 \mod \ell$.

Descent

Example (cont'd)

Let us compute $\log_g P$ for an arbitrary polynomial, say $P = t^4 + t + 2$. We have

$$\begin{array}{rcl} P^2 &\equiv& t^4 + t^3 + 2t^2 + 2t + 2 &\mod \varphi\\ P^3 &\equiv& 2(t+1)(t+2)(t^2+1) &\mod \varphi\\ P^4 &\equiv& (t+1)(t+2)t^2 &\mod \varphi \end{array}$$

Descent

Example (cont'd)

Let us compute $\log_g P$ for an arbitrary polynomial, say $P = t^4 + t + 2$. We have

$$\begin{array}{rcl} P^2 &\equiv& t^4 + t^3 + 2t^2 + 2t + 2 &\mod \varphi \\ P^3 &\equiv& 2(t+1)(t+2)(t^2+1) &\mod \varphi \\ P^4 &\equiv& (t+1)(t+2)t^2 &\mod \varphi \end{array}$$

By taking discrete logarithms we obtain

$$4\log_g P = 1\log_g(t+1) + 1\log_g(t+2) + 2\log_g t.$$

So $\log_g P = 114$.

Discrete logarithms of constants

Here ℓ is a prime factor of the group order $q^k - 1$, larger than q - 1.

Elements of $\mathbb{F}_q \subset \mathbb{F}_{q^k}$ are represented in $\mathbb{F}_q[t]/\langle \varphi \rangle$ by constants *a*. They satisfy $a^{q-1} = 1$, so we have $\log_g(a^{q-1}) \equiv \log_g(1) \equiv 0 \mod \ell.$ Hence,

$$(q-1)\log_{g}a\equiv 0 \mod \ell.$$

Since ℓ is prime and larger than q-1,

$$\log_g a \equiv 0 \mod \ell.$$

Comments

Index calculus family

All L(1/2) and L(1/3) DLP algorithms follow the same scheme (of Kraitchik 1922):

- Relation collection;
- Linear algebra to get logs of factor base elements;
- Individual log, to handle any element.

New algorithms

Joux's L(1/4) algorithm still uses this terminology (but very different in nature).

Quasi-polynomial time algorithm: it's time to stop speaking about factor base!

Records for fields \mathbb{F}_{2^n} with prime *n*

Let us compare to the factoring record: 768 bits in 2009.

FFS is the choice in practice, and its variants

- Coppersmith (inseparable polynomials);
- Two rational sides FFS (Joux-Lercier).

GIPS=giga instructions per second

n	date	GIPS year	algo.	author
401	1992	0.2	Copp.	Gordon,McCurley
512 ¹	2002	0.4	FFS	Joux,Lercier
607	2002	20	Copp.	Thomé
607	2005	1.6	FFS	Joux,Lercier
613	2005	1.6	FFS	Joux,Lercier
619	2012	pprox 0	FFS	Caramel
809	2013	16	FFS	Caramel

¹Using the same algorithm as for prime degrees.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm

Records for fields \mathbb{F}_{2^n} with prime *n*

Let us compare to the factoring record: 768 bits in 2009.

FFS is the choice in practice, and its variants

- Coppersmith (inseparable polynomials);
- Two rational sides FFS (Joux-Lercier).

GIPS=giga instructions per second

n	date	GIPS year	algo.	author
401	l 1992	0.2	Copp.	Gordon,McCurley
512	2002	0.4	FFS	Joux,Lercier
607	7 2002	20	Copp.	Thomé
607	7 2005	1.6	FFS	Joux,Lercier
613	3 2005	1.6	FFS	Joux,Lercier
619	2012	≈ 0	FFS	Caramel
809	2013	16	FFS	Caramel

The Caramel group completed the relation collection stage for n = 1039 with a computation of 384 GIPS years. Linear algebra must be adapted to larger sizes.

¹Using the same algorithm as for prime degrees.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm

Composite degrees n

Motivation

To attack pairing-based cryptosystems, one can solve DLP in fields $\mathbb{F}_{p^{\kappa n}}$ for a small constant $c \neq 1$. The security of pairings is evaluated under the hypothesis

DLP in \mathbb{F}_{p^n} is equally hard when *n* is prime or composite.

Theorem (Joux & Lercier 2006)

Under the same assumptions as in the classical variante of FFS, if n has a small factor κ , then one can speed up

- 1. the relations collection phase by a factor κ ;
- 2. the linear algebra stage by a factor κ^2 .

Joux-Lercier improvement in practice

Two teams computed discrete logs in $\mathbb{F}_{3^{6n}}$ (pairings):

- a 2010 record for n = 71 (676 bits) using $\kappa = 6$; cost 14 GIPS year.
- a 2012 record for n = 97 (923 bits) using $\kappa = 3$; cost 290 GIPS years.

Complexity improvements in 2013 for small characteristic

Linear polynomials

One computes discrete logs. of linear polynomials in polynomial time.

- Göloğlu, Granger, McGuire and Zumbrägel;
- Joux.

Expressing $\log P$ as a sum of logs. of linear polynomials dominates the computations.

Any polynomial

- Joux: $L_Q(1/4 + o(1))$ operations;
- (this work): quasi-polynomial $L_Q(o(1))$ operations.

Main result

Theorem (based on heuristics)

Let K be any finite field \mathbb{F}_{q^k} . A discrete logarithm in K can be computed in heuristic time

 $\max(q,k)^{O(\log k)}.$

Cases:

- ▶ $K = \mathbb{F}_{2^n}$, with prime *n*. Complexity is $n^{O(\log n)}$. Much better than $L_{2^n}(1/4 + o(1)) \approx 2^{\sqrt[4]{n}}$.
- ▶ $K = \mathbb{F}_{q^k}$, with $q = k^{O(1)}$. Complexity is log $Q^{O(\log \log Q)}$, where Q = #K. Again, this is $L_Q(o(1))$.
- ▶ $K = \mathbb{F}_{q^k}$, with $q \approx L_{q^k}(\alpha)$. Complexity is $L_{q^k}(\alpha + o(1))$, i.e. better than Joux-Lercier or FFS for $\alpha < 1/3$.

A well-chosen model for $\mathbb{F}_{q^{2k}}$

Simple case first

We suppose first $k \approx q$ and $k \leq q + 2$.

Choosing φ (same as for Joux' algorithm)

Try random $h_0, h_1 \in \mathbb{F}_{q^2}[t]$ with deg h_0 , deg $h_1 \leq 2$ until $T(t) := h_1(t)t^q - h_0(t)$ has an irreducible factor φ of degree k.

Heuristic

The existence of h_0 and h_1 is heuristic, but found in practice in O(k) trials.

Properties of φ

- $h_1(t)t^q \equiv h_0(t) \mod \varphi;$
- $P(t^q) \equiv P\left(\frac{h_0}{h_1}\right) \mod \varphi;$

•
$$P^q\equiv ilde{P}(t^q)\equiv ilde{P}\left(rac{h_0}{h_1}
ight) \mod arphi$$
,

where the tilde denotes the conjugation in \mathbb{F}_{q^2} .

A famous identity

Recall the identity

$$x^q - x = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha).$$

We further have $x^q y - xy^q = \prod_{(\alpha:\beta)\in\mathbb{P}^1(\mathbb{F}_q)} (\beta x - \alpha y).$

A famous identity

Recall the identity

$$x^q - x = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha).$$

We further have $x^q y - xy^q = \prod_{(\alpha:\beta)\in\mathbb{P}^1(\mathbb{F}_q)} (\beta x - \alpha y).$

A machine to make relations

- x = t and y = 1: h₀/h₁ t ≡ t^q t ≡ Π_{α∈ℝ_q}(t α).
 If the numerator of the left hand side is smooth, we obtain relations among linear polynomials.
- x = t + a, $a \in \mathbb{F}_q$, and y = 1: same relation.
- x = t + a, $a \in \mathbb{F}_{q^2}$, and y = 1: new relations. Joux' algorithm uses this idea.
- Let P be the polynomial whose logarithm is requested.

A famous identity

Recall the identity

$$x^q - x = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha).$$

We further have $x^q y - xy^q = \prod_{(\alpha:\beta)\in\mathbb{P}^1(\mathbb{F}_q)} (\beta x - \alpha y).$

A machine to make relations

x = t and y = 1: h₀/h₁ - t ≡ t^q - t ≡ Π_{α∈ℝ_q}(t - α).
 If the numerator of the left hand side is smooth, we obtain relations among linear polynomials.

•
$$x = t + a$$
, $a \in \mathbb{F}_q$, and $y = 1$: same relation.

- x = t + a, $a \in \mathbb{F}_{q^2}$, and y = 1: new relations. Joux' algorithm uses this idea.
- Let P be the polynomial whose logarithm is requested.
 x = aP + b and y = cP + d, a, b, c, d ∈ 𝔽_{q²}: let us show that the left side is congruent to a small degree polynomial, whereas the right hand side is smooth in some new sense.

The right hand side is "smooth"

$$(aP+b)^q(cP+d) - (aP+b)(cP+d)^q = \prod_{(\alpha,\beta)\in\mathbb{P}^1(\mathbb{F}_q)} \beta(aP+b) - \alpha(cP+d)$$

$$=\prod_{(\alpha,\beta)\in\mathbb{P}^1(\mathbb{F}_q)}(-c\alpha+a\beta)P-(d\alpha-b\beta)$$

$$\lambda = \lambda \prod_{(lpha,eta)\in \mathbb{P}^1(\mathbb{F}_q)} \left(\mathsf{P} - rac{dlpha - beta}{aeta - clpha}
ight),$$

Here q + 1 out of the $q^2 + 1$ elements of $\{1\} \bigcup \{P + \gamma : \gamma \in \mathbb{F}_{q^2}\}$ occur.

The left hand side is small

For $m \in \operatorname{GL}_2(\mathbb{F}_{q^2})$, let \mathcal{L}_m be the residue

$$\mathcal{L}_m \mathrel{\mathop:}= h_1^{\deg P} \left((aP+b)^q (cP+d) - (aP+b)(cP+d)^q
ight) \mod arphi(t).$$

The left hand side is small

For $m \in \operatorname{GL}_2(\mathbb{F}_{q^2})$, let \mathcal{L}_m be the residue

$$\mathcal{L}_m := h_1^{\deg P} \left((aP+b)^q (cP+d) - (aP+b)(cP+d)^q \right) \mod \varphi(t).$$

We have deg $\mathcal{L}_m \leq 3 \deg P$. Indeed, we have

$$\mathcal{L}_{m} = h_{1}^{\deg P} (\tilde{a}\tilde{P}(t^{q}) + \tilde{b})(cP + d) - (aP(t) + b)(\tilde{c}\tilde{P}(t^{q}) + \tilde{d})$$

$$= h_{1}^{\deg P} \left(\tilde{a}\tilde{P}\left(\frac{h_{0}}{h_{1}}\right) + \tilde{b}\right)(cP + d) - (aP + b)\left(\tilde{c}\tilde{P}\left(\frac{h_{0}}{h_{1}}\right) + \tilde{d}\right).$$

For a constant proportion of matrices m, \mathcal{L}_m is $(\deg P)/2$ -smooth.

Procedure to "break" a polynomial *P*

Each matrix *m* in the quotient set $\mathcal{P}_q := \mathrm{PGL}_2(\mathbb{F}_{q^2})/\mathrm{PGL}_2(\mathbb{F}_q)$ such that \mathcal{L}_m is $(\deg P)/2$ -smooth leads to a different equation

$$\prod_{i} P_{i,m}^{e_{i,m}} = \lambda \prod_{\gamma \in \mathbb{P}^1(\mathbb{F}_{q^2})} (P + \gamma)^{v_m(\gamma)},$$

where

- ▶ deg $P_i \leq (\text{deg } P)/2;$
- \triangleright $v_m(\gamma)$ are integer exponents;
- \triangleright λ is a costant in \mathbb{F}_{q^2} .

By taking discrete logarithm we find

$$\sum_{i} e_{i,m} \log P_{i,m} \equiv \sum_{\gamma} v_m(\gamma) \log(P + \gamma) \mod \ell.$$

Heuristic

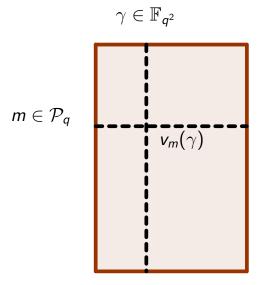
We have enough equations and we can combine them to obtain

$$\sum_{i,m} e'_{i,m} \log P_{i,m} \equiv \log P \mod \ell.$$

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm

Linear algebra step for *P*

Since $\#PGL_2(\mathbb{F}_{q^i}) = q^{3i} - q^i$, $\#\mathcal{P}_q = q^3 + q$. A constant fraction give linear equations among logarithms, so the matrix below has more rows than columns.



The heuristic states that we can combine the rows to obtain row

$$(1, 0, \ldots, 0).$$

Arguments in favor of the heuristic

Experiments

- The discriminant of matrices obtained for various polynomials P have no systematic common factor other than the divisors of $q^3 q$.
- The heuristic is used in the algorithm of Joux for degree two polynomials.
- For random instances of P, every randomly chosen matrix formed of q² + 1 rows has maximal rank.

Theory

The <u>full</u> matrix of $q^3 + q$ rows has maximal rank. We use the fact that

- there are a fixed number c_1 of blocks passing by each point of \mathbb{F}_{q^2} ;
- there are a fixed number c_2 of blocks passing by two points.

Does the matrix formed of a constant fraction of rows have maximal rank?

Building block of the quasi-polynomial algorithm

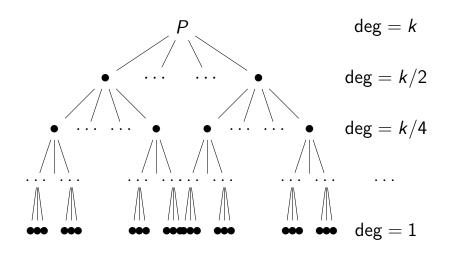
We have just proved:

Proposition (Under heuristic assumptions)

There exists an algorithm whose complexity is polynomial in q and k and which can be used for the following two tasks.

- 1. Given an element of $\mathbb{F}_{q^{2k}}$ represented by a polynomial $P \in \mathbb{F}_{q^2}[t]$ with $2 \leq \deg P \leq k 1$, the algorithm returns an expression of $\log P$ as a linear combination of at most $O(kq^2)$ logarithms $\log P_i$ with $\deg P_i \leq \lceil \frac{1}{2} \deg P \rceil$ and of $\log h_1$.
- 2. The algorithm returns the logarithm of h_1 and the logarithms of all the elements of $\mathbb{F}_{q^{2k}}$ of the form t + a, for a in \mathbb{F}_{q^2} .

Complexity



Tree characteristics

- depth=log k because we half the degree at each level;
- arity=O(q²k) because the sons are polynomials in the LHS of the q² equations used;
- number of nodes= $q^{O(\log k)}$ because $k \le q+2$.

Extending to the general case

When q < k - 2 we embed \mathbb{F}_{q^k} in $\mathbb{F}_{q'^{2k}}$ with $q' = q^{\lceil \log_q k \rceil}$. The complexity $q^{O(\log k)}$ transforms into $\max(q, k)^{O(\log k)}$.

Note that $q' \leq qk$. The input size *n* is replaced by $n \log n$. For any constant *c*

$$\exp\left(c(\log n)^2\right) \Rightarrow \exp\left(c(\log n + \log \log n)^2\right) = \exp\left((c + o(1))(\log n)^2\right).$$

Extending to the general case

When q < k - 2 we embed \mathbb{F}_{q^k} in $\mathbb{F}_{q'^{2k}}$ with $q' = q^{\lceil \log_q k \rceil}$. The complexity $q^{O(\log k)}$ transforms into $\max(q, k)^{O(\log k)}$.

Note that $q' \leq qk$. The input size *n* is replaced by $n \log n$. For any constant *c*

$$\exp\left(c(\log n)^2\right) \Rightarrow \exp\left(c(\log n + \log \log n)^2\right) = \exp\left((c + o(1))(\log n)^2\right).$$

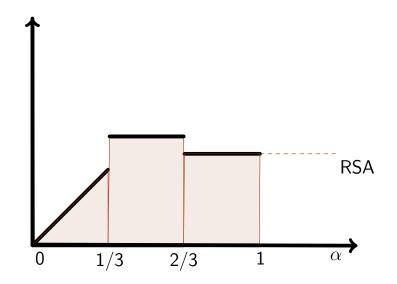
Example

- 1. For $\mathbb{F}_{2^{1003}}$ we compute logs in $\mathbb{F}_{1024^{2\cdot 1003}}=\mathbb{F}_{2^{20060}}.$
- 2. The field $\mathbb{F}_{3^{6\cdot 509}}$ can be embedded in $\mathbb{F}_{q^{2k}}$ with $q = 3^6$ and k = 509.

Fields of composite degree (specific to pairings) embed in small fields.

Hardness of DLP with respect to the size of characteristic

The complexity of QPA when $q = L_{q^k}(\alpha)$ is $L_{q^k}(\alpha + o(1))$



The traps of Cheng–Wan–Zhuang

Trap

In reaction to our preprint, Cheng, Wan and Zhuang noticed that our descent fails on divisors of $h_1 t^q - h_0$.

Indeed, if P is such a divisor we cannot find relations

$$\prod_{i} P_{i,m}^{e_{i,m}} = \lambda \prod_{\gamma \in \mathbb{P}^1(\mathbb{F}_{q^2})} (P + \gamma)^{\nu_m(\gamma)} \mod (h_1 t^q - h_0),$$

containing P in the RHS. Indeed, it forces P to occur in the LHS too, so it cannot be $(\deg P)/2$ -smooth.

Our solution

We have

$$h_1^D P^q \equiv h_1^D \widetilde{P}(h_0/h_1) \mod x^q h_1 - h_0.$$

The RHS is always divisible by P (it is problematic). Taking logs, we get

$$D\log h_1 + (q-1)\log P = \log Q$$
,

where Q is the RHS divided by P.

In general, $P \not| Q$, and, if deg $h_0, h_1 \leq 2$, then deg $Q \leq D$. So we have related log P to other logarithms, and the descent can continue.

Very weak fields

Assume that k = q - 1 (same is true for q + 1 and q). For many values of q we can take $h_1 = 1$ and $h_0 = Ax$ for some generator A of $\mathbb{F}_{q^2}^*$. Then $\varphi = x^{q-1} - A$.

Then, for any $a \neq \mathbb{F}_{q^2}$, we have

$$(x+a)^q = x^q + \tilde{a}$$

= $x^{q-1}x + \tilde{a}$
= $A(x + \tilde{a}/A)$

where \tilde{a} is the Frobenius conjugate of a. We obtain $q \log(x + a) = \log(x + \tilde{a}/A)$.

Hence we can reduce the factor base by a factor k. For example for 2^{6168} , the linear algebra time was accelerated by $k^2 = 66049$.

Remark

The smoothness probabilities are improved. For example, The proportion of matrices $m \in \mathcal{P}_q$ which produce relations for the linear polynomials is 1/6! = 1/620 when max(deg h_0 , deg h_1) = 2 and it is 1/3! for the weak case (Kummer).

Records

Algorithms in practice

- 1. relations collection (degree one and two): variants of GGMZ or Joux algorithm;
- 2. descent (degree three and more): variants of Joux' algorithm.

No QPA descent yet.

Kummer and twisted Kummer extensions

field	bitsize	date	CPU time	author
$GF(2^{24\cdot 255})$	6120	Apr 13	0.7k h	GGMZ
$GF((2^{24\cdot 257}))$	6168	May 13	0.5k h	J
$\mathrm{GF}(2^{18\cdot513})$	9234	Jan 14	400k h	GKZ

General extensions of composite degree

field	bitsize	date	CPU time	author
GF(3 ^{6·137})	1303	Jan 14	1k h	AMOR
$GF(2^{12\cdot 367}) *$	4404	Jan 14	52k h	GKZ
$\mathrm{GF}(3^{5\cdot479})$	3796	Aug 14	9k h	JP

* using a non-general speed-up: target elements in a subfield.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm

Consequences and perspectives

Consequences

- DLP in small characteristic finite fields is asymptotically weak.
- Small characteristic pairings are broken for the sizes proposed for cryptography.

Perspectives

- even more practical improvements and records;
- eliminating the heuristics (a new quasi-polynomial algorithm was proposed by Granger, Kleinjung and Zumbrägel)(next talk);
- improvements in non-small characteristic: multiple field variants, new methods of polynomial selection.