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Abstract. We show that it is possible to clone quantum states to arbitrary accuracy in the presence of
a Deutschian closed timelike curve (CTC), with a fidelity converging to one in the limit as the dimension
of the CTC system becomes large—thus resolving an open conjecture from [Brun et al., Physical Review
Letters 102, 210402 (2009)]. This result follows from a CTC-assisted scheme for producing perfect clones of
a quantum state prepared in a known eigenbasis, and the fact that one can reconstruct an approximation of a
quantum state from empirical estimates of the probabilities of an informationally-complete measurement.
Our results imply more generally that every continuous, but otherwise arbitrarily non-linear map from
states to states can be implemented to arbitrary accuracy with Deutschian CTCs.
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The possible existence of closed timelike curves (CTCs)
in certain exotic spacetime geometries [1, 2, 3] has
sparked a significant amount of research regarding their
ramifications for computation [4, 5, 6] and information
processing [7, 8]. One of the well known models for CTCs
is due to Deutsch [9], who had the keen insight to ab-
stract away much of the space-time geometric details and
use the tools of quantum information to address physical
questions about causality paradoxes. One consequence
is that quantum computers with access to “Deutschian”
CTCs would be able to answer any computational de-
cision problem in PSPACE [6], a powerful complex-
ity class containing the well-known class NP, for exam-
ple. Also, quantum information processors with access
to Deutschian CTCs could distinguish non-orthogonal
states perfectly [7], thus leading to the strongest viola-
tion of the uncertainty principle that one could imagine.
From the perspective of Aaronson [10], we might take
these results to be complexity- and information-theoretic
evidence against the existence of CTCs that behave ac-
cording to Deutsch’s model.

In order to avoid “grandfather-like” paradoxes,
Deutsch’s model imposes a boundary condition in which
the density operator of the CTC system before it has
interacted with a chronology-respecting system should
be equal to the density operator of the CTC system af-
ter it interacts. More formally, let ρS denote the state
of the chronology-respecting system and let σC denote
the state of the CTC system before a unitary interac-
tion USC (acting on systems S and C) takes place. The
first assumption of Deutsch’s model is that the state of
the chronology-respecting system S and the chronology-
violating system C is a tensor-product state, since pre-
sumably they have not interacted before the CTC system
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comes into existence. Furthermore, Deutsch’s model im-
poses the following self-consistency condition:

σC = Φρ (σC) ≡ TrS

{
USC (ρS ⊗ σC)U†SC

}
, (1)

so that potential grandfather paradoxes can be avoided.
Computationally, one can take the view that nature is
finding a fixed-point of the map Φρ [9, 6], which depends
on the state ρS of the chronology-respecting system. The
chronology-respecting system’s state evolves by

ρS → ρout = TrC

{
USC (ρS ⊗ σC)U†SC

}
,

where the partial trace is over the CTC system. Since
σC depends on ρS , such an evolution is nonlinear and
as a result is a non-standard quantum evolution. If one
views a density operator as a statistical ensemble or as
a state of knowledge, then Deutsch already realized that
his model still leads to grandfather-like paradoxes [9], as
was elaborated further in later work [11]. However, if one
considers a density operator to be the fundamental ob-
ject which characterizes a quantum state, then Deutsch’s
model indeed resolves these paradoxes.

Since quantum processors with access to CTCs can
perfectly distinguish pure quantum states [7], one might
conclude that such CTC-assisted processors could also
approximately clone any pure quantum state, in viola-
tion of the celebrated no-cloning theorem [12, 13]. In fact,
Deutsch suggested that quantum cloning should be pos-
sible when one has access to CTCs behaving according to
(1) [9], and Brun et al. conjectured that “a CTC-assisted
party can construct a universal cloner with fidelity ap-
proaching one, at the cost of increasing the available di-
mensions in ancillary and CTC resources” [7].

In this paper, we give an approach to quantum state
cloning with CTCs that is conceptually simple and ap-
pealing. We show how to clone any quantum state, such



that the fidelity of each clone approaches one as the di-
mension of the assisting CTC system becomes large. De-
tails of our argument appear in Ref. [14].

One can quickly grasp the main idea behind our con-
struction by taking a glance at the circuit in Figure 1.
The first step is to perform an informationally-complete
measurement on the incoming state ρS . Such a mea-
surement is well known in quantum information theory
[15, 16, 17]—the probabilities of the outcomes are in one-
to-one correspondence with a classical density operator
description of the quantum state. (I.e., if one knew these
probabilities, or could estimate them from performing
this kind of measurement on many copies of the given
state, then one could construct a classical description of
the state.) Let ω denote the state resulting from the
measurement:

ω ≡
d−1∑
x=0

Tr {Mxρ} |x〉 〈x| , (2)

where each Mx is an element of the informationally-
complete measurement (so that Mx ≥ 0 for all x and∑
xMx = I), d is the number of possible measurement

outcomes, and {|x〉} is the standard computational basis.
Next, we feed the state ω into a circuit that cyclically

permutes it withN CTC systems that each have the same
dimension as ω. Such an operation on its own (after trac-
ing over all systems except for the N CTC systems) has
as its unique fixed point the state ω⊗N , so that, in some
sense, the cyclic shift produces N “temporary” clones.

Finally, we copy the value of x from each of the N
CTC systems to one of a set of ancillary systems in or-
der to “read out” N copies of the state ω. In Figure 1
we’ve drawn this as a sequence of controlled-not (CNOT)
gates, but in fact it will generally be a higher-dimensional
analogue of a CNOT, like a modular addition circuit:

|x〉|y〉 → U(|x〉|y〉) = |x〉|x+ y mod d〉. (3)

The fixed point of the overall circuit, after tracing over
all systems except for the N CTC systems, is still ω⊗N ,
because these modular addition gates do not cause any
disturbance to the CTC systems. As a result, the reduced
state on the N ancillas is equal to ω⊗N , and we can
then estimate the eigenvalues of ω simply by counting
frequencies—the estimates become better and better as
N becomes larger due to the law of large numbers. Since
these eigenvalues result from an informationally-complete
measurement, we can construct a classical description of
the state ρ and produce as many approximate copies of
it as we wish.

Our results imply more generally that every contin-
uous, but otherwise arbitrarily non-linear map f from
states to states can be implemented to arbitrary accu-
racy with Deutschian CTCs. This follows because we
can estimate the incoming state ρ to arbitrary accuracy
and then prepare f(ρ) at will.
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Figure 1: An example circuit for quantum state cloning
using N = 3 CTC systems. The unknown state ρ is
fed into a unitary operation UICM, whose effect is to im-
plement an informationally-complete measurement with
measurement operators {Mx} such that Mx ≥ 0 and∑
xMx = I. The resulting state ω =

∑
x Tr{Mxρ}|x〉〈x|

is combined with N CTC systems and cyclically per-
muted with them. (For the CTC systems, the past
mouth of the wormhole on the left, indicated by verti-
cal double lines, is identified with the future mouth on
the right.) Finally, modular addition circuits (depicted
here as CNOT gates) “read out” N copies of the state
ω, from which we can estimate the original state ρ to
arbitrarily good accuracy as the number N of CTC sys-
tems becomes large (of course, one would require N to
be much larger than three).
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