
isilogo

On Symmetric Key Broadcast Encryption

Sanjay Bhattacherjee and Palash Sarkar

Indian Statistical Institute, Kolkata

Elliptic Curve Cryptography
(This is not)

2014

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 1 / 53

isilogo

Conventional Symmetric Key Encryption

ReceiverSender

message M

DecryptEncrypt ciphertext

public channel

secret key K secret key Kadversary

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 2 / 53

isilogo

Symmetric Key Broadcast Encryption

Centre

Users

Users

Users

Broadcast

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 3 / 53

isilogo

Symmetric Key BE Functionality

The centre pre-distributes secret information to the users.
A broadcast takes place in a session.
For each session:

Some users are privileged and the rest are revoked.
The actual message is encrypted once using a session key.
The session key undergoes a number of separate encryptions. This
determines the header.
Only the privileged users are able to decrypt. A coalition of all the
revoked users get no information about the message.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 4 / 53

isilogo

Parameters of Interest

Size of the header.
Size of the secret information required to be stored by the users.
Time required by the centre to encrypt.
Time required by a user to decrypt.

Hdr sz and enc time are proportional to # enc of the session key.

Requirement: Reduce header size, user storage and decryption time.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 5 / 53

isilogo

Applications of BE

AACS standard: content protection in optical discs: Disney, Intel,
Microsoft, Panasonic, Warner Bros., IBM, Toshiba and Sony.
Pay-TV: BSkyB in UK and Ireland has a subscriber base of over
10 million;
Cable Television Networks (Regulation) Amendment Act, 2011
(India).
File Sharing in Encrypted File Systems.
Encrypted Email to Mailing Lists.
Military Broadcasts: Global Broadcast Service (US), Joint
Broadcast System (Europe).
. . .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 6 / 53

isilogo

Subset Cover Schemes

Identify a collection S consisting of subsets of users.
Assign keys to each subset in S.
To each user, assign secret information such that it is able to
generate secret keys for each subset in S to which it belongs; and
no more.
During a broadcast, form a partition {S1, . . . ,Sh} of the set of
privileged users with Si ∈ S.
The session key is encrypted using the keys for S1, . . . ,Sh.
Each privileged user can decrypt; no coalition of revoked users
gains any information about the session key (or the message).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 7 / 53

isilogo

Subset Difference Scheme

Naor-Naor-Lotspiech (2001): patented, AACS standard.
Assumes an underlying full binary tree

1615 17 18 19 20 21 22

12 13 141110987

3 4 5 6

21

0

2

0

23 24 25 26 27 28 29 30

Level Numbers

1

4

3

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 8 / 53

isilogo

Subsets in the collection S

Si,j = Ti \ Tj : has all users that are in Ti but not in Tj

j

i

Collection S: has all subsets Si,j such that j(6= i) is in the subtree Ti .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 9 / 53

isilogo

Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi) GR (seedi)

GL(GL(seedi)) GR (GL(seedi))

GR (GL(GL(seedi)))

Li,j = GM (GR (GL(GL(seedi))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 10 / 53

isilogo

Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi) GR (seedi)

GL(GL(seedi)) GR (GL(seedi))

GR (GL(GL(seedi)))

Li,j = GM (GR (GL(GL(seedi))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 10 / 53

isilogo

Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi) GR (seedi)

GL(GL(seedi)) GR (GL(seedi))

GR (GL(GL(seedi)))

Li,j = GM (GR (GL(GL(seedi))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 10 / 53

isilogo

Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi) GR (seedi)

GL(GL(seedi)) GR (GL(seedi))

GR (GL(GL(seedi)))

Li,j = GM (GR (GL(GL(seedi))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 10 / 53

isilogo

Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi) GR (seedi)

GL(GL(seedi)) GR (GL(seedi))

GR (GL(GL(seedi)))

Li,j = GM (GR (GL(GL(seedi))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 10 / 53

isilogo

Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi) GR (seedi)

GL(GL(seedi)) GR (GL(seedi))

GR (GL(GL(seedi)))

Li,j = GM (GR (GL(GL(seedi))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 10 / 53

isilogo

Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi) GR (seedi)

GL(GL(seedi)) GR (GL(seedi))

GR (GL(GL(seedi)))

Li,j = GM (GR (GL(GL(seedi))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 10 / 53

isilogo

Key Assignment

Pseudo-random generator (PRG): G : {0,1}k → {0,1}3k

G(seed) = GL(seed)||GM(seed)||GR(seed)

seedi

j

GL(seedi) GR (seedi)

GL(GL(seedi)) GR (GL(seedi))

GR (GL(GL(seedi)))

Li,j = GM (GR (GL(GL(seedi))))

Figure : Key of Si,j : Li,j = GM(GR(GL(GL(seedi))))

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 10 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 11 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 11 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 11 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 11 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 11 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 11 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 12 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 12 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 12 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 12 / 53

isilogo

Assigning seeds to users

T i

u

T i

u

T j

T j

Figure : From one derived seed, keys of many subsets can be generated

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 12 / 53

isilogo

User Storage

u

seedi

GR (seedi)GL(seedi)
GR (GL(seedi))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 13 / 53

isilogo

User Storage

u

seedi

GR (seedi)GL(seedi)
GR (GL(seedi))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 13 / 53

isilogo

User Storage

u

seedi

GR (seedi)GL(seedi)
GR (GL(seedi))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 13 / 53

isilogo

User Storage

u

seedi

GR (seedi)GL(seedi)
GR (GL(seedi))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 13 / 53

isilogo

User Storage

u

seedi

GR (seedi)

GL(seedi)
GR (GL(seedi))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 13 / 53

isilogo

User Storage

u

seedi

GR (seedi)GL(seedi)

GR (GL(seedi))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 13 / 53

isilogo

User Storage

u

seedi

GR (seedi)GL(seedi)

GR (GL(seedi))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 13 / 53

isilogo

User Storage

u

seedi

GR (seedi)GL(seedi)
GR (GL(seedi))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 13 / 53

isilogo

User Storage

u

seedi

GR (seedi)
GR (GL(seedi))

GR (GL(GL(seedi)))

GR (GL(GL(GL(seedi))))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 14 / 53

isilogo

User Storage

u

seedi

GR (seedi)
GR (GL(seedi))

GR (GL(GL(seedi)))

GR (GL(GL(GL(seedi))))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 14 / 53

isilogo

User Storage

u

seedi

GR (seedi)
GR (GL(seedi))

GR (GL(GL(seedi)))

GR (GL(GL(GL(seedi))))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 14 / 53

isilogo

User Storage

u

seedi

GR (seedi)
GR (GL(seedi))

GR (GL(GL(seedi)))

GR (GL(GL(GL(seedi))))

Figure : Secrets stored by u

User u stores: for every Ti to which it belongs, the derived labels of
nodes “falling-off” from the path between i and u, derived from seedi .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 14 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

Subset Cover Finding Algorithm

j1 j2

i1 i2

Si1,j1
Si2,j2

Covered

i3

j3

i4

Si4,j3

Covered

i5

Si,j = Ti \ Tj

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 15 / 53

isilogo

NNL-SD Parameters

For n users out of which r are revoked:
User storage needed: O(log2(n)).
Header length in the worst case: 2r − 1.
Decryption time in the worst case: O(log n).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 16 / 53

isilogo

Layered Subset Difference Scheme

Halevy-Shamir (CRYPTO, 2002) Some levels are marked as “special”.

1615 17 18 19 20 21 22

12 13 141110987

3 4 5 6

21

0

4

2

0

Special Levels

23 24 25 26 27 28 29 30

Layer 1

Layer 2

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 17 / 53

isilogo

Layered SD Scheme

special level

T i

T k

T j

Figure : The subset Si,j split into Si,k (green leaves) and Sk,j (grey leaves).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 18 / 53

isilogo

Layered SD Scheme

Li,k = GM (seedi,k)

k

seedi

seedi,k = GL(seedi)

GR (seedi)special level

k

j

seedk

GL(seedk) GR (seedk)

seedk,j = GR (GL(seedk))

Lk,j = GM (seedk,j)

Figure : Key for Si,k is Li,k = GM(GL(seedi)) and for Sk,j is
Lk,j = GM(GR(GL(seedk))).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 19 / 53

isilogo

Important Parameters

NNL-SD scheme:
User storage needed: O(log2(n)).
Maximum Header Length: 2r − 1.

HS-LSD scheme:
User Storage needed: O(log3/2 n).
Maximum header length: 4r − 2.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 20 / 53

isilogo

Some Questions

What is the expected header length of the NNL scheme?
The NNL and the HS schemes are based on full binary trees;
What happens if the number of users is not a power of two?
Is the user storage achieved in the HS scheme the minimum
possible?
Is the (expected) header length achieved in the NNL scheme the
minimum possible?
What happens if we use trees of arity higher than 2?

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 21 / 53

isilogo

Tackling Arbitrary Number of Users

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 22 / 53

isilogo

Complete Tree SD Scheme

Question: What happens when the number of users is not a power of
two?

Answer: Add dummy users to get to the next power of two.
If the dummy users are considered revoked, then the effect on the
header length is disastrous.
If the dummy users are privileged, the situation is better but, there
is still a measureable effect on the header length.

Solution: Use a complete binary tree.

“Completes” (and also subsumes) the NNL-SD scheme to work
for any number of users.
Conceptually simple; working out the details is a bit involved.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 23 / 53

isilogo

CTSD Scheme: Header Length Analysis

N(n, r ,h): number of revocation patterns with n users, out of which r
users are revoked and the header length is h.

Recurrence relation for N(n, r ,h).
N(λi , r1,h1) = T (λi , r1,h1) +

∑
j∈IN(i) T (λj , r1,h1 − 1)

where IN(i) is the set of all internal nodes in the subtree T i

excluding the node i .
T (λi , r1,h1) =

∑r1−1
r ′=1

∑h1
h′=0 N(λ2i+1, r ′,h′)×N(λ2i+2, r1−r ′,h1−h′)

where λ2i+1 (respectively λ2i+2) is the number of leaves in the left
(respectively right) subtree of T i .

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 24 / 53

isilogo

Boundary Conditions

T (λi , r1,h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n
h1 = 0 0 0 0 0 1 0
h1 ≥ 1 0 0 0 from rec. 0 0

N(λi , r1,h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n
h1 = 0 0 0 0 0 1 0
h1 = 1 0 1 n from rec. 0 0
h1 > 1 0 0 0 from rec. 0 0

Table : Boundary conditions on T (n, r ,h) and N(n, r ,h).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 25 / 53

isilogo

Computing N(n, r ,h)

Dynamic Programming:

N(n, r ,h) can be computed in O(r2h2 log n + rh log2 n) time and
O(rh log n) space.
N(n, r ,h) for all possible h can be computed in
O(r4 log n + r2 log n) time and O(r2 log2 n) space.
N(n, r ,h) for all possible r and h can be computed in
O(n4 log n + n2 log2 n) time and O(n2 log n) space.
N(i , r ,h) for 2 ≤ i ≤ n and all possible r and h can be computed in
O(n5 + n3 log n) time and O(n3) space.

Previous to our work, the only known method was to enumerate all
possible

(n
r

)
revocation patterns, run the header generation algorithm

and count the number of patterns leading to a header of size h.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 26 / 53

isilogo

CTSD: Maximum Header Length

Theorem: The maximum header length in the CTSD method for n
users is min(2r − 1,

⌊n
2

⌋
,n − r).

For the NNL-SD scheme, the bound of 2r − 1 was known.
Complete picture: if r ≤ n/4, the bound 2r − 1 is appropriate; if
n/4 < r ≤ n/2, the bound n/2 is appropriate; and for r > n/2, the
bound n − r is appropriate.
Using the CTSD method is never worse than individual
transmission to privileged users.
The proof requires extensive use of the recurrence for N(n, r ,h).

nr : The value of n for which the header length of 2r − 1 is achieved
with r revoked users.

A complete characterisation of nr is obtained.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 27 / 53

isilogo

CTSD: Expected Header Length

Random experiment: Select a random subset of r users out of n
users and revoke them.
Random variable X i

n,r : takes the value 1 if Si,j is in the header for
some j and 0 otherwise.

E [X i
n,r] = Pr[X i

n,r = 1].
Hn,r : expected header length for n users with r revoked users.

Hn,r =
∑

E [X i
n,r] =

∑
Pr[X i

n,r = 1] where the sum is over all the
n − 1 internal nodes i in the tree.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 28 / 53

isilogo

CTSD: Expected Header Length

For all nodes i at the same level, Pr[X i
n,r = 1] takes at most 3

possible values.
As a consequence, the sum can be re-written to vary over the
levels of the tree.
Hn,r can be computed in O(r log n) time and O(1) space.
Provides granular information: expected number of subsets in the
header from all the nodes at a certain level.
Since CTSD subsumes NNL-SD, all the results also hold for
NNL-SD.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 29 / 53

isilogo

NNL-SD: Expected Header Length

Theorem: For all n ≥ 1, r ≥ 1, the expected header length Hn,r ↑ Hr ,
as n increases through powers of two, where

Hr = 3r − 2− 3×
r−1∑
i=1

((
− 1

2

)i
+

i∑
k=1

(−1)k
(

i
k

)
(2k − 3k)

(2k − 1)

)
.

r 2 3 4 5 6
Hr/r 1.25 1.25 1.2455 1.2446 1.2448

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 30 / 53

isilogo

Reducing User Storage Below Halevy-Shamir Scheme

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 31 / 53

isilogo

Halevy-Shamir LSD Scheme

1615 17 18 19 20 21 22

12 13 141110987

3 4 5 6

21

0

4

2

0

Special Levels

23 24 25 26 27 28 29 30

Layer 1

Layer 2

“The root is considered to be at a special level, and in
addition we consider every level of depth k ·

√
log (n) for

k = 1 . . . log (n) as special (wlog, we assume that these
numbers are integers).”

Works for 2`0 users with `0 = 4,9,16,25 (in the practical range).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 32 / 53

isilogo

Halevy-Shamir LSD Scheme

For the case of n = 228, HS suggests special levels to be 28, 22,
16, 10, 5, 0.
Nothing is mentioned about how to choose the layer lengths when
`0 is not a perfect square.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 33 / 53

isilogo

Extending the HS Scheme

Residual bottom layer: Write `0 = d(e − 1) + p where 1 ≤ p ≤ d .
Then the special levels are

`0, `0 − d , `0 − 2d , . . ., `− d(e − 1), 0.

Balanced layering: Write
`0 = d(e − 1) + p = (e − d + p)d + (d − p)(d − 1). Define the layer
lengths from the top to be

(d , . . . ,d︸ ︷︷ ︸
e−d+p

,d − 1, . . . ,d − 1︸ ︷︷ ︸
d−p

).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 34 / 53

isilogo

Extending the HS Scheme

Both strategies (residual bottom; balanced) can be shown to
provide the same user storage.
Having smaller layers nearer the top increases the user storage.
The balanced layering strategy provides slightly smaller expected
header length. We call this the extended-HS (eHS) layering
strategy.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 35 / 53

isilogo

Layering Strategy

A choice of special levels is called a layering strategy.
A layering strategy ` is denoted by the numbers of the special
levels `0 > `1 > ... > `e−1 > `e = 0.
The layering strategy has (e + 1) special levels.
Let ` = (`0, . . . , `e).
In general, the layer lengths need not be (almost) equal.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 36 / 53

isilogo

Layering Strategy and User Storage

storage0(`) =
e−1∑
i=0

`i +
1
2

e−1∑
i=0

(`i − `i+1)(`i − `i+1 − 1).

Recursive description:

storage0(`0, `1, . . . , `e)

= `0 +
(`0 − `1)(`0 − `1 − 1)

2
+ storage0(`1, . . . , `e).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 37 / 53

isilogo

Root as a Non-Special Layer

Observations:
It can be shown that the probability of the root generating a subset
in the header is small.
Having the root as a special layer increases the user storage.

Layering strategy with root as a non-special layer:

storage1(`) = storage0(`)− `1.

Reduces user storage by `1 at a negligible increase in the expected
header size.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 38 / 53

isilogo

Storage Minimal Layering

Given `0, let SML0(`0) be a layering strategy which minimises the
user storage among all layering strategies;
#SML0(`0): user storage required by SML0(`0);
SML1(`0) and #SML1(`0) corresponds to the case where the root
is not special.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 39 / 53

isilogo

Relations/Recurrences for SML

#SML0(`0) = min
1≤e≤`0

#SML0(e, `0);

where #SML0(e, `0) is the minimum storage that can be achieved with
e special levels.

#SML0(e, `0) = min
(`0,...,`e)

storage0(`0, `1, . . . , `e)

where the minimum is over all possible layering strategies
(`0, `1, . . . , `e).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 40 / 53

isilogo

Relations/Recurrences for SML

#SML0(e, `0)

= min
1≤`1<`0

(
`0 +

(`0 − `1)(`0 − `1 − 1)
2

+#SML0(e − 1, `1)
)
;

#SML1(`0)

= min
e

min
`1

(
#SML0(e − 1, `1) +

(`0 − `1)(`0 − `1 + 1)
2

)
.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 41 / 53

isilogo

Computing SML

Dynamic Programming:

An O(`3) time and O(`2) space algorithm to compute #SML0(`0)

The actual layering strategy SML0(`0) can also be recovered from
the algorithm.
Once the table has been computed using dynamic programming,
it is possible to obtain #SML1(`0) and SML1(`0).

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 42 / 53

isilogo

Properties of SML

SML0 and SML1 are not necessarily unique; choose the layering
for which expected header length is lower.
Removing `0 from SML0 does not necessarily provide SML1.
Compared to NNL-SD, eHS reduces storage by a large amount;
SML0 reduces storage below eHS by a small amount; SML1
reduces storage below eHS by 18% to 24% in the practical range.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 43 / 53

isilogo

Examples of SML

Suppose there are 228 users, i.e., `0 = 28:
NNL-SD: layering: 28,0; storage: 406.
eHS: layering: 28,22,16,10,5,0; storage: 146.
SML0: layering: 28,21,15,10,6,3,1,0; storage: 140.
SML1: layering: 22,16,11,7,4,2,0; storage: 119.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 44 / 53

isilogo

Complete Tree LSD Scheme

Question: What if the number of users n is not a power of 2?

Answer: Use a complete tree as in the case of the NNL-SD scheme.
The notions of layering strategy and storage minimal layering
carry over to this case.
All users would not be required to store the same amount; the
requirement is to minimise the maximum of all the user storages.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 45 / 53

isilogo

Header Length

Maximum Header Length:
At most min (4r − 2,

⌈n
2

⌉
,n − r).

At most min (4r − 3,
⌈n

2

⌉
,n − r) if the root level is special.

Expected Header Length:
The splitting of subsets complicates the analysis.
An O(r log2 n) time algorithm to compute the expected header
length.
A very useful tool to analyse various schemes.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 46 / 53

isilogo

Constrained Minimisation

Question: Is it possible to obtain expected header length close to that
of NNL-SD, but, with lower user storage?

For each level, we have an expression for the expected number of
subsets arising from the nodes at that level.
Suppose ` is a level which maximises the above quantity.

Question: How to choose `?
Answer: How to do this analytically is not clear. Extensive
experimentation has shown that ` = `0 − log2 r is a good choice.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 47 / 53

isilogo

Constrained Minimisation Layering

Fix a value of r and set ` = `0 − log2 r .
Level ` is made special, so that subsets arising from level ` are not
split.
All levels below ` are made non-special.
At most one level above ` (mid-way between ` and the root) is
made special; all other levels are made non-special.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 48 / 53

isilogo

How to Choose r?

Depending on the application, make an assumption on the
minimum value of r , say rmin.
If the actual r is greater than rmin, then there is no problem.
If the acutal r is smaller than rmin, then the benefits on the header
length is not attained.
Choosing rmin to be too small will not lead to substantial savings in
user storage; choosing rmin to be too large will not provide the
desired reduction on header storage.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 49 / 53

isilogo

A CML Example

Number of users is n = 2`0 with `0 = 28 and suppose rmin = 210.

NNL-SD: layering: 28,0; storage: 406.
eHS: layering: 28,22,16,10,5,0; storage: 146;
header lengths:
(1.69,1.63,1.64,1.67,1.69,1.72,1.73,1.74,1.75,1.75).
CML: layering: 23, 18,0; storage: 219;
header lengths:
(1.14,1.08,1.04,1.03,1.01,1.01,1.00,1.00,1.00,1.00).

Header lengths for 10 equispaced values of r from 210 to 214

normalised by the header length of the NNL-SD scheme.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 50 / 53

isilogo

References

The NNL and the HS papers:
Dalit Naor, Moni Naor, and Jeffery Lotspiech.
Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages
41–62. Springer, 2001.

Dani Halevy and Adi Shamir.
The LSD broadcast encryption scheme.
In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages
47–60. Springer, 2002.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 51 / 53

isilogo

Our Works

Sanjay Bhattacherjee and Palash Sarkar.
Complete tree subset difference broadcast encryption scheme and its analysis.
Des. Codes Cryptography, 66(1-3):335–362, 2013.

Sanjay Bhattacherjee and Palash Sarkar.
Concrete analysis and trade-offs for the (complete tree) layered subset difference
broadcast encryption scheme.
IEEE Transactions on Computers, 63(7): 1709–1722, 2014.

Sanjay Bhattacherjee and Palash Sarkar.
Tree based symmetric key broadcast encryption.
Cryptology ePrint Archive, Report 2013/786, 2013.
http://eprint.iacr.org/2013/786.

Sanjay Bhattacherjee and Palash Sarkar.
Reducing communication overhead of the subset difference scheme.
Cryptology ePrint Archive, Report 2014/577, 2014.
http://eprint.iacr.org/2014/577.

Sanjay Bhattacherjee.
Implementations related to the above papers, https://drive.google.com/
folderview?id=0B7azs7qqqdS0UnB5aHp3WmJwcDQ&usp=sharing_eil.
Uploaded on 13th August, 2014.

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 52 / 53

http://eprint.iacr.org/2013/786
http://eprint.iacr.org/2014/577
https://drive.google.com/folderview?id=0B7azs7qqqdS0UnB5aHp3WmJwcDQ&usp=sharing_eil
https://drive.google.com/folderview?id=0B7azs7qqqdS0UnB5aHp3WmJwcDQ&usp=sharing_eil

isilogo

Thank you for your attention!

Bhattacherjee and Sarkar Symmetric Key BE 10th Oct, 2014 53 / 53

