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Context

The discrete logarithm problem (DLP)

In a cyclic group G , given a generator g and an element g a, FIND a.
We can search the smallest positive integer solution a or, more common, the residue of
a modulo a prime factor ` of #G .

Choices for G

1. elliptic curves (estimated of exponential difficulty);

2. multiplicative group of finite fields (subexponential)
2.1 small characteristic, e.g. F2n and F3n,
2.2 non-small characteristic, e.g. Fp and Fp2

Example

When G = (Fp)∗, given two integers g and h, if it exists, FIND x in

g x ≡ h mod p.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 1 / 28



Motivation

factorization discrete log. in Fp

discrete log. in F2n

pairings inversion

over F2n

elliptic curves

discrete log. over F2n

same complexity

analogous

relies on

relies on

FQ is the field of Q elements, Q prime power.
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Shanks’ baby-step giant-step algorithm

Let K ≈
√
N and write the discrete log of x as

x = x0 + K x1, with 0 ≤ x0 < K and 0 ≤ x1 < N/K .

Algorithm

1. Compute Baby Steps:

For all i in [0,K − 1], compte g i .

Store in a hash table the resulting pairs (g i , i).

2. Compute Giant Steps:

For all j in [0, bN/Kc], compute hg−Kj .

If the resulting element is in the BS table, then get the corresponding i , and
return x = i + Kj .

Theorem

Discrete logarithms in a cyclic group of order N can be computed in less than 2d
√
Ne

operations.

Multiplicative group of finite fields is not a generic groups!
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Shanks’ baby-step giant-step algorithm

Let K ≈
√
N and write the discrete log of x as

x = x0 + K x1, with 0 ≤ x0 < K and 0 ≤ x1 < N/K .

Algorithm

1. Compute Baby Steps:

For all i in [0,K − 1], compte g i .

Store in a hash table the resulting pairs (g i , i).

2. Compute Giant Steps:

For all j in [0, bN/Kc], compute hg−Kj .

If the resulting element is in the BS table, then get the corresponding i , and
return x = i + Kj .

Theorem

Discrete logarithms in a cyclic group of order N can be computed in less than 2d
√
Ne

operations.

Multiplicative group of finite fields is not a generic groups!

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 3 / 28



History

For two constatnts α ∈ [0, 1] and c > 0, we put

LQ(α, c) = exp
(
c + o(1))(logQ)α(log logQ)1−α

)
Put n = logQ.

• LQ(0) = nO(1) i.e. polynomial;

• LQ(1) = 2O(n) i.e. exponential;

• LQ(1/2) ≈ 2
√
n; DLP algorithms invented in 1979− 1994.

• LQ(1/3) ≈ 2
3
√
n; DLP algorithms invented in 1984− 2006.
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Smoothness

Definition

A polynomial in Fq[t] is m-smooth if it factors into polynomials of degree less than or
equal to m.

Computation

One can test if a polynomial is smooth by factoring it (probabilistic polynomial).

Theorem (Panario–Gourdon–Flajolet)

The probability that a degree-n polynomial is m-smooth is 1/uu(1+o(1)) where u = n
m .

Cases:

I n = D, m = D/6 gives a constant probability;

I n = D, m = 1 gives a probability 1/D! ≈ 1/DD .

I n = logq Lx(α, ·), m = logq Lx(β, ·) gives a probability of 1/Lx(α− β, ·);
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Obtaining relations

The finite field Fqk is represented as Fq[t]/ϕ
for an irreducible polynomial ϕ ∈ Fq[t] of degree k .

Example

Take q = 3, k = 5, ϕ = t5 + t4 + 2t3 + 1, g = t ∈ F35. We have

t5 ≡ 2(t + 1)(t3 + t2 + 2t + 1) mod ϕ

The last relation gives:

7 logg t ≡ 1 logg(t + 2) + 2 logg(t + 1) mod 11
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Obtaining relations

The finite field Fqk is represented as Fq[t]/ϕ
for an irreducible polynomial ϕ ∈ Fq[t] of degree k .

Example

Take q = 3, k = 5, ϕ = t5 + t4 + 2t3 + 1, g = t ∈ F35. We have

t5 ≡ 2(t + 1)(t3 + t2 + 2t + 1) mod ϕ

t6 ≡ 2(t2 + 1)(t2 + t + 2) mod ϕ

t7 ≡ 2(t + 2)(t + 1)(t + 1) mod ϕ

The last relation gives:

7 logg t ≡ logg 2 + 1 logg(t + 2) + 2 logg(t + 1) mod 11

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 6 / 28
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Descent

Example (cont’d)

Let us compute logg P for an arbitrary polynomial, say P = t4 + t + 2.
We have

P2 ≡ t4 + t3 + 2t2 + 2t + 2 mod ϕ

P3 ≡ 2(t + 1)(t + 2)(t2 + 1) mod ϕ

P4 ≡ (t + 1)(t + 2)t2 mod ϕ.

By taking discrete logarithms we obtain

4 logg P = 1 logg(t + 1) + 1 logg(t + 2) + 2 logg t.

So logg P = 114.
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Discrete logarithms of constants

Here ` is a prime factor of the group order qk − 1, larger than q − 1.

Elements of Fq

Elements of Fq ⊂ Fqk are represented in Fq[t]/〈ϕ〉 by constants a. They satisfy
aq−1 = 1, so we have

logg(aq−1) ≡ logg(1) ≡ 0 mod `.

Hence,

(q − 1) logg a ≡ 0 mod `.

Since ` is prime and larger than q − 1,

logg a ≡ 0 mod `.
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Comments

Index calculus family

All L(1/2) and L(1/3) DLP algorithms follow the same scheme (of Kraitchik 1922):

• Relation collection;

• Linear algebra to get logs of factor base elements;

• Individual log, to handle any element.

New algorithms

Joux’s L(1/4) algorithm still uses this terminology (but very different in nature).

Quasi-polynomial time algorithm: it’s time to stop speaking about factor base!
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Records for fields F2n with prime n

Let us compare to the factoring record: 768 bits in 2009.

FFS is the choice in practice, and its variants

• Coppersmith (inseparable polynomials);

• Two rational sides FFS (Joux-Lercier).

GIPS=giga instructions per second

n date GIPS year algo. author

401 1992 0.2 Copp. Gordon,McCurley

5121 2002 0.4 FFS Joux,Lercier

607 2002 20 Copp. Thomé

607 2005 1.6 FFS Joux,Lercier

613 2005 1.6 FFS Joux,Lercier

619 2012 ≈ 0 FFS Caramel

809 2013 16 FFS Caramel

The Caramel group completed the relation collection stage for n = 1039 with a
computation of 384 GIPS years. Linear algebra must be adapted to larger sizes.

1Using the same algorithm as for prime degrees.
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Composite degrees n

Motivation
To attack pairing-based cryptosystems, one can solve DLP in fields Fpκn for a small
constant c 6= 1.
The security of pairings is evaluated under the hypothesis

DLP in Fpn is equally hard when n is prime or composite.

Theorem (Joux & Lercier 2006)

Under the same assumptions as in the classical variante of FFS, if n has a small
factor κ, then one can speed up

1. the relations collection phase by a factor κ;

2. the linear algebra stage by a factor κ2.

Joux-Lercier improvement in practice

Two teams computed discrete logs in F36n (pairings):

• a 2010 record for n = 71 (676 bits) using κ = 6; cost 14 GIPS year.

• a 2012 record for n = 97 (923 bits) using κ = 3; cost 290 GIPS years.
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Complexity improvements in 2013 for small characteristic

Linear polynomials

One computes discrete logs. of linear polynomials in polynomial time.

• Göloğlu, Granger, McGuire and Zumbrägel;

• Joux.

Expressing logP as a sum of logs. of linear polynomials dominates the computations.

Any polynomial

• Joux: LQ(1/4 + o(1)) operations;

• (this work): quasi-polynomial LQ(o(1)) operations.
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Main result

Theorem (based on heuristics)

Let K be any finite field Fqk . A discrete logarithm in K can be computed in heuristic
time

max(q, k)O(log k).

Cases:

I K = F2n, with prime n. Complexity is nO(log n). Much better than
L2n(1/4 + o(1)) ≈ 2

4
√
n.

I K = Fqk , with q = kO(1). Complexity is logQO(log logQ), where Q = #K . Again,
this is LQ(o(1)).

I K = Fqk , with q ≈ Lqk(α). Complexity is Lqk(α + o(1)), i.e. better than
Joux-Lercier or FFS for α < 1/3.
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A well-chosen model for Fq2k

Simple case first

We suppose first k ≈ q and k ≤ q + 2.

Choosing ϕ (same as for Joux’ algorithm)

Try random h0, h1 ∈ Fq2[t] with deg h0, deg h1 ≤ 2 until T (t) := h1(t)tq − h0(t) has an
irreducible factor ϕ of degree k .

Heuristic

The existence of h0 and h1 is heuristic, but found in practice in O(k) trials.

Properties of ϕ

• h1(t)tq ≡ h0(t) mod ϕ;

• P(tq) ≡ P
(
h0

h1

)
mod ϕ;

• Pq ≡ P̃(tq) ≡ P̃
(
h0

h1

)
mod ϕ,

where the tilde denotes the conjugation in Fq2.
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A famous identity

Recall the identity

xq − x =
∏
α∈Fq

(x − α).

We further have xqy − xy q =
∏

(α:β)∈P1(Fq)
(βx − αy).

A machine to make relations

• x = t and y = 1: h0/h1 − t ≡ tq − t ≡
∏

α∈Fq
(t − α).

If the numerator of the left hand side is smooth, we obtain relations among linear
polynomials.

• x = t + a, a ∈ Fq, and y = 1: same relation.

• x = t + a, a ∈ Fq2, and y = 1: new relations. Joux’ algorithm uses this idea.

• Let P be the polynomial whose logarithm is requested.

x = aP + b and y = cP + d , a, b, c , d ∈ Fq2: let us show that the left side is
congruent to a small degree polynomial, whereas the right hand side is smooth in
some new sense.
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The right hand side is “smooth”

(aP + b)q(cP + d)− (aP + b)(cP + d)q =
∏

(α,β)∈P1(Fq)

β(aP + b)− α(cP + d)

=
∏

(α,β)∈P1(Fq)

(−cα + aβ)P − (dα− bβ)

= λ
∏

(α,β)∈P1(Fq)

(
P − dα− bβ

aβ − cα

)
,

Here q + 1 out of the q2 + 1 elements of {1}
⋃
{P + γ : γ ∈ Fq2} occur.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 16 / 28



The left hand side is small

For m ∈ GL2(Fq2), let Lm be the residue

Lm := hdegP1

(
(aP + b)q(cP + d)− (aP + b)(cP + d)q

)
mod ϕ(t).

We have degLm ≤ 3 degP . Indeed, we have

Lm = hdegP1 (ãP̃(tq) + b̃)(cP + d)− (aP(t) + b)(c̃ P̃(tq) + d̃)

= hdegP1

(
ãP̃

(
h0
h1

)
+ b̃

)
(cP + d)− (aP + b)

(
c̃ P̃

(
h0
h1

)
+ d̃

)
.

For a constant proportion of matrices m, Lm is (degP)/2-smooth.
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Procedure to ”break” a polynomial P
Each matrix m in the quotient set Pq := PGL2(Fq2)/PGL2(Fq) such that Lm is
(degP)/2-smooth leads to a different equation∏

i

P
ei,m
i ,m = λ

∏
γ∈P1(Fq2)

(P + γ)vm(γ),

where

I degPi ≤ (degP)/2;

I vm(γ) are integer exponents;

I λ is a costant in Fq2.

By taking discrete logarithm we find∑
i

ei ,m logPi ,m ≡
∑
γ

vm(γ) log(P + γ) mod `.

Heuristic
We have enough equations and we can combine them to obtain∑

i ,m

e ′i ,m logPi ,m ≡ logP mod `.
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Linear algebra step for P

Since #PGL2(Fqi ) = q3i − qi , #Pq = q3 + q. A constant fraction give linear equations
among logarithms, so the matrix below has more rows than columns.

m ∈ Pq

γ ∈ Fq2

vm(γ)

The heuristic states that we can combine the rows to obtain row

(1, 0, . . . , 0).
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Arguments in favor of the heuristic

Experiments

• The discriminant of matrices obtained for various polynomials P have no
systematic common factor other than the divisors of q3 − q.

• The heuristic is used in the algorithm of Joux for degree two polynomials.

• For random instances of P , every randomly chosen matrix formed of q2 + 1 rows
has maximal rank.

Theory

The full matrix of q3 + q rows has maximal rank. We use the fact that

• there are a fixed number c1 of blocks passing by each point of Fq2;

• there are a fixed number c2 of blocks passing by two points.

Does the matrix formed of a constant fraction of rows have maximal rank?
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Building block of the quasi-polynomial algorithm

We have just proved:

Proposition (Under heuristic assumptions)

There exists an algorithm whose complexity is polynomial in q and k and which can be
used for the following two tasks.

1. Given an element of Fq2k represented by a polynomial P ∈ Fq2[t] with
2 ≤ degP ≤ k − 1, the algorithm returns an expression of logP as a linear
combination of at most O(kq2) logarithms logPi with degPi ≤ d12 degPe and of
log h1.

2. The algorithm returns the logarithm of h1 and the logarithms of all the elements
of Fq2k of the form t + a, for a in Fq2.
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Complexity

P

•

•

. . .

•••

. . .

•••

. . . . . . •

. . .

•••

. . .

•••

· · · · · · •

•

. . .

•••

. . .

•••

. . . . . . •

. . .

•••

. . .

•••

deg = k

deg = k/2

deg = k/4

. . .

deg = 1

Tree characteristics

• depth=log k because we half the degree at each level;

• arity=O(q2k) because the sons are polynomials in the LHS of the q2 equations
used;

• number of nodes=qO(log k) because k ≤ q + 2.
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Extending to the general case

When q < k − 2 we embed Fqk in Fq′2k with q′ = qdlogq ke.

The complexity qO(log k) transforms into max(q, k)O(log k).

Note that q′ ≤ qk . The input size n is replaced by n log n. For any constant c

exp
(
c(log n)2

)
⇒ exp

(
c(log n + log log n)2

)
= exp

(
(c + o(1))(log n)2

)
.

Example

1. For F21003 we compute logs in F10242·1003 = F220060.

2. The field F36·509 can be embedded in Fq2k with q = 36 and k = 509.

Fields of composite degree (specific to pairings) embed in small fields.
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2. The field F36·509 can be embedded in Fq2k with q = 36 and k = 509.

Fields of composite degree (specific to pairings) embed in small fields.
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Hardness of DLP with respect to the size of characteristic

The complexity of QPA when q = Lqk(α) is Lqk
(
α + o(1)

)

0 1/3 2/3 1 α

RSA

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 24 / 28



The traps of Cheng–Wan–Zhuang

Trap

In reaction to our preprint, Cheng, Wan and Zhuang noticed that our descent fails on
divisors of h1t

q − h0.
Indeed, if P is such a divisor we cannot find relations∏

i

P
ei,m
i ,m = λ

∏
γ∈P1(Fq2)

(P + γ)vm(γ) mod (h1t
q − h0),

containing P in the RHS. Indeed, it forces P to occur in the LHS too, so it cannot be
(degP)/2-smooth.

Our solution
We have

hD1 P
q ≡ hD1 P̃(h0/h1) mod xqh1 − h0.

The RHS is always divisible by P (it is problematic).
Taking logs, we get

D log h1 + (q − 1) logP = logQ,

where Q is the RHS divided by P .
In general, P 6 |Q, and, if deg h0, h1 ≤ 2, then degQ ≤ D. So we have related logP to
other logarithms, and the descent can continue.
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Very weak fields

Assume that k = q − 1 (same is true for q + 1 and q). For many values of q we can
take h1 = 1 and h0 = Ax for some generator A of F∗q2. Then ϕ = xq−1 − A.

Then, for any a 6= Fq2, we have

(x + a)q = xq + ã

= xq−1x + ã

= A(x + ã/A),

where ã is the Frobenius conjugate of a. We obtain q log(x + a) = log(x + ã/A).

Hence we can reduce the factor base by a factor k . For example for 26168, the linear
algebra time was accelerated by k2 = 66049.

Remark
The smoothness probabilities are improved. For example, The proportion of matrices
m ∈ Pq which produce relations for the linear polynomials is 1/6! = 1/620 when
max(deg h0, deg h1) = 2 and it is 1/3! for the weak case (Kummer).
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Records
Algorithms in practice

1. relations collection (degree one and two): variants of GGMZ or Joux algorithm;

2. descent (degree three and more): variants of Joux’ algorithm.

No QPA descent yet.

Kummer and twisted Kummer extensions

field bitsize date CPU time author

GF(224·255) 6120 Apr 13 0.7k h GGMZ

GF((224·257) 6168 May 13 0.5k h J

GF(218·513) 9234 Jan 14 400k h GKZ

General extensions of composite degree

field bitsize date CPU time author

GF(36·137) 1303 Jan 14 1k h AMOR

GF(212·367) * 4404 Jan 14 52k h GKZ

GF(35·479) 3796 Aug 14 9k h JP

* using a non-general speed-up: target elements in a subfield.
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Consequences and perspectives

Consequences

• DLP in small characteristic finite fields is asymptotically weak.

• Small characteristic pairings are broken for the sizes proposed for cryptography.

Perspectives

• even more practical improvements and records;

• eliminating the heuristics (a new quasi-polynomial algorithm was proposed by
Granger, Kleinjung and Zumbrägel)(next talk);

• improvements in non-small characteristic: multiple field variants, new methods of
polynomial selection.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 28 / 28
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