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Euler Function

E (x) =
∏
k>0

(1− xk)

Defined by Leonhard Euler.
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Irrelevant Facts

Relation to Partition Numbers

Let pm be the number of partitions of m. Then

1

E (x)
=

∑
m≥0

pmxm.

Proof. Note that

1

E (x)
=

1∏
k>0(1− xk)

=
∏
k>0

(
∑
t≥0

xkt).
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Irrelevant Facts

Euler Identity

E (x) =
∞∑

m=−∞
(−1)mx (3m2−m)/2.

Proof. Set up an involution between terms of same degree and opposite
signs. Only a few survive.
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Irrelevant Facts

Over Complex Plane

E (x) =
∏
k>0

(1− xk)

Undefined outside unit disk.

Zero at unit circle.

Bounded inside the unit disk.

Proof. Straightforward.
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Irrelevant Facts

Dedekind Eta Function

η(z) = e
πiz
12 E (e2πiz).

η(z) is defined on the upper half of the complex plane and satisfies many
interesting properties:

η(z + 1) = e
πi
12 η(z).

η(−1
z ) =

√
−izη(z).

Proof. First part is trivial. Second part requires non-trivial complex
analysis.
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Permanent Polynomial

For any n > 0, let X = [xi ,j ] be a n× n matrix with variable elements.

Then permanent polynomial of degree n is the permanent of X :

per n(x̄) =
∑
σ∈Sn

n∏
i=1

xi ,σ(i).

It is believed to be hard to compute.
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Computing Euler Function

Let

En(x) =
n∏

k=1

(1− xk).

So, E (x) = limn 7→∞ En(x).

A circuit family computing En(x) can be viewed as computing E (x).

We will consider arithmetic circuits for computing En(x).
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Circuits for En(x)

A circuit computing En(x) over field F takes as input x and −1; and
outputs En(x).

It is allowed to use addition and multiplication gates of arbitrary fanin
over F .

Size of a circuit is the number of gates in it (not the number of wires).

A depth three circuit of size Θ(n) can compute En(x) over any field
F : follows from definition.
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Circuits for En(x)

Can a depth three or four circuit do significantly better?

It is not clear.

A proof of this for a field of finite characteristic gives a
superpolynomial lower bound on computing permanent polynomial
family by arithmetic circuits.

Manindra Agrawal () Bangalore, Sep 2010 10 / 22



Circuits for En(x)

Can a depth three or four circuit do significantly better?

It is not clear.

A proof of this for a field of finite characteristic gives a
superpolynomial lower bound on computing permanent polynomial
family by arithmetic circuits.

Manindra Agrawal () Bangalore, Sep 2010 10 / 22



The Main Theorem

Theorem

Suppose every depth four circuit family computing En(x) over F , char(F )
> 0, has size at least nε, for some fixed ε > 0. Then permanent polynomial
family cannot be computed by polynomial-size arithmetic circuits over Z.

Similar results have been obtained recently by Pascal Koiran.
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Proof

Without loss of generality, we can assume that the depth four circuit
family computes En(x) over F with F = Fp for some prime p.

I Follows from the fact that circuits over an extension field of Fp can be
simulated by circuits over Fp with only a small increase in size.

Assume that there is a polynomial-size circuit family computing
permanent polynomials over Z.
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Proof: An Alternative Expression for En(x)

Let F̂ be an extension of F with t = |F̂ | ≥ n2 and t = O(n2).

Let cα = En(α) for every α ∈ F̂ .

Define G (x) as:

Gn(x) =
∑
α∈F̂

cα ·
∏
β∈F̂ ,β 6=α(x − β)∏
β∈F̂ ,β 6=α(α− β)

.

Gn(x) agrees with En(x) at every point in F̂ .

And Gn(x)− En(x) is a polynomial of degree < t.

Therefore, En(x) = Gn(x).
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Proof: Computing Gn(x)

Let g be a generator of F̂ ∗.

Rewrite Gn(x) as:

Gn(x) = x − x t−1 +
t−2∑
k=0

cgk

∏
β∈F̂ ,β 6=gk (x − β)∏
β∈F̂ ,β 6=gk (gk − β)

=
t−1∑
k=0

u(n, k)xk .

We show that the function u belongs to #P#P.

The size of inputs in computations below is O(log n).

Notice that

cgk =
n∏
`=1

(1− gk`) = g
∑n
`=1 h` ,

for appropriate numbers h`.

From ` and k, numbers h` can be computed by a single-valued NP
machine.

Manindra Agrawal () Bangalore, Sep 2010 14 / 22



Proof: Computing Gn(x)

Let g be a generator of F̂ ∗.

Rewrite Gn(x) as:

Gn(x) = x − x t−1 +
t−2∑
k=0

cgk

∏
β∈F̂ ,β 6=gk (x − β)∏
β∈F̂ ,β 6=gk (gk − β)

=
t−1∑
k=0

u(n, k)xk .

We show that the function u belongs to #P#P.

The size of inputs in computations below is O(log n).

Notice that

cgk =
n∏
`=1

(1− gk`) = g
∑n
`=1 h` ,

for appropriate numbers h`.

From ` and k, numbers h` can be computed by a single-valued NP
machine.

Manindra Agrawal () Bangalore, Sep 2010 14 / 22



Proof: Computing Gn(x)

Let g be a generator of F̂ ∗.

Rewrite Gn(x) as:

Gn(x) = x − x t−1 +
t−2∑
k=0

cgk

∏
β∈F̂ ,β 6=gk (x − β)∏
β∈F̂ ,β 6=gk (gk − β)

=
t−1∑
k=0

u(n, k)xk .

We show that the function u belongs to #P#P.

The size of inputs in computations below is O(log n).

Notice that

cgk =
n∏
`=1

(1− gk`) = g
∑n
`=1 h` ,

for appropriate numbers h`.

From ` and k, numbers h` can be computed by a single-valued NP
machine.

Manindra Agrawal () Bangalore, Sep 2010 14 / 22



Proof: Computing Gn(x)

Let g be a generator of F̂ ∗.

Rewrite Gn(x) as:

Gn(x) = x − x t−1 +
t−2∑
k=0

cgk

∏
β∈F̂ ,β 6=gk (x − β)∏
β∈F̂ ,β 6=gk (gk − β)

=
t−1∑
k=0

u(n, k)xk .

We show that the function u belongs to #P#P.

The size of inputs in computations below is O(log n).

Notice that

cgk =
n∏
`=1

(1− gk`) = g
∑n
`=1 h` ,

for appropriate numbers h`.

From ` and k, numbers h` can be computed by a single-valued NP
machine.

Manindra Agrawal () Bangalore, Sep 2010 14 / 22



Proof: Computing Gn(x)

Observe that ∏
β∈F̂ ,β 6=gk

(gk − β) =
∏
β∈F̂∗

β = −1.

And ∏
β∈F̂ ,β 6=gk

(x − β) =

∏
β∈F̂ (x − β)

x − gk

=
x t − x

x − gk

= x t−1 + gkx t−2 + g 2kx t−3 + · · ·+ g (t−2)kx ,

for 0 ≤ k < t.
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Proof: Computing Gn(x)

Hence,

Gn(x) = x − x t−1 −
t−2∑
k=0

cgk ·
t−1∑
`=1

g (t−`−1)kx`

= x − x t−1 −
t−1∑
`=1

(
t−2∑
k=0

cgk g (t−`−1)k)x`

= x − x t−1 −
t−1∑
`=1

(
t−2∑
k=0

g (t−`−1)k+
∑n

m=1 hm)x`.

The above equation shows that the function u is in #P#P.
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Proof: Computing Gn(x)

We have assumed that the permanent polynomial can be computed
by a polynomial size circuit.

This implies that any function in #P can be computed by a
polynomial size arithmetic circuit.

This implies that the function u is in #P/poly.

Since

Gn(x) =
t∑

k=0

u(n, k)xk ,

it follows that Gn(x) can be computed as permanent of a small size
(= O(log n)) matrix.

This matrix will have entries 0, −1, and following powers of x : x , x2,

x22
, x23

, . . ., x2dlog te
:

I permanent of a matrix is a multilinear polynomial of its entries, and so
these powers of x can be used to create all the other powers of x < t.

This gives logO(1) n-size circuit to compute Gn(x) over Z .
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Proof: Computing En(x)

This circuit can be converted to a logO(1) n-size arithmetic circuit
over F since coefficients of Gn(x) are in F .

Using [AV08], this circuit can be transformed to a depth four circuit
of size no(1).

This implies that the polynomial En(x) can be computed by a
no(1)-size arithmetic circuit over F .

This contradicts the hypothesis that En(x) requires circuit of size nε

over F for some ε > 0.
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Generalizations

The theorem can be strengthened to show that permanent polynomial
requires size s(n) where s is any function satisfying s(s(n)) = 2o(n).

It should be possible to strengthen it further to s(n) = 2Ω(n).
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A Conjecture

Conjecture

Let P(x) be a polynomial computed by a depth four circuit of size m.
Then P(x) 6= 0 (mod xk − 1) for some k ≤ m1/4.

If the conjecture is true then the lower bound on permanent polynomial
follows.
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Thoughts on the Conjecture

The conjecture relates the size of a shallow circuit computing a
polynomial to the number of small roots of unity that the polynomial
can have.

It is similar in spirit to τ -conjecture of Shub-Smale that relates the
size of an arithmetic circuit computing a polynomial to the number of
integer roots the polynomial can have.
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Open Problems

Prove the theorem for s(n) = 2Ω(n).

Prove the theorem for permanent polynomial computed by circuits
over Q.

Prove the conjecture.
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