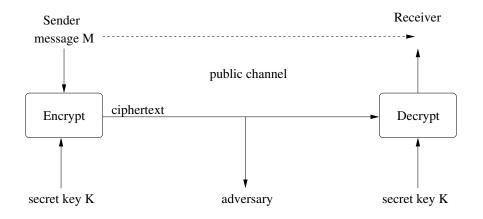
On Symmetric Key Broadcast Encryption

Sanjay Bhattacherjee and Palash Sarkar

Indian Statistical Institute, Kolkata

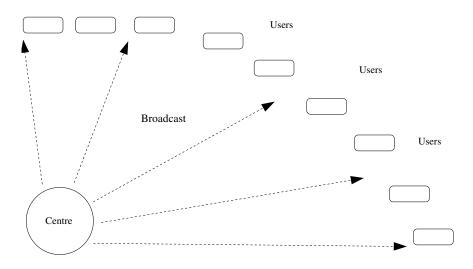
Elliptic Curve Cryptography (This is not) 2014

Conventional Symmetric Key Encryption



э

Symmetric Key Broadcast Encryption



- The centre pre-distributes secret information to the users.
- A broadcast takes place in a session.
- For each session:
 - Some users are privileged and the rest are revoked.
 - The actual message is encrypted once using a session key.
 - The session key undergoes a number of separate encryptions. This determines the header.
 - Only the privileged users are able to decrypt. A coalition of all the revoked users get no information about the message.

- Size of the header.
- Size of the secret information required to be stored by the users.
- Time required by the centre to encrypt.
- Time required by a user to decrypt.

Hdr sz and enc time are proportional to # enc of the session key.

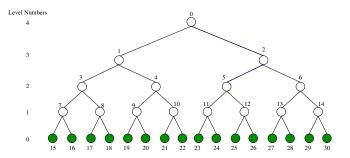
Requirement: Reduce header size, user storage and decryption time.

- AACS standard: content protection in optical discs: *Disney, Intel, Microsoft, Panasonic, Warner Bros., IBM, Toshiba and Sony.*
- Pay-TV: BSkyB in UK and Ireland has a subscriber base of over 10 million;
- Cable Television Networks (Regulation) Amendment Act, 2011 (India).
- File Sharing in Encrypted File Systems.
- Encrypted Email to Mailing Lists.
- Military Broadcasts: Global Broadcast Service (US), Joint Broadcast System (Europe).

イロト イ団ト イヨト イヨト

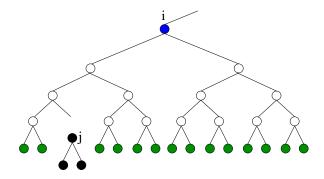
- Identify a collection S consisting of subsets of users.
- Assign keys to each subset in S.
- To each user, assign secret information such that it is able to generate secret keys for each subset in S to which it belongs; and no more.
- During a broadcast, form a partition {S₁,..., S_h} of the set of privileged users with S_i ∈ S.
- The session key is encrypted using the keys for S_1, \ldots, S_h .
- Each privileged user can decrypt; no coalition of revoked users gains any information about the session key (or the message).

Naor-Naor-Lotspiech (2001): patented, AACS standard. Assumes an underlying full binary tree



-

 $S_{i,j} = T_i \setminus T_j$: has all users that are in T_i but not in T_j



Collection S: has all subsets $S_{i,j}$ such that $j \neq i$ is in the subtree T_i .

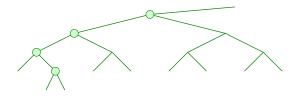


Figure : Key of $S_{i,j}$: $L_{i,j} = G_M(G_R(G_L(Seed_i))))$

Pseudo-random generator (PRG): $G : \{0, 1\}^k \rightarrow \{0, 1\}^{3k}$ $G(seed) = G_L(seed) ||G_M(seed)||G_R(seed)$

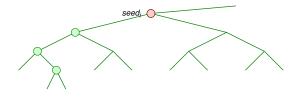


Figure : Key of $S_{i,j}$: $L_{i,j} = G_M(G_R(G_L(Seed_i))))$

Pseudo-random generator (PRG): $G : \{0, 1\}^k \rightarrow \{0, 1\}^{3k}$ $G(seed) = G_L(seed) ||G_M(seed)||G_R(seed)$

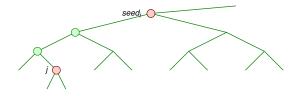


Figure : Key of $S_{i,j}$: $L_{i,j} = G_M(G_R(G_L(Seed_i))))$

Pseudo-random generator (PRG): $G : \{0, 1\}^k \rightarrow \{0, 1\}^{3k}$ $G(seed) = G_L(seed) ||G_M(seed)||G_R(seed)$

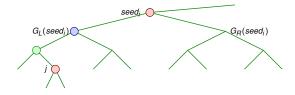


Figure : Key of $S_{i,j}$: $L_{i,j} = G_M(G_R(G_L(Seed_i))))$

Pseudo-random generator (PRG): $G : \{0, 1\}^k \rightarrow \{0, 1\}^{3k}$ $G(seed) = G_L(seed) ||G_M(seed)||G_R(seed)$

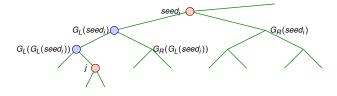


Figure : Key of $S_{i,j}$: $L_{i,j} = G_M(G_R(G_L(G_L(seed_i))))$

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへの

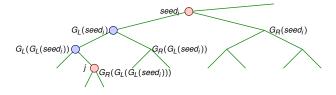


Figure : Key of $S_{i,j}$: $L_{i,j} = G_M(G_R(G_L(G_L(seed_i))))$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ○ Q @

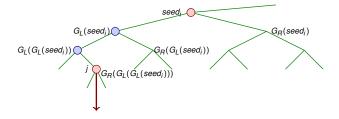


Figure : Key of $S_{i,j}$: $L_{i,j} = G_M(G_R(G_L(G_L(seed_i))))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

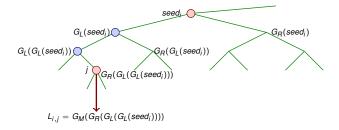


Figure : Key of $S_{i,j}$: $L_{i,j} = G_M(G_R(G_L(G_L(seed_i))))$

・ロト ・ 同ト ・ ヨト ・ ヨ

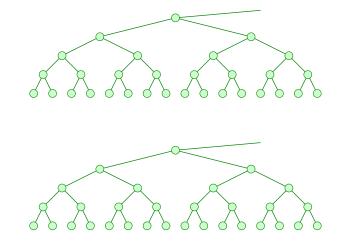


Figure : From one derived seed, keys of many subsets can be generated

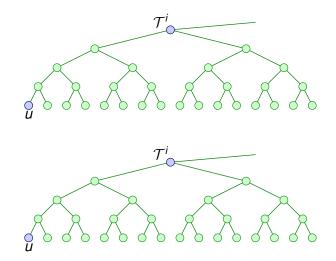


Figure : From one derived seed, keys of many subsets can be generated

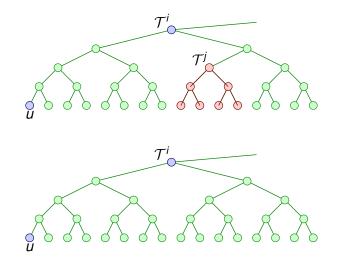


Figure : From one derived seed, keys of many subsets can be generated

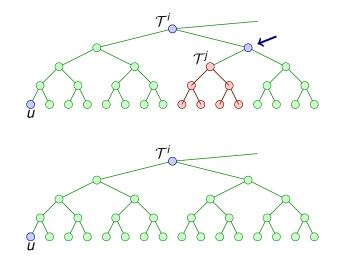


Figure : From one derived seed, keys of many subsets can be generated

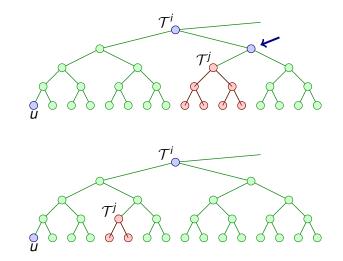


Figure : From one derived seed, keys of many subsets can be generated

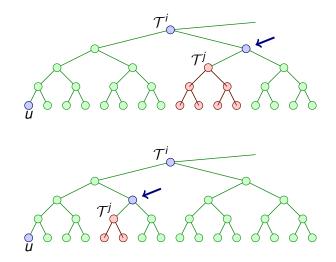


Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar

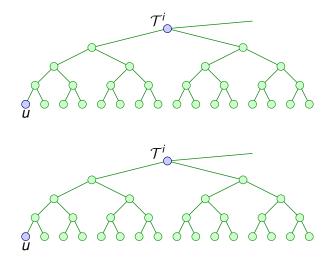


Figure : From one derived seed, keys of many subsets can be generated

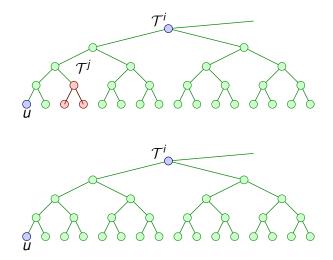


Figure : From one derived seed, keys of many subsets can be generated

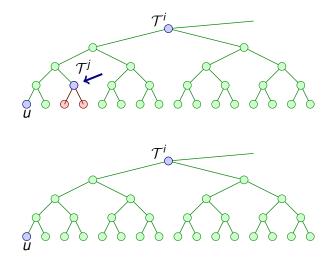


Figure : From one derived seed, keys of many subsets can be generated

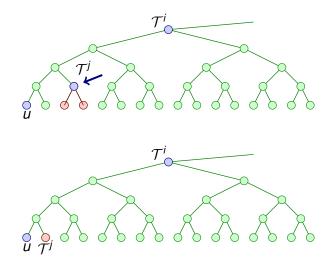


Figure : From one derived seed, keys of many subsets can be generated

(a)

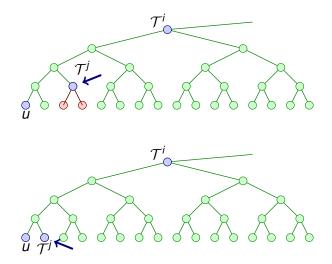
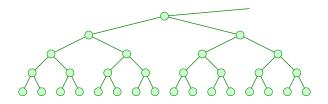
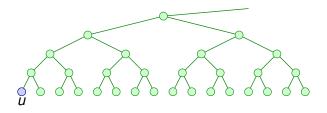
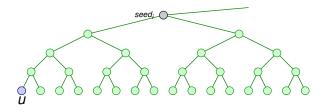


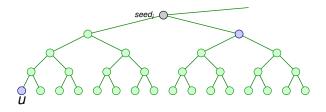
Figure : From one derived seed, keys of many subsets can be generated

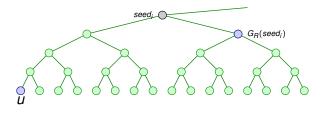
Bhattacherjee and Sarkar

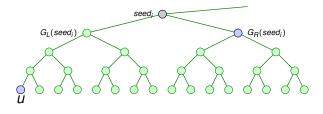


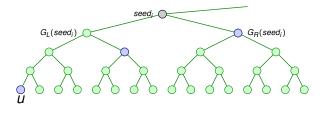


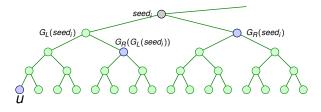


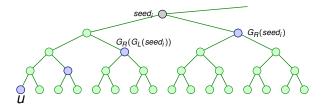




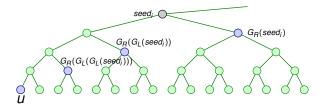




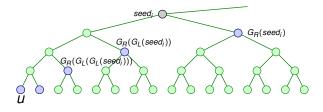




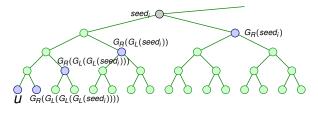
User *u* stores: for every T_i to which it belongs, the derived labels of nodes "falling-off" from the path between *i* and *u*, derived from *seed*_{*i*}.



User *u* stores: for every T_i to which it belongs, the derived labels of nodes "falling-off" from the path between *i* and *u*, derived from *seed*_{*i*}.

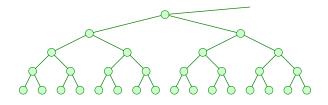


User *u* stores: for every T_i to which it belongs, the derived labels of nodes "falling-off" from the path between *i* and *u*, derived from *seed*_{*i*}.

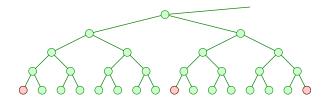


User *u* stores: for every T_i to which it belongs, the derived labels of nodes "falling-off" from the path between *i* and *u*, derived from *seed*_{*i*}.

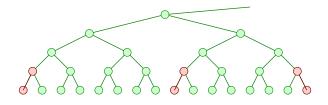
4 A N



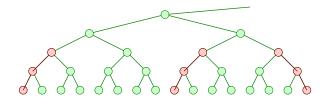
$$S_{i,j} = T_i \setminus T_j$$



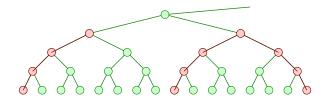
$$S_{i,j} = T_i \setminus T_j$$



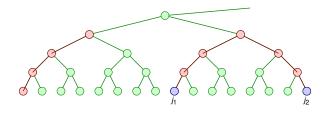
$$S_{i,j} = T_i \setminus T_j$$



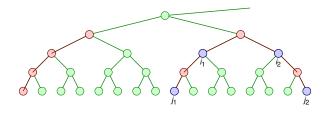
$$S_{i,j} = T_i \setminus T_j$$



$$S_{i,j} = T_i \setminus T_j$$

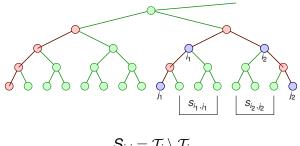


 $S_{i,j} = \mathcal{T}_i \setminus \mathcal{T}_j$

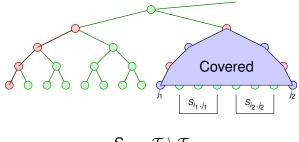


 $S_{i,j} = \mathcal{T}_i \setminus \mathcal{T}_j$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

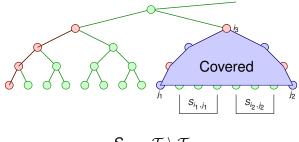


 $S_{i,j} = T_i \setminus T_j$



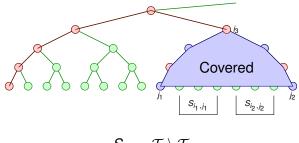
 $S_{i,j} = T_i \setminus T_j$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○



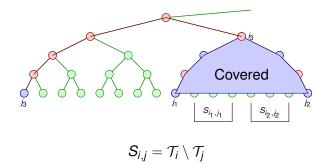
 $S_{i,j} = T_i \setminus T_j$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

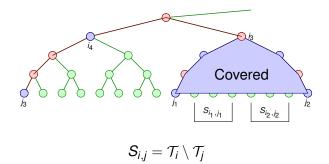


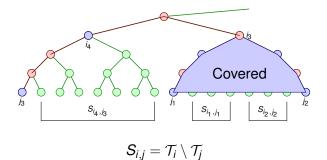
 $S_{i,j} = T_i \setminus T_j$

▲□▶▲□▶▲□▶▲□▶ □ のへで

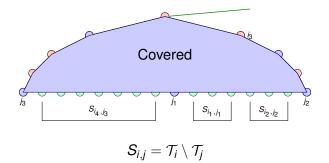


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

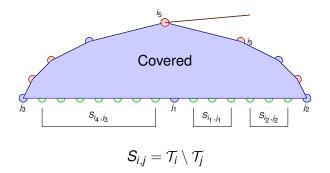




<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 - のへぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ



Bhattacherjee and Sarkar

Symmetric Key BE

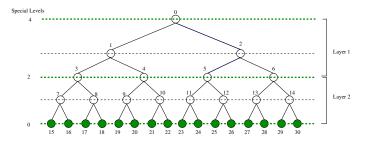
10th Oct. 2014 15 / 53

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

For *n* users out of which *r* are revoked:

- User storage needed: $O(\log^2(n))$.
- Header length in the worst case: 2r 1.
- Decryption time in the worst case: $O(\log n)$.

Halevy-Shamir (CRYPTO, 2002) Some levels are marked as "special".



Layered SD Scheme

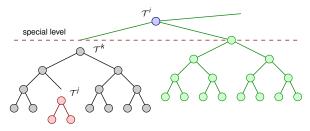


Figure : The subset $S_{i,j}$ split into $S_{i,k}$ (green leaves) and $S_{k,j}$ (grey leaves).

4 A N

Layered SD Scheme

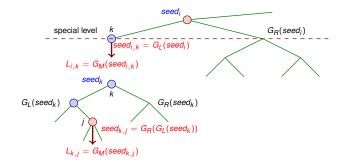


Figure : Key for $S_{i,k}$ is $L_{i,k} = G_M(G_L(seed_i))$ and for $S_{k,j}$ is $L_{k,j} = G_M(G_R(G_L(seed_k)))$.

4 A N

-

NNL-SD scheme:

- User storage needed: $O(\log^2(n))$.
- Maximum Header Length: 2r 1.

HS-LSD scheme:

- User Storage needed: $O(\log^{3/2} n)$.
- Maximum header length: 4r 2.

- What is the expected header length of the NNL scheme?
- The NNL and the HS schemes are based on *full* binary trees; What happens if the number of users is not a power of two?
- Is the user storage achieved in the HS scheme the minimum possible?
- Is the (expected) header length achieved in the NNL scheme the minimum possible?
- What happens if we use trees of arity higher than 2?

Tackling Arbitrary Number of Users

Question: What happens when the number of users is not a power of two?

Answer: Add dummy users to get to the next power of two.

- If the dummy users are considered revoked, then the effect on the header length is disastrous.
- If the dummy users are privileged, the situation is better but, there is still a measureable effect on the header length.

Solution: Use a complete binary tree.

- "Completes" (and also subsumes) the NNL-SD scheme to work for any number of users.
- Conceptually simple; working out the details is a bit involved.

N(n, r, h): number of revocation patterns with *n* users, out of which *r* users are revoked and the header length is *h*.

Recurrence relation for N(n, r, h).

- $N(\lambda_i, r_1, h_1) = T(\lambda_i, r_1, h_1) + \sum_{j \in IN(i)} T(\lambda_j, r_1, h_1 1)$ where IN(*i*) is the set of all internal nodes in the subtree T^i excluding the node *i*.
- $T(\lambda_i, r_1, h_1) = \sum_{r'=1}^{r_1-1} \sum_{h'=0}^{h_1} N(\lambda_{2i+1}, r', h') \times N(\lambda_{2i+2}, r_1 r', h_1 h')$ where λ_{2i+1} (respectively λ_{2i+2}) is the number of leaves in the left (respectively right) subtree of \mathcal{T}^i .

Boundary Conditions

$T(\lambda_i, r_1, h_1)$	<i>r</i> ₁ < 0	<i>r</i> ₁ = 0	<i>r</i> ₁ = 1	$2 \le r_1 < n$	<i>r</i> ₁ = <i>n</i>	<i>r</i> ₁ > <i>n</i>
$h_1 = 0$	0	0	0	0	1	0
$h_1 \ge 1$	0	0	0	from rec.	0	0
$N(\lambda_i, r_1, h_1)$	<i>r</i> ₁ < 0	<i>r</i> ₁ = 0	<i>r</i> ₁ = 1	$2 \le r_1 < n$	<i>r</i> ₁ = <i>n</i>	<i>r</i> ₁ > <i>n</i>
$h_1 = 0$	0	0	0	0	1	0
$h_1 = 1$	0	1	n	from rec.	0	0
$h_1 > 1$	0	0	0	from rec.	0	0

Table : Boundary conditions on T(n, r, h) and N(n, r, h).

• • • • • • • • • • • • •

Dynamic Programming:

- N(n, r, h) can be computed in O(r²h² log n + rh log² n) time and O(rh log n) space.
- N(n, r, h) for all possible *h* can be computed in $O(r^4 \log n + r^2 \log n)$ time and $O(r^2 \log^2 n)$ space.
- N(n, r, h) for all possible *r* and *h* can be computed in $O(n^4 \log n + n^2 \log^2 n)$ time and $O(n^2 \log n)$ space.
- N(i, r, h) for $2 \le i \le n$ and all possible r and h can be computed in $O(n^5 + n^3 \log n)$ time and $O(n^3)$ space.

Previous to our work, the only known method was to enumerate all possible $\binom{n}{r}$ revocation patterns, run the header generation algorithm and count the number of patterns leading to a header of size *h*.

Theorem: The maximum header length in the CTSD method for *n* users is $\min(2r - 1, \lfloor \frac{n}{2} \rfloor, n - r)$.

- For the NNL-SD scheme, the bound of 2r 1 was known.
- Complete picture: if $r \le n/4$, the bound 2r 1 is appropriate; if $n/4 < r \le n/2$, the bound n/2 is appropriate; and for r > n/2, the bound n r is appropriate.
- Using the CTSD method is never worse than individual transmission to privileged users.
- The proof requires extensive use of the recurrence for *N*(*n*, *r*, *h*).
- n_r : The value of *n* for which the header length of 2r 1 is achieved with *r* revoked users.
 - A complete characterisation of *n_r* is obtained.

Random experiment: Select a random subset of *r* users out of *n* users and revoke them.

Random variable $X_{n,r}^i$: takes the value 1 if $S_{i,j}$ is in the header for some *j* and 0 otherwise.

•
$$E[X_{n,r}^i] = \Pr[X_{n,r}^i = 1].$$

 $H_{n,r}$: expected header length for *n* users with *r* revoked users.

• $H_{n,r} = \sum E[X_{n,r}^i] = \sum Pr[X_{n,r}^i = 1]$ where the sum is over all the n-1 internal nodes *i* in the tree.

- For all nodes *i* at the same level, $Pr[X_{n,r}^i = 1]$ takes at most 3 possible values.
- As a consequence, the sum can be re-written to vary over the levels of the tree.
- $H_{n,r}$ can be computed in $O(r \log n)$ time and O(1) space.
- Provides granular information: expected number of subsets in the header from all the nodes at a certain level.
- Since CTSD subsumes NNL-SD, all the results also hold for NNL-SD.

Theorem: For all $n \ge 1$, $r \ge 1$, the expected header length $H_{n,r} \uparrow H_r$, as *n* increases through powers of two, where

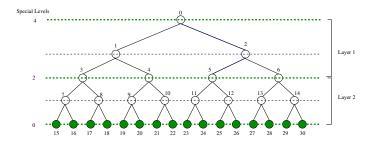
$$H_r = 3r - 2 - 3 \times \sum_{i=1}^{r-1} \left(\left(-\frac{1}{2} \right)^i + \sum_{k=1}^i (-1)^k \binom{i}{k} \frac{(2^k - 3^k)}{(2^k - 1)} \right)$$

r	2	3	4	5	6
H_r/r	1.25	1.25	1.2455	1.2446	1.2448

Reducing User Storage Below Halevy-Shamir Scheme

< A

Halevy-Shamir LSD Scheme



"The root is considered to be at a special level, and in addition we consider every level of depth $k \cdot \sqrt{\log(n)}$ for $k = 1 \dots \log(n)$ as special (wlog, we assume that these numbers are integers)."

Works for 2^{ℓ_0} users with $\ell_0 = 4, 9, 16, 25$ (in the practical range).

- For the case of $n = 2^{28}$, HS suggests special levels to be 28, 22, 16, 10, 5, 0.
- Nothing is mentioned about how to choose the layer lengths when ℓ_0 is not a perfect square.

Residual bottom layer: Write $\ell_0 = d(e-1) + p$ where $1 \le p \le d$. Then the special levels are

$$\ell_0, \, \ell_0 - d, \, \ell_0 - 2d, \, \ldots, \, \ell - d(e-1), \, 0.$$

Balanced layering: Write $\ell_0 = d(e-1) + p = (e-d+p)d + (d-p)(d-1)$. Define the layer lengths from the top to be

$$(\underbrace{d,\ldots,d}_{e-d+p},\underbrace{d-1,\ldots,d-1}_{d-p}).$$

- Both strategies (residual bottom; balanced) can be shown to provide the same user storage.
- Having smaller layers nearer the top increases the user storage.
- The balanced layering strategy provides slightly smaller expected header length. We call this the extended-HS (eHS) layering strategy.

A choice of special levels is called a layering strategy.

- A layering strategy ℓ is denoted by the numbers of the special levels ℓ₀ > ℓ₁ > ... > ℓ_{e-1} > ℓ_e = 0.
- The layering strategy has (e + 1) special levels.
- Let $\boldsymbol{\ell} = (\ell_0, \dots, \ell_e).$
- In general, the layer lengths need not be (almost) equal.

Layering Strategy and User Storage

storage₀(
$$\ell$$
) = $\sum_{i=0}^{e-1} \ell_i + \frac{1}{2} \sum_{i=0}^{e-1} (\ell_i - \ell_{i+1})(\ell_i - \ell_{i+1} - 1).$

Recursive description:

storage₀(
$$\ell_0, \ell_1, \dots, \ell_e$$
)
= $\ell_0 + \frac{(\ell_0 - \ell_1)(\ell_0 - \ell_1 - 1)}{2} + \text{storage}_0(\ell_1, \dots, \ell_e).$

Bhattacherjee and Sarkar

10th Oct, 2014 37 / 53

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Observations:

- It can be shown that the probability of the root generating a subset in the header is small.
- Having the root as a special layer increases the user storage.

Layering strategy with root as a non-special layer:

$$storage_1(\ell) = storage_0(\ell) - \ell_1.$$

Reduces user storage by ℓ_1 at a negligible increase in the expected header size.

- Given l₀, let SML₀(l₀) be a layering strategy which minimises the user storage among all layering strategies;
- #SML₀(l₀): user storage required by SML₀(l₀);
- SML₁(l₀) and #SML₁(l₀) corresponds to the case where the root is not special.

$$\#\mathsf{SML}_0(\ell_0) = \min_{1 \le e \le \ell_0} \#\mathsf{SML}_0(e, \ell_0);$$

where $\#SML_0(e, \ell_0)$ is the minimum storage that can be achieved with *e* special levels.

$$\#SML_0(e,\ell_0) = \min_{(\ell_0,\ldots,\ell_e)} storage_0(\ell_0,\ell_1,\ldots,\ell_e)$$

where the minimum is over all possible layering strategies $(\ell_0, \ell_1, \dots, \ell_e)$.

$$\begin{split} \# \mathsf{SML}_0(e,\ell_0) \\ &= \min_{1 \leq \ell_1 < \ell_0} \left(\ell_0 + \frac{(\ell_0 - \ell_1)(\ell_0 - \ell_1 - 1)}{2} + \# \mathsf{SML}_0(e - 1,\ell_1) \right); \end{split}$$

$$\# SML_1(\ell_0) \\ = \min_{e} \min_{\ell_1} \left(\# SML_0(e-1,\ell_1) + \frac{(\ell_0 - \ell_1)(\ell_0 - \ell_1 + 1)}{2} \right).$$

Bhattacherjee and Sarkar

10th Oct, 2014 41 / 53

æ

イロト イヨト イヨト イヨト

Dynamic Programming:

- An $O(\ell^3)$ time and $O(\ell^2)$ space algorithm to compute $\#SML_0(\ell_0)$
- The actual layering strategy $SML_0(\ell_0)$ can also be recovered from the algorithm.
- Once the table has been computed using dynamic programming, it is possible to obtain #SML₁(l₀) and SML₁(l₀).

- SML₀ and SML₁ are not necessarily unique; choose the layering for which expected header length is lower.
- Removing ℓ_0 from SML₀ does not necessarily provide SML₁.
- Compared to NNL-SD, eHS reduces storage by a large amount; SML₀ reduces storage below eHS by a small amount; SML₁ reduces storage below eHS by 18% to 24% in the practical range.

Suppose there are 2^{28} users, i.e., $\ell_0 = 28$:

- NNL-SD: layering: 28,0; storage: 406.
- eHS: layering: 28,22,16,10,5,0; storage: 146.
- SML₀: layering: 28,21,15,10,6,3,1,0; storage: 140.
- SML₁: layering: 22,16,11,7,4,2,0; storage: 119.

Question: What if the number of users *n* is not a power of 2?

Answer: Use a complete tree as in the case of the NNL-SD scheme.

- The notions of layering strategy and storage minimal layering carry over to this case.
- All users would not be required to store the same amount; the requirement is to minimise the maximum of all the user storages.

Maximum Header Length:

- At most min $(4r 2, \lceil \frac{n}{2} \rceil, n r)$.
- At most min $(4r 3, \lfloor \frac{n}{2} \rfloor, n r)$ if the root level is special.

Expected Header Length:

- The splitting of subsets complicates the analysis.
- An $O(r \log^2 n)$ time algorithm to compute the expected header length.
- A very useful tool to analyse various schemes.

Question: Is it possible to obtain expected header length close to that of NNL-SD, but, with lower user storage?

- For each level, we have an expression for the expected number of subsets arising from the nodes at that level.
- Suppose ℓ is a level which maximises the above quantity.

Question: How to choose ℓ ?

Answer: How to do this analytically is not clear. Extensive experimentation has shown that $\ell = \ell_0 - \log_2 r$ is a good choice.

Fix a value of *r* and set $\ell = \ell_0 - \log_2 r$.

- Level ℓ is made special, so that subsets arising from level ℓ are not split.
- All levels below ℓ are made non-special.
- At most one level above ℓ (mid-way between ℓ and the root) is made special; all other levels are made non-special.

- Depending on the application, make an *assumption* on the minimum value of *r*, say *r*_{min}.
- If the actual r is greater than r_{\min} , then there is no problem.
- If the acutal *r* is smaller than *r*_{min}, then the benefits on the header length is not attained.
- Choosing r_{min} to be too small will not lead to substantial savings in user storage; choosing r_{min} to be too large will not provide the desired reduction on header storage.

Number of users is $n = 2^{\ell_0}$ with $\ell_0 = 28$ and suppose $r_{\min} = 2^{10}$.

- NNL-SD: layering: 28,0; storage: 406.
- eHS: layering: 28,22,16,10,5,0; storage: 146; header lengths: (1.69, 1.63, 1.64, 1.67, 1.69, 1.72, 1.73, 1.74, 1.75, 1.75).
- CML: layering: 23, 18,0; storage: 219; header lengths: (1.14, 1.08, 1.04, 1.03, 1.01, 1.01, 1.00, 1.00, 1.00, 1.00).

Header lengths for 10 equispaced values of r from 2¹⁰ to 2¹⁴ normalised by the header length of the NNL-SD scheme.

The NNL and the HS papers:

Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers. In Joe Kilian, editor, *CRYPTO*, volume 2139 of *Lecture Notes in Computer Science*, pages 41–62. Springer, 2001.

Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In Moti Yung, editor, *CRYPTO*, volume 2442 of *Lecture Notes in Computer Science*, pages 47–60. Springer, 2002.

イロト イヨト イヨト イヨト

Our Works

Sanjay Bhattacherjee and Palash Sarkar.

Complete tree subset difference broadcast encryption scheme and its analysis. *Des. Codes Cryptography*, 66(1-3):335–362, 2013.

Sanjay Bhattacherjee and Palash Sarkar.

Concrete analysis and trade-offs for the (complete tree) layered subset difference broadcast encryption scheme.

IEEE Transactions on Computers, 63(7): 1709–1722, 2014.

Sanjay Bhattacherjee and Palash Sarkar. Tree based symmetric key broadcast encryption. Cryptology ePrint Archive, Report 2013/786, 2013. http://eprint.iacr.org/2013/786.

1

Sanjay Bhattacherjee and Palash Sarkar. Reducing communication overhead of the subset difference scheme. Cryptology ePrint Archive, Report 2014/577, 2014. http://eprint.iacr.org/2014/577.

Sanjay Bhattacherjee.

Implementations related to the above papers, https://drive.google.com/ folderview?id=0B7azs7qqqdS0UnB5aHp3WmJwcDQ&usp=sharing_eil. Uploaded on 13th August, 2014.

Thank you for your attention!

2