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Symmetric Key BE Functionality

The centre pre-distributes secret information to the users.
A broadcast takes place in a session.
For each session:

Some users are privileged and the rest are revoked.
The actual message is encrypted once using a session key.
The session key undergoes a number of separate encryptions. This
determines the header.
Only the privileged users are able to decrypt. A coalition of all the
revoked users get no information about the message.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 4 / 53



isilogo

Parameters of Interest

Size of the header.
Size of the secret information required to be stored by the users.
Time required by the centre to encrypt.
Time required by a user to decrypt.

Hdr sz and enc time are proportional to # enc of the session key.

Requirement: Reduce header size, user storage and decryption time.
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Applications of BE

AACS standard: content protection in optical discs: Disney, Intel,
Microsoft, Panasonic, Warner Bros., IBM, Toshiba and Sony.
Pay-TV: BSkyB in UK and Ireland has a subscriber base of over
10 million;
Cable Television Networks (Regulation) Amendment Act, 2011
(India).
File Sharing in Encrypted File Systems.
Encrypted Email to Mailing Lists.
Military Broadcasts: Global Broadcast Service (US), Joint
Broadcast System (Europe).
. . .
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Subset Cover Schemes

Identify a collection S consisting of subsets of users.
Assign keys to each subset in S.
To each user, assign secret information such that it is able to
generate secret keys for each subset in S to which it belongs; and
no more.
During a broadcast, form a partition {S1, . . . ,Sh} of the set of
privileged users with Si ∈ S.
The session key is encrypted using the keys for S1, . . . ,Sh.
Each privileged user can decrypt; no coalition of revoked users
gains any information about the session key (or the message).
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Subset Difference Scheme

Naor-Naor-Lotspiech (2001): patented, AACS standard.
Assumes an underlying full binary tree
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Subsets in the collection S

Si,j = Ti \ Tj : has all users that are in Ti but not in Tj

j

i

Collection S: has all subsets Si,j such that j( 6= i) is in the subtree Ti .
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Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi ) GR (seedi )

GL(GL(seedi )) GR (GL(seedi ))

GR (GL(GL(seedi )))

Li,j = GM (GR (GL(GL(seedi ))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))
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Assigning seeds to users
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Figure : From one derived seed, keys of many subsets can be generated
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User Storage

u

seedi

GR (seedi )GL(seedi )
GR (GL(seedi ))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .
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Subset Cover Finding Algorithm
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NNL-SD Parameters

For n users out of which r are revoked:
User storage needed: O(log2(n)).
Header length in the worst case: 2r − 1.
Decryption time in the worst case: O(log n).
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Layered Subset Difference Scheme

Halevy-Shamir (CRYPTO, 2002) Some levels are marked as “special”.
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Layered SD Scheme

special level

T i

T k

T j

Figure : The subset Si,j split into Si,k (green leaves) and Sk,j (grey leaves).
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Layered SD Scheme

Li,k = GM (seedi,k )

k

seedi

seedi,k = GL(seedi )

GR (seedi )special level

k

j

seedk

GL(seedk ) GR (seedk )

seedk,j = GR (GL(seedk ))

Lk,j = GM (seedk,j )

Figure : Key for Si,k is Li,k = GM(GL(seedi)) and for Sk,j is
Lk,j = GM(GR(GL(seedk ))).
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Important Parameters

NNL-SD scheme:
User storage needed: O(log2(n)).
Maximum Header Length: 2r − 1.

HS-LSD scheme:
User Storage needed: O(log3/2 n).
Maximum header length: 4r − 2.
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Some Questions

What is the expected header length of the NNL scheme?
The NNL and the HS schemes are based on full binary trees;
What happens if the number of users is not a power of two?
Is the user storage achieved in the HS scheme the minimum
possible?
Is the (expected) header length achieved in the NNL scheme the
minimum possible?
What happens if we use trees of arity higher than 2?

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 21 / 53



isilogo

Tackling Arbitrary Number of Users
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Complete Tree SD Scheme

Question: What happens when the number of users is not a power of
two?

Answer: Add dummy users to get to the next power of two.
If the dummy users are considered revoked, then the effect on the
header length is disastrous.
If the dummy users are privileged, the situation is better but, there
is still a measureable effect on the header length.

Solution: Use a complete binary tree.

“Completes” (and also subsumes) the NNL-SD scheme to work
for any number of users.
Conceptually simple; working out the details is a bit involved.
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CTSD Scheme: Header Length Analysis

N(n, r ,h): number of revocation patterns with n users, out of which r
users are revoked and the header length is h.

Recurrence relation for N(n, r ,h).
N(λi , r1,h1) = T (λi , r1,h1) +

∑
j∈IN(i) T (λj , r1,h1 − 1)

where IN(i) is the set of all internal nodes in the subtree T i

excluding the node i .
T (λi , r1,h1) =

∑r1−1
r ′=1

∑h1
h′=0 N(λ2i+1, r ′,h′)×N(λ2i+2, r1−r ′,h1−h′)

where λ2i+1 (respectively λ2i+2) is the number of leaves in the left
(respectively right) subtree of T i .
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Boundary Conditions

T (λi , r1,h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n
h1 = 0 0 0 0 0 1 0
h1 ≥ 1 0 0 0 from rec. 0 0

N(λi , r1,h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n
h1 = 0 0 0 0 0 1 0
h1 = 1 0 1 n from rec. 0 0
h1 > 1 0 0 0 from rec. 0 0

Table : Boundary conditions on T (n, r ,h) and N(n, r ,h).
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Computing N(n, r ,h)

Dynamic Programming:

N(n, r ,h) can be computed in O(r2h2 log n + rh log2 n) time and
O(rh log n) space.
N(n, r ,h) for all possible h can be computed in
O(r4 log n + r2 log n) time and O(r2 log2 n) space.
N(n, r ,h) for all possible r and h can be computed in
O(n4 log n + n2 log2 n) time and O(n2 log n) space.
N(i , r ,h) for 2 ≤ i ≤ n and all possible r and h can be computed in
O(n5 + n3 log n) time and O(n3) space.

Previous to our work, the only known method was to enumerate all
possible

(n
r

)
revocation patterns, run the header generation algorithm

and count the number of patterns leading to a header of size h.
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CTSD: Maximum Header Length

Theorem: The maximum header length in the CTSD method for n
users is min(2r − 1,

⌊n
2

⌋
,n − r).

For the NNL-SD scheme, the bound of 2r − 1 was known.
Complete picture: if r ≤ n/4, the bound 2r − 1 is appropriate; if
n/4 < r ≤ n/2, the bound n/2 is appropriate; and for r > n/2, the
bound n − r is appropriate.
Using the CTSD method is never worse than individual
transmission to privileged users.
The proof requires extensive use of the recurrence for N(n, r ,h).

nr : The value of n for which the header length of 2r − 1 is achieved
with r revoked users.

A complete characterisation of nr is obtained.
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CTSD: Expected Header Length

Random experiment: Select a random subset of r users out of n
users and revoke them.
Random variable X i

n,r : takes the value 1 if Si,j is in the header for
some j and 0 otherwise.

E [X i
n,r ] = Pr[X i

n,r = 1].
Hn,r : expected header length for n users with r revoked users.

Hn,r =
∑

E [X i
n,r ] =

∑
Pr[X i

n,r = 1] where the sum is over all the
n − 1 internal nodes i in the tree.
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CTSD: Expected Header Length

For all nodes i at the same level, Pr[X i
n,r = 1] takes at most 3

possible values.
As a consequence, the sum can be re-written to vary over the
levels of the tree.
Hn,r can be computed in O(r log n) time and O(1) space.
Provides granular information: expected number of subsets in the
header from all the nodes at a certain level.
Since CTSD subsumes NNL-SD, all the results also hold for
NNL-SD.
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NNL-SD: Expected Header Length

Theorem: For all n ≥ 1, r ≥ 1, the expected header length Hn,r ↑ Hr ,
as n increases through powers of two, where

Hr = 3r − 2− 3×
r−1∑
i=1

((
− 1

2

)i
+

i∑
k=1

(−1)k
(

i
k

)
(2k − 3k )

(2k − 1)

)
.

r 2 3 4 5 6
Hr/r 1.25 1.25 1.2455 1.2446 1.2448
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Reducing User Storage Below Halevy-Shamir Scheme
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Halevy-Shamir LSD Scheme

1615 17 18 19 20 21 22

12 13 141110987

3 4 5 6

21

0

4

2

0

Special Levels

23 24 25 26 27 28 29 30

Layer 1

Layer 2

“The root is considered to be at a special level, and in
addition we consider every level of depth k ·

√
log (n) for

k = 1 . . . log (n) as special (wlog, we assume that these
numbers are integers).”

Works for 2`0 users with `0 = 4,9,16,25 (in the practical range).
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Halevy-Shamir LSD Scheme

For the case of n = 228, HS suggests special levels to be 28, 22,
16, 10, 5, 0.
Nothing is mentioned about how to choose the layer lengths when
`0 is not a perfect square.
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Extending the HS Scheme

Residual bottom layer: Write `0 = d(e − 1) + p where 1 ≤ p ≤ d .
Then the special levels are

`0, `0 − d , `0 − 2d , . . ., `− d(e − 1), 0.

Balanced layering: Write
`0 = d(e − 1) + p = (e − d + p)d + (d − p)(d − 1). Define the layer
lengths from the top to be

(d , . . . ,d︸ ︷︷ ︸
e−d+p

,d − 1, . . . ,d − 1︸ ︷︷ ︸
d−p

).
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Extending the HS Scheme

Both strategies (residual bottom; balanced) can be shown to
provide the same user storage.
Having smaller layers nearer the top increases the user storage.
The balanced layering strategy provides slightly smaller expected
header length. We call this the extended-HS (eHS) layering
strategy.
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Layering Strategy

A choice of special levels is called a layering strategy.
A layering strategy ` is denoted by the numbers of the special
levels `0 > `1 > ... > `e−1 > `e = 0.
The layering strategy has (e + 1) special levels.
Let ` = (`0, . . . , `e).
In general, the layer lengths need not be (almost) equal.
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Layering Strategy and User Storage

storage0(`) =
e−1∑
i=0

`i +
1
2

e−1∑
i=0

(`i − `i+1)(`i − `i+1 − 1).

Recursive description:

storage0(`0, `1, . . . , `e)

= `0 +
(`0 − `1)(`0 − `1 − 1)

2
+ storage0(`1, . . . , `e).
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Root as a Non-Special Layer

Observations:
It can be shown that the probability of the root generating a subset
in the header is small.
Having the root as a special layer increases the user storage.

Layering strategy with root as a non-special layer:

storage1(`) = storage0(`)− `1.

Reduces user storage by `1 at a negligible increase in the expected
header size.
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Storage Minimal Layering

Given `0, let SML0(`0) be a layering strategy which minimises the
user storage among all layering strategies;
#SML0(`0): user storage required by SML0(`0);
SML1(`0) and #SML1(`0) corresponds to the case where the root
is not special.
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Relations/Recurrences for SML

#SML0(`0) = min
1≤e≤`0

#SML0(e, `0);

where #SML0(e, `0) is the minimum storage that can be achieved with
e special levels.

#SML0(e, `0) = min
(`0,...,`e)

storage0(`0, `1, . . . , `e)

where the minimum is over all possible layering strategies
(`0, `1, . . . , `e).
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Relations/Recurrences for SML

#SML0(e, `0)

= min
1≤`1<`0

(
`0 +

(`0 − `1)(`0 − `1 − 1)
2

+#SML0(e − 1, `1)
)
;

#SML1(`0)

= min
e

min
`1

(
#SML0(e − 1, `1) +

(`0 − `1)(`0 − `1 + 1)
2

)
.
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Computing SML

Dynamic Programming:

An O(`3) time and O(`2) space algorithm to compute #SML0(`0)

The actual layering strategy SML0(`0) can also be recovered from
the algorithm.
Once the table has been computed using dynamic programming,
it is possible to obtain #SML1(`0) and SML1(`0).
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Properties of SML

SML0 and SML1 are not necessarily unique; choose the layering
for which expected header length is lower.
Removing `0 from SML0 does not necessarily provide SML1.
Compared to NNL-SD, eHS reduces storage by a large amount;
SML0 reduces storage below eHS by a small amount; SML1
reduces storage below eHS by 18% to 24% in the practical range.
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Examples of SML

Suppose there are 228 users, i.e., `0 = 28:
NNL-SD: layering: 28,0; storage: 406.
eHS: layering: 28,22,16,10,5,0; storage: 146.
SML0: layering: 28,21,15,10,6,3,1,0; storage: 140.
SML1: layering: 22,16,11,7,4,2,0; storage: 119.
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Complete Tree LSD Scheme

Question: What if the number of users n is not a power of 2?

Answer: Use a complete tree as in the case of the NNL-SD scheme.
The notions of layering strategy and storage minimal layering
carry over to this case.
All users would not be required to store the same amount; the
requirement is to minimise the maximum of all the user storages.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 45 / 53



isilogo

Header Length

Maximum Header Length:
At most min (4r − 2,

⌈n
2

⌉
,n − r).

At most min (4r − 3,
⌈n

2

⌉
,n − r) if the root level is special.

Expected Header Length:
The splitting of subsets complicates the analysis.
An O(r log2 n) time algorithm to compute the expected header
length.
A very useful tool to analyse various schemes.
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Constrained Minimisation

Question: Is it possible to obtain expected header length close to that
of NNL-SD, but, with lower user storage?

For each level, we have an expression for the expected number of
subsets arising from the nodes at that level.
Suppose ` is a level which maximises the above quantity.

Question: How to choose `?
Answer: How to do this analytically is not clear. Extensive
experimentation has shown that ` = `0 − log2 r is a good choice.
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Constrained Minimisation Layering

Fix a value of r and set ` = `0 − log2 r .
Level ` is made special, so that subsets arising from level ` are not
split.
All levels below ` are made non-special.
At most one level above ` (mid-way between ` and the root) is
made special; all other levels are made non-special.
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How to Choose r?

Depending on the application, make an assumption on the
minimum value of r , say rmin.
If the actual r is greater than rmin, then there is no problem.
If the acutal r is smaller than rmin, then the benefits on the header
length is not attained.
Choosing rmin to be too small will not lead to substantial savings in
user storage; choosing rmin to be too large will not provide the
desired reduction on header storage.
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A CML Example

Number of users is n = 2`0 with `0 = 28 and suppose rmin = 210.

NNL-SD: layering: 28,0; storage: 406.
eHS: layering: 28,22,16,10,5,0; storage: 146;
header lengths:
(1.69,1.63,1.64,1.67,1.69,1.72,1.73,1.74,1.75,1.75).
CML: layering: 23, 18,0; storage: 219;
header lengths:
(1.14,1.08,1.04,1.03,1.01,1.01,1.00,1.00,1.00,1.00).

Header lengths for 10 equispaced values of r from 210 to 214

normalised by the header length of the NNL-SD scheme.
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Thank you for your attention!
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